-
摘要:
对广东某伴生有石英的高岭土矿进行选矿试验研究,以期获得符合要求的石英砂产品。高岭土原矿捣浆、分级分离出−0.045 mm粒级高岭土产品后得到尾砂,尾砂中占比99.13%的+0.1 mm粒级物料可用作玻璃用石英原料。对可用作玻璃原料的+0.6 mm粒级进行了“拣选—磨矿—磁选”与“磨矿—磁选” 两种工艺对比试验,结果表明,拣选对最终选别指标影响较小,采用磨矿—磁选即可; +0.6 mm粒级经磁选后均可获得Fe2O3含量小于120 μg/g的石英精矿,−0.60 +0.10 mm粒级产品经磨矿—磁选可获得SiO2含量为99.04%、Fe2O3含量为104.46 μg/g的石英精矿,可达到光伏玻璃用石英砂的标准。该研究有助于高岭石伴生石英砂的综合利用,可提升伴生石英砂的价值。
Abstract:The experimental study on mineral processing of kaolinite accompanied by quartz in Guangdong was carried out in order to obtain quartz sand products meeting the requirements. The tailings were obtained after the kaolin raw ore was mashed and graded to separate the −0.045 mm particle size kaolin product. The +0.1 mm grain size material accounting for 99.13% of the tailings can be used as quartz raw material for glass. Two kinds of process comparison tests of "color sorting−grinding−magnetic separation" and "grinding−magnetic separation" were conducted on the +0.6 mm particle size. Results indicated that, color sorting had a relatively small impact on the final separation index, so grinding−magnetic separation was sufficient; Quartz concentrate with Fe2O3 content less than 120 μg/g and quartz concentrate with SiO2 content of 99.04%, Fe2O3 content of 104.46 μg/g were obtained by magnetic separation from + 0.6 mm particle size and grinding−magnetic separation from −0.60 +0.10 mm particle size, respectively, which can meet the standard of quartz sand for photovoltaic glass. This study is helpful to the comprehensive utilization of kaolinite associated quartz sand, and can enhance the value of associated quartz sand.
-
Key words:
- Kaolin /
- purification of quartz sands /
- photovoltaic glass /
- magnetic separation
-
表 1 试样化学成分分析结果
Table 1. Analysis of chemical constituents of sample
/% 成分 SiO2 Al2O3 Fe2O3 TiO2 K2O CaO P2O5 SO2 MgO 含量 94.96 3.36 0.19 0.17 0.21 0.15 0.04 0.07 0.07 表 2 +0.6 mm粒级石英砂筛分结果
Table 2. Screening results of +0.6 mm particle class quartz sand
粒级/mm +2.36 −2.36+1.70 −1.70+0.60 产率/% 23.97 9.43 35.49 表 3 各试样磨矿、磁选产率及磁选精矿Fe2O3含量
Table 3. The grinding, magnetic separation yield of each sample and the content of Fe2O3 in magnetic separation concentrate
试样 磨矿产品各粒级产率/% 石英精矿产率/% 石英精矿Fe2O3含量/(μg·g−1) +0.60 mm −0.60+010 mm −0.10 mm 拣选试样+1.70 mm 9.82 56.24 33.94 99.37 74.97 未拣选原矿试样+1.70 mm 9.83 59.44 30.73 99.79 117.34 拣选试样−1.70+0.60mm 3.07 80.10 16.83 99.80 109.79 未拣选原矿试样−1.7 0+0.60 mm 11.76 74.92 13.32 99.85 119. 39 -
[1] 郑水林, 袁继祖. 非金属矿加工技术与应用手册[M]. 北京: 冶金工业出版社, 2005: 433-447.
ZHENG S L, YUAN J Z. Technical and application manual for non-metal mine processing[M]. Beijing: Metallurgical Industry Press, 2005: 418-424.
[2] 程德明, 杜泰康, 陈志雄. 选矿手册: 第八卷第四分册[M]. 北京: 冶金工业出版社, 1990.
CHENG D M, DU T K, CHEN Z X. Mineral processing manual: Volume 8, Section 4[M]. Beijing: Metallurgical Industry Press, 1990.
[3] 张凌燕, 张丹萍, 王浩, 等. 广东砂质高岭土除铁增白试验研究[J]. 非金属矿, 2013, 36(1): 33−35+49.
ZHANG L Y, ZHANG D P, WANG H, et al. Study on iron removal and whitening of sandy kaolin from Guangdong[J]. Non-Metallic Mines, 2013, 36(1): 33−35+49.
[4] 管俊芳, 杨慧群, 高惠民, 等. 淮北煤系高岭土增白试验研究[J]. 非金属矿, 2010, 33(2): 1−3+10.
GUAN J F, YANG H Q, GAO H M, et al. Experimental study on whitening of coal series kaolin from Huaibei[J]. Non-Metallic Mines, 2010, 33(2): 1−3+10.
[5] 汪先三. 我国高岭土开发利用现状及应用前景[J]. 中国非金属矿工业导刊, 2016(2): 8−9+19.
WANG X S. Exploitation and application prospects of kaolin in China[J]. China Non-Metallic Minerals Industry, 2016(2): 8−9+19.
[6] 刘思, 高惠民, 胡廷海, 等. 北海某高岭土尾矿中石英砂的选矿提纯试验[J]. 金属矿山, 2013(6): 161−164.
LIU S, GAO H M, HU T H, et al. Separation experiment of kaolin tailing quartz sand in Beihai[J]. Metal Mine, 2013(6): 161−164.
[7] 杨志明, 陈向荣, 陈霖. 高岭土尾矿综合开发利用前景探讨[J]. 河南建材, 2014(1): 63−65.
YANG Z M, CHEN X R, CHEN L. Discussion on the prospect of comprehensive development and utilization of kaolin tailings[J]. He’nan Building Materials, 2014(1): 63−65.
[8] 刘国库, 张文军, 马正先, 等. 硅石选矿提纯工艺研究现状[J]. 有色矿冶, 2007(6): 26−30.
LIU G K, ZHANG W J, MA Z X, et al. Present situation of researching on purifying silica by mineral processing[J]. Non-Ferrous Mining and Metallurgy, 2007(6): 26−30.
[9] 王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131−141.
WANG J Y. Global high purity quartz deposits: Resources distribution and exploitation status[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 131−141.
[10] 胡廷海, 高惠民, 管俊芳, 等. 广西某高岭土尾矿产石英砂浮选除铁试验[J]. 金属矿山, 2012(8): 164−167.
HU T H, GAO H M, GUAN J F, et al. Experiment of iron removal by flotation from the quartz sand produced by the slag of kaolin in Guangxi[J]. Metal Mine, 2012(8): 164−167.
[11] 谢恩俊, 林江平, 甘国超, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂的提纯试验研究[J]. 建材世界, 2021, 42(3): 14−17.
XIE E J, LIN J P, GAN G C, et al. Experimental study on purification of low iron quartz sand for photovoltaic glass from kaolin tailings[J]. The World of Building Materials, 2021, 42(3): 14−17.
[12] 尚德兴, 周新军, 张乾伟, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂[J]. 金属矿山, 2019(12): 188−191.
SHANG D X, ZHOU X J, ZHANG Q W, et al. Preparation of low iron quartz sand for photovoltaic glass from kaolin tailings[J]. Metal Mine, 2019(12): 188−191.
[13] 呼振峰, 孙传尧. 磨矿介质对长石和石英浮选行为的影响及机理分析[J]. 有色金属(选矿部分), 2018(3): 62−66.
HU Z F, SUN C Y. Effect and mechanism of different grinding mediums on the flotation behavior of feldspar and quartz[J]. Nonferrous Metals( Mineral Processing Section), 2018(3): 62−66.
[14] 吴飞达, 高惠民, 任子杰, 等. 合浦某高岭土尾砂的提纯与利用[J]. 非金属矿, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018
WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018
[15] 彭欣苓, 冉红想, 魏红港, 等. 强磁选机在石英砂除杂提纯中的应用[J]. 有色金属(选矿部分), 2017(1): 93−98.
PENG X L, RAN H X, WEI H G, et al. Application of high intensity magnetic separator in the purification of quartz sand[J]. 2017:93-98. Nonferrous Metals(Mineral Processing Section), 2017(1): 93−98.
[16] 杨琳琳, 文书明, 程坤. 磨矿程中矿物的解离行为分析及提高单体解离度的方法[J]. 矿冶, 2006, 15(2): 13−16.
YANG L L, WEN S M, CHENG K. Analysis of the course of mineral dissociation and method to enhance the grade of monomial dissociation in the grinding process[J]. Mining & Metallurgy, 2006, 15(2): 13−16.