Research on the Inhibition Mechanism of Different Calcium Ion Precipitation on Molybdenum Flotation
-
摘要:
辉钼矿浮选矿浆中含有的大量钙离子,可能与
、< span class="inline-formula-span" > ${\mathrm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240401165426.png'/ > 、< span class="inline-formula-span" > ${\mathrm{MoO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240401165448.png'/ > 、OH−等生成沉淀吸附在辉钼矿表面,不同程度抑制辉钼矿的浮选。溶液化学计算结果表明,矿浆中CaSO4/CaMoO4/ CaCO3/Ca(OH)2/出现点分别为pH=1.8/3.8/6.6/13.6,且存在不同程度的相互转化行为。单矿物浮选实验结果显示CaSO4、CaMoO4对辉钼矿浮选的抑制作用较小,而CaCO3、Ca(OH)2的抑制作用较大,其中CaMoO4影响最小,Ca(OH)2影响最大。接触角测试发现,去离子水/ CaMoO4溶液/ CaSO4溶液/CaCO3溶液/ Ca(OH)2溶液中辉钼矿“棱”上接触角分别为89.25°/80.44°/73.31°/62.56°/53.13°,与不同钙离子沉淀对辉钼矿浮选效果影响的规律一致。SEM−EDS结果发现,仅有微量CaMoO4吸附于辉钼矿“棱”,少量CaSO4吸附于辉钼矿“面”,而CaCO3大量吸附于辉钼矿“面”和“棱”。不同钙离子沉淀物在辉钼矿表面吸附行为的差异是导致辉钼矿浮选效果不同的原因,因此,调控辉钼矿浮选矿浆中钙离子沉淀物的类型有利于改善选钼效果。< span class="inline-formula-span" > ${\mathrm{CO}}_3^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240401165504.png'/ > Abstract:Molybdenum flotation pulps containing a large amount of Ca2+, which may precipitate on the surface of Molybdenum with such as
,< span class="inline-formula-span" > ${\mathrm{SO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240402154743.png'/ > ,< span class="inline-formula-span" > ${\mathrm{MoO}}_4^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240402154747.png'/ > , OH−, etc., thereby inhibiting the flotation of Molybdenum to varying degrees. The results of solution chemistry calculations indicated that the occurrence points of CaSO4/CaMoO4/CaCO3/Ca(OH)2/in the slurry were pH=1.8/3.8/6.6/13.6, and there were varying degrees of mutual transformation behaviors. The single mineral flotation test results showed that CaSO4 and CaMoO4 had a relatively small inhibitory effect on the flotation of Molybdenum, while CaCO3 and Ca(OH)2 had a greater inhibitory effect, with CaMoO4 having the smallest impact and Ca(OH)2 having the most adverse effect. The contact angle test results showed that the contact angles on the edges of Molybdenum in deionized water/CaMoO4 solution/CaSO4 solution/CaCO3 solution/Ca(OH)2 solution were 89.25°/80.44°/73.31°/62.56°/53.13°, which was consistent with the influence of different calcium ion precipitation on the flotation efficiency of Molybdenum. The SEM−EDS results showed that only minimal amount of CaMoO4 and a small amount of CaSO4 adsorbed on the edges of Molybdenum, but a large amount of CaCO3 was adsorbed on the faces and edges of Molybdenum. This indicated that the difference in adsorption behavior of different calcium ion precipitates on the surface of Molybdenum might be the reason for the different flotation effects of Molybdenum. Therefore, regulating the type of calcium ion precipitate in the flotation slurry of Molybdenum is beneficial for improving the molybdenum selection effect.< span class="inline-formula-span" > ${\mathrm{CO}}_3^{2-} $ < /span > < img text_id='' class='formula-img' style='display:none;' src='2024-01-0010_Z-20240402154758.png'/ > -
Key words:
- molybdenum /
- flotation /
- calcium ion precipitation /
- solution chemistry
-
-
表 1 不同浮选环境的矿浆pH
Table 1. Pulp pH in different flotation environments
去离子水 CaMoO4 CaSO4 CaCO3 Ca(OH)2 6.67 7.22 7.03 9.91 11.92 -
[1] 付静波, 赵宝华. 国内外钼工业发展现状[J]. 稀有金属, 2007(1): 151−154.
FU J B, ZHAO B H. Present states of development of molybdenum industry at home and abroad[J]. Chinese Journal of Rare Metals, 2007(1): 151−154.
[2] 彭涛, 彭如清. 中国钼工业现状及发展战略[J]. 有色金属工业, 1998(10): 14−17.
PENG T, PENG R Q. The current situation and development strategy of China's molybdenum industry[J]. China Nonferrous Metals, 1998(10): 14−17.
[3] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.
ZHU X R. Analysis of the supply and demand dituation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Resouces, 2020, 40(1): 172−178.
[4] 孙兴家. 辉钼矿的工艺矿物性质[J]. 有色金属(选矿部分), 1982(5): 54−58, 32
SUN X J Process mineral properties of molybdenite[J]. Nonferrous Metals(Mineral Processing Section), 1982(5): 54−58, 32.
[5] 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36.
WEI Z L, LI Y B. Anisotropy of molybdenum crystal plane and its influence mechanism on flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36.
[6] 殷俊良. 国外利用海水选矿的经验[J]. 有色矿山, 1982(6): 28−32.
YIN J L. Experience of using seawater for mineral processing abroad[J]. China Mine Engineering, 1982(6): 28−32.
[7] RICRADO I J, LIZA F, LUIS A C. Effect of seawater on sulfide ore flotation: A review[J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(6): 369−384. doi: 10.1080/08827508.2016.1218871
[8] 胡静文, 王艳红, 顾帼华, 等. 选矿废水的净化处理技术及机理研究进展[J]. 矿产保护与利用, 2021, 41(4): 35−42.
HU J W, WANG Y H, GU J H, et al. Research progress on purification treatment technology and mechanism of mineral processing wastewater[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 35−42.
[9] 李明明, 尹禹琦, 宛鹤. 选钼废水回用处理浅析[J]. 中国钼业, 2020,44(3):4-8.
LI M M, YIN Y Q, WAN H. Resue and treatment of molybdenum benefication wastewater[J]. China Molybdenum Industry, 2020, 44(3): 4−8.
[10] 阎文庆, 朱日来. 苦咸水、海水在国内外矿业中的应用[J]. 中国矿业, 2016, 25(10): 81−87+113
YAN W Q, ZHU R L. Use of salt water in domes tic and foreign mining industries[J]. China Mining Magazine, 2016, 25(10): 81−87+113.
[11] 宛鹤, 何廷树. 选钼废水性质及回用现状[J]. 中国钼业, 2016, 40(5): 11−15.
WAN H, HE T S. Properties of molybdenum benefication wastewater and its resure[J]. China Molybdenum Industry, 2016, 40(5): 11−15.
[12] HIRAJIMA T, SUYANTARA G P, ICHIKAWA O, et al. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite[J]. Minerals Engineering, 2016(96): 83−93.
[13] QU J P, HE T S, BU X Z, et al. New concept on high−calcium flotation wastewater reuse[J]. Minerals, 2018(8): 496.
[14] 张作金, 陈海彬, 吴天来, 等. 我国选矿废水处理研究进展[J]. 矿产保护与利用, 2020, 40(1): 79−84.
ZHANG Z J, CHEN H B, WU T L, et al. Research progress in the treatment of mineral processing wastewater in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 79−84.
[15] WAN H, YI P, SONG X W, et al. Role of improving molybdenite flotation by using aromatic hydrocarbon collector in high−calcium water: A multiscale investigation[J]. Minerals Engineering, 2023, 191: 107984.
[16] WAN H, YANG W, HE T S, et al. The influence of Ca2+ and pH on the interaction between PAHs and molybdenite edges[J]. Minerals, 2017, 7(6): 104. doi: 10.3390/min7060104
[17] QIU Z H, LIU G Y, LIU Q X, et al. Understanding the roles of high salinity in inhibiting the molybdenite flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509: 123−129.
[18] LUCAY F, CISTERNAS L A, GALVEZ E D, et al. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation[J]. Mining, Metallurgy & Exploration, 2015, 32(4): 203−208.
[19] WANG J Y, XIE L, LU Q Y, et al. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite[J]. Journal of Colloid And Interface Science, 2020(570): 350−361.
[20] 靳强, 高鹏元, 陈宗元, 等. Visual MINTEQ软件在大学化学教学中的应用[J]. 大学化学, 2021, 36(12): 192−198.
JING Q, GAO P Y, CHEN Z Y et al. Application of Visual MINTEQ software in college chemistry teaching[J]. University Chemistry, 2021, 36(12): 192−198.
[21] PENG Y, LI Y B, LI W Q, et al. Elimination of adverse effects of seawater on molybdenite flotation using[J]. Minerals Engineering, 2020(146): 106108.
-