Determination of Major Elements in Perlite by X-ray Fluorescence Spectrometry with Fusion Sampling Preparation
-
摘要:
珍珠岩矿的化学成分对其膨胀特性有重要影响, 是珍珠岩矿的重要质量指标, 目前大多采用容量法、重量法、分光光度法、原子吸收光谱法等传统方法对各化学成分进行测定, 操作复杂, 而且不能满足主量元素同时测定的要求.本文采用熔融法制样, 建立了X射线荧光光谱同时测定珍珠岩矿中主量元素(Si、Al、Fe、Ca、Mg、Ti、K、Na)的分析方法.样品制备试验结果表明, 试样与四硼酸锂-偏硼酸锂(质量比67:33) 混合熔剂稀释比为1:10, 熔融温度为1050℃时, 样品熔融完全, 制备的熔片满足分析方法的要求, 且克服了珍珠岩矿高温熔矿时由于膨胀不均匀而导致硅元素测量结果偏低的问题.通过仪器测量条件的优化, 以国家标准物质和自制校准样品拟合校准曲线, 并进行基体效应校正, 实际矿区样品测量结果与化学分析法的测定值基本吻合.方法检出限小于0.05%, 精密度(RSD, n=12) 小于1.5%.本方法与经典分析方法相比, 简便高效、绿色环保、精密度高、准确度好, 一次熔矿能够同时测定珍珠岩矿中全部主量元素, 满足了珍珠岩矿快速分析测试的需要.
-
关键词:
- 珍珠岩 /
- 主量元素 /
- 四硼酸锂-偏硼酸锂(质量比67:33) /
- 熔融制样 /
- X射线荧光光谱法
Abstract:Chemical composition, an important quality index for perlite, has great influence on the expansion characteristics of perlite. At present, the component analysis of perlite is mainly traditional chemical methods such as capacity, weight, Spectrophotometry and Atomic Absorption Spectrometry. These methods are not only complicated, but it is also impossible to determine the analysis results of all target elements simultaneously. The X-ray Fluorescence Spectrometry (XRF) method for determining major elements of Si, Al, Fe, Ca, Mg, Ti, K and Na in perlite has been established with fusion sampling preparation and is described in this paper. The perlite samples were fused with lithium tetraborate-lithium metaborate (mass ratio of 67:33) as the fusing reagent, the mixed solvent dilution ratio was 1:10 and the fusing temperature was 1050℃. The results show that these experimental conditions satisfy the requirements of analysis and overcome the problem of lower measurement results of silicon due to uneven expansion when fusing perlite samples at high temperature. After the instrument parameters were optimized, working curves were established and the matrix effect was corrected by using various national standard materials and self-made perlite management samples. The determination values obtained by using the XRF method are in good agreement with those measured by traditional chemical methods. The method detection limit is lower than 0.05% and the method precision degree(RSD, n=12) is lower than 1.5%. Compared with classical analysis methods, the XRF method has many advantages such as high efficiency, is environmentally-friendly, has high precision and accuracy, and is simple to conduct. The results show that the major elements in perlite can be determined rapidly and simultaneously by the XRF method with one time fusion sampling preparation.
-
-
表 1 人工合成校准样品成分分析
Table 1. Analytical results of elements in synthetic standard materials
人工合成
校准样品
编号含量(%) SiO2 Al2O3 Fe2O3 TiO2 Na2O MgO K2O CaO 结晶水 加和 1# 77.34 7.14 1.15 0.31 0.56 2.09 3.65 3.55 3.82 99.61 2# 74.87 10.61 0.35 1.06 1.89 0.13 2.23 2.30 5.88 99.32 3# 70.74 16.12 0.85 0.16 0.11 0.87 5.85 1.39 4.11 100.2 4# 68.86 12.67 3.59 0.99 4.37 1.37 1.21 0.51 5.76 99.33 5# 65.41 14.43 2.13 2.52 3.67 0.15 0.49 5.13 5.45 99.38 注:SiO2、Al2O3、Fe2O3、TiO2、K2O、Na2O、CaO、MgO、结晶水的测定,依据国家标准GB/T 14506.1~28—2010《硅酸盐岩石化学分析方法》。 表 2 XRF仪器分析条件
Table 2. Measurement conditions of the elements by XRF
元素 分析线 分析
晶体准直器
(μm)探测器 电压
(kV)电流
(mA)2θ
(°)背景
(°)PHA LL UL Si Kα PET 450 F-PC 50 60 109.030 110.650 130 280 Al Kα PET 450 F-PC 50 60 144.770 139.100 130 290 Fe Kα LiF200 150 SC 50 60 57.500 70.700 100 300 Ti Kα LiF200 150 SC 50 60 86.110 85.000 100 300 Na Kα RX25 450 F-PC 50 60 46.350 48.500 120 300 K Kα LiF200 450 F-PC 50 60 136.684 139.600 140 260 Mg Kα RX25 450 F-PC 50 60 38.230 40.350 110 300 Ca Kα LiF200 450 F-PC 50 60 113.120 110.500 120 300 Rh Kα LiF200 450 SC 50 60 17.550 - 140 330 注:所有元素峰值测量时间40 s,背景值测量时间10 s;铁元素使用Ni 40滤光片;Rh Kα作为内标使用。 表 3 不同温度下熔融情况
Table 3. The melting characteristics at different melting temperatures
自制珍珠岩
管理样编号不同熔融温度下样品熔融情况 900℃ 950℃ 1000℃ 1050℃ 1100℃ 1a 有不熔物 熔清 熔清 熔清 熔清 2a 有不熔物 有不熔物 熔清 熔清 熔清 3a 有不熔物 有不熔物 熔清 熔清 熔清 4a 有不熔物 有不熔物 熔清 熔清 熔清 5a 有不熔物 有不熔物 有不熔物 熔清 熔清 表 4 珍珠岩矿在不同稀释比下熔融情况
Table 4. Melting conditions of perlite with different dilution ratio
自制珍珠岩
管理样编号不同稀释比下熔融情况 1:1 1:2 1:3 1:5 1:8 1:10 1a 炸裂 有不熔物 有不熔物 有不熔物 熔清 熔清 2a 有不熔物 有不熔物 有不熔物 熔清 熔清 熔清 3a 有不熔物 有不熔物 有不熔物 有不熔物 熔清 熔清 4a 炸裂 炸裂 炸裂 有不熔物 熔清 熔清 5a 炸裂 炸裂 有不熔物 有不熔物 熔清 熔清 表 5 分析结果比对
Table 5. Comparison of analytical results of elements in samples
自制珍珠岩
管理样编号元素 元素含量(%) XRF法
校正前XRF法
校正后化学法
测定值珍珠岩3a SiO2 71.91 72.11 72.41 Al2O3 12.55 12.79 12.74 Fe2O3 0.97 0.98 0.94 TiO2 0.081 0.087 0.086 Na2O 2.97 3.02 2.99 MgO 0.085 0.090 0.091 K2O 5.09 5.12 5.15 CaO 0.82 0.85 0.88 珍珠岩5a SiO2 71.34 71.48 71.24 Al2O3 13.37 13.48 13.52 Fe2O3 1.06 1.07 1.08 TiO2 0.09 0.10 0.10 Na2O 2.92 2.93 2.94 MgO 0.21 0.22 0.22 K2O 5.25 5.31 5.28 CaO 0.82 0.87 0.91 表 6 方法检出限和测量范围
Table 6. Detection limits of elements and measurement range
元素 检出限
(%)测量范围
(%)元素 检出限
(%)测量范围
(%)SiO2 0.04 0.62~90.36 Na2O 0.04 0.1~7.16 Al2O3 0.04 0.10~90.63 MgO 0.02 0.10~41.03 Fe2O3 0.04 0.10~24.75 CaO 0.04 0.1~51.1 TiO2 0.005 0.01~7.69 K2O 0.04 0.01~7.48 表 7 方法重现性
Table 7. Reproducibility tests of the method
珍珠岩样品3a
测试时间元素含量(%) SiO2 Al2O3 Fe2O3 TiO2 Na2O MgO K2O CaO 2013.10.09 72.11 12.79 0.98 0.084 3.02 0.089 5.12 0.85 2013.10.16 72.27 12.7 0.95 0.083 2.97 0.091 5.13 0.86 2013.10.23 72.04 12.76 0.96 0.085 2.95 0.089 5.08 0.87 2013.10.30 72.19 12.78 0.97 0.084 3.01 0.090 5.12 0.88 2013.11.06 72.38 12.79 0.98 0.084 2.99 0.091 5.09 0.86 2013.11.13 72.25 12.73 0.96 0.085 3.03 0.088 5.10 0.87 2013.11.20 72.07 12.79 0.98 0.086 2.97 0.090 5.19 0.87 2013.11.26 72.41 12.71 0.97 0.086 2.99 0.090 5.11 0.87 2013.12.04 72.23 12.82 0.95 0.084 2.97 0.090 5.07 0.88 2013.12.12 72.37 12.76 0.96 0.084 2.98 0.092 5.17 0.89 2013.12.20 72.19 12.8 0.98 0.084 2.98 0.089 5.11 0.86 2013.12.27 72.36 12.74 0.97 0.085 2.99 0.090 5.06 0.89 推荐值(化学法) 72.41 12.74 0.94 0.086 2.99 0.091 5.15 0.88 测定值(n=12) 72.24 12.76 0.97 0.085 2.99 0.090 5.11 0.87 相对误差(%) -0.23 0.16 2.11 -1.16 0 -1.10 -0.77 -1.14 RSD(%) 0.17 0.29 1.21 1.05 0.77 1.19 0.74 1.41 表 8 分析结果比对
Table 8. Comparison of analytical results of elements in samples
样品名称 分析
方法元素测定值(%) SiO2 Al2O3 Fe2O3 TiO2 Na2O MgO K2O CaO 结晶水 加和 珍珠岩1a XRF 69.16 12.32 1.29 0.14 3.17 0.67 5.16 2.35 4.85 99.11 化学法 68.98 12.28 1.26 0.15 3.18 0.67 5.22 2.50 99.09 珍珠岩2a XRF 71.49 12.58 0.87 0.08 3.09 0.22 5.15 1.10 4.50 99.16 化学法 71.37 12.63 0.86 0.077 3.20 0.21 5.17 1.14 99.08 珍珠岩3a XRF 72.11 12.79 0.98 0.085 3.02 0.087 5.12 0.87 4.55 99.61 化学法 72.41 12.74 0.94 0.086 2.99 0.091 5.15 0.88 99.84 珍珠岩4a XRF 71.92 12.75 1.04 0.09 3.02 0.13 5.22 0.75 4.61 99.53 化学法 71.97 12.67 1.02 0.087 3.01 0.13 5.21 0.79 99.50 珍珠岩5a XRF 71.48 13.48 1.06 0.11 2.93 0.23 5.31 0.85 4.51 99.96 化学法 71.24 13.52 1.08 0.10 2.95 0.22 5.28 0.88 99.78 人工合成
校样3#XRF 70.68 16.09 0.84 0.16 0.11 0.86 5.83 1.37 4.11 100.05 化学法 70.74 16.12 0.85 0.16 0.11 0.87 5.85 1.39 100.02 -
[1] [2] [3] [4] 毕小云. 有机柔性闭孔膨胀珍珠岩保温材料的制备与性能研究[D]. 武汉: 湖北工业大学, 2012.
Bi X Y. Study on Preparation and Properties of Organic Flexible Closed Pore Expansion Perlite Insulation Materials[D]. Wuhan: Hubei University of Technology, 2012.
[5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] Claisse F, Blanchette J S编著. 卓尚军译. 硼酸盐熔融的物理与化学[M]. 上海: 华东理工大学出版社, 2006.
Claisse F, Blanchette J S(author). Zhuo S J(translator). Physics and Chemistry of Borate Fusion[M]. Shanghai: East China University of Science and Technology Press, 2006.
-