中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成

李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J]. 岩矿测试, 2016, 35(3): 229-235. doi: 10.15898/j.cnki.11-2131/td.2016.03.003
引用本文: 李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟. 应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J]. 岩矿测试, 2016, 35(3): 229-235. doi: 10.15898/j.cnki.11-2131/td.2016.03.003
Jun-jie LI, Han-bin LIU, Jia ZHANG, Gui-shan JIN, Jian-feng ZHANG, Juan HAN. Accurate Measurement of Argon Isotope Composition of Air by Argus Multi-collector Noble Gas Mass Spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3): 229-235. doi: 10.15898/j.cnki.11-2131/td.2016.03.003
Citation: Jun-jie LI, Han-bin LIU, Jia ZHANG, Gui-shan JIN, Jian-feng ZHANG, Juan HAN. Accurate Measurement of Argon Isotope Composition of Air by Argus Multi-collector Noble Gas Mass Spectrometer[J]. Rock and Mineral Analysis, 2016, 35(3): 229-235. doi: 10.15898/j.cnki.11-2131/td.2016.03.003

应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成

  • 基金项目:
    中核集团地矿事业部铀矿地质科研项目(测D1402-2)
详细信息
    作者简介: 李军杰,在读硕士研究生,工程师,主要从事稀有气体同位素示踪及Ar-Ar同位素年代学工作。E-mail:564484480@163.com
    通讯作者: 刘汉彬,博士,博士生导师,研究员级高级工程师,主要从事同位素地球化学及同位素分析测试研究。E-mail:hanbinliu@sina.com
  • 中图分类号: O657.63

Accurate Measurement of Argon Isotope Composition of Air by Argus Multi-collector Noble Gas Mass Spectrometer

More Information
  • 稀有气体质谱仪准确测量氩同位素组成是Ar-Ar法高精度定年的前提,目前测量氩同位素主要应用单接收或多接收质谱仪,其中多接收稀有气体质谱仪在数据准确性和重现性等方面具备优势。本文研究了Argus多接收稀有气体质谱仪应用于测量Ar同位素过程中一些主要因素对测量结果准确度和重现性的影响情况。结果表明,整套系统在静态模式下不同时间段的本底值极低,不影响测定;仪器电子倍增器的接收效率优于99.67%,可显著提高Ar低含量样品测量精度,当40Ar信号强度低于0.5 V时,用电子倍增器测量40Ar/36Ar组成的标准偏差仅为0.11%,而用法拉第杯测量40Ar/36Ar组成的标准偏差为0.53%;仪器的质量歧视效应可通过多次循环测量并采用指数定律获得稳定的质量歧视校正因子(此值相对标准偏差为0.0434%),实现对Ar同位素组成的准确校正。本文以测量空气中的氩同位素组成为例,证明了Argus多接收稀有气体质谱仪的测试效率比单个接收器跳峰方式的测试效率高,测试结果更精确,因此适合年轻样品或含钾量极低的样品的Ar-Ar高精度定年工作。
  • 加载中
  • 图 1  不同Ar强度下40Ar/36Ar测量值

    Figure 1. 

    图 2  空气中氩同位素测定

    Figure 2. 

    图 3  Argus Ⅵ 稀有气体质谱仪跳峰方式(a、b、c)和多接收方式(d、e、f)测量空气氩同位素组成

    Figure 3. 

    表 1  法拉第杯之间增益系数确定

    Table 1.  The determination of the gain between the Faraday cups

    法拉第杯名称UFC 补偿(fA)增益系数校正因子
    H2-13.97719850.00011791
    H1-0.74187390.00207491
    AX-6.74864840.00193241
    L1-3.3545460.00108541
    L2-1.63386390.00171261
    下载: 导出CSV

    表 2  电子倍增器的接收效率

    Table 2.  The receiving efficiency of the CDD SEM

    循环次数中心杯测量质量数:43.288电子倍增器测量质量数:39.962第一个法拉第杯测量质量数:39.962中心杯测量质量数:38.962电子倍增器的接收效率(%)
    1-0.14773456.51315956.635510-0.15434799.78
    2-0.13151256.82426956.905517-0.09994999.86
    3-0.06473957.06914057.321538-0.09924799.56
    4-0.09593457.38053657.502257-0.06623199.79
    5-0.14929857.60278357.887258-0.06889899.51
    6-0.16077257.96053657.994782-0.03751699.94
    7-0.00927558.26120758.384115-0.08233799.79
    8-0.09339558.52434758.599753-0.16513299.87
    9-0.11401958.86364758.937859-0.17980599.871
    10-0.11944059.10732859.381736-0.11070699.54
    11-0.15146459.48922759.584644-0.08676999.84
    12-0.11516659.74495859.899836-0.11637199.74
    注:法拉第杯和离子倍增器信号强度均已扣除信号噪音值。AX代表中心法拉第杯,CCD SEM代表电子倍增器,H1代表第一个法拉第杯。
    下载: 导出CSV
  • [1]

    Turrin B D,Swisher C C,Dieno A L.Mass Discrimination Monitor and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems[J].Geochemistry,Geophysics,Geosystems,2010,11:doi:10.1029/2009GC003013.

    [2]

    Mark D F,Stuart F M,de Podesta M.New High Precision Measurement of the Isotopic Composition of Atmospheric Argon[J].Geochimica et Cosmochimica Acta,2011,75:7494-7501.

    [3]

    Renne P R,Sharp W D,Dieno A L,et al.The Isotopic Composition of Atmospheric Argon and Ar/Ar Geochronology:Time for a Change?[J].Quarternary Geochronology,2009,4(4):288-298.

    [4]

    Kim J,Jeon S.40Ar/39 Ar Age Determination Using Argus Ⅵ Multiple-collector Noble Gas Mass Spectrometer:Performance and Its Application to Geosciences[J].Journal of Analytical Science and Technology,2015,6:4-11.

    [5]

    McDougall I,Harrison T M.Geochronology and Thermo-chronology by the 40Ar/39 Ar Method[M].Oxford:Oxford University Press,1999:89-90.

    [6]

    Alexsander E C,Ozima M.Terrestrial Rare Gas[M].Tokyo:Center for Academic Publications,1978.

    [7]

    Mark D F,Barfod D B,Stuart F M,et al.The Argus Multicollector Noble Gas Mass Spectrometer:Performance for Ar/Ar Geochronology[J].Geochemistry,Geophysics,Geosystem,2009,10(2):1-9.

    [8]

    李军杰,李剑,刘汉彬,等.Helix SFT惰性气体质谱仪分析矿物包裹体中氦同位素组成[J].地质学报,2015,89(10):1826-1831.

    Li J J,Li J,Liu H B,et al.The Analysis of Helium Isotope of Inclusions in Minernal Using Helix SFT Noble Gas Mass Spectrometer[J].Acta Geologica Sinica,2015,89(10):1826-1831.

    [9]

    Eiler J M,Clog M, Magyar P,et al.A High-resolution Gas-source Isotope Ratio Mass Spectrometer[J].International Journal of Mass Spectrometry[J].http://dx.doi.org/10.1016/j.ijms.2012.10.014.2012.

    [10]

    Turrin B D,Swisher C C,Deino A L.Mass Discrimination Monitoring and Intercalibration of Dual Collectors in Noble Gas Mass Spectrometer Systems[J].Geochemistry,Geophysics,Geosystem,2010,11.doi:10.1029/2009GC003013.

    [11]

    Burnard P G,Farley K A.Calibration of Pressure-dependent Sensitivity and Discrimination in Nier-type Noble Gas Ion Sources[J].Geochemistry,Geophysics,Geosystem,2000,1:33-38.

    [12]

    Baur H A.Noble-gas Mass Spectrometer Compressor Source with Two Orders of Magnitude Improvement in Sensitivity[J].EOS,1999,80:1118.

    [13]

    Reynolds J H.High Sensitivity Mass Spectrometer for Noble Gas Analysis[J].Review of Scientific Instrument,1956,27(11):928-934.

    [14]

    Ryuji O,Tomoki N,Nobuo T,et al.Noble Gases in Ureilites Released by Crushing[J].Meteoritics and Planetary Science,2003,5:767-781.

    [15]

    Ozima M,Podosek F A.Noble Gas Geochemistry[M].Cambridge:Cambridge University Press,2002:286.

    [16]

    Baski A K,Archibald D A,Farrar E.Intercalibration of 40Ar/39 Ar Dating Standards[J].Chemical Geology,1996,129:307-324.

    [17]

    Rudenhauer F G.Gas Scattering as a Limit to Partial-pressure Sensitivity[J].Vacuum Science Technology,1972,9:215.

    [18]

    Lee J Y,Marti K,Severinghaus K,et al.A Redeter-mination of the Isotopic Abundances of Atmospheric Ar[J].Geochimica et Cosmochimica Acta,2006,70:4507-4512.

    [19]

    Holst B,Buckland J R,Allison W.Spatial Mapping in the Electron Impact Ion Source of a Residual Gas Analyser[J].Vacuum,1999,53:207-210.

    [20]

    Nier A O.A Redetermination of the Relative Abundances of the Isotopes of Carbon,Nitrogen,Oxygen,Argon and Potassium[J].Physics Review,1950,77:789-793.

    [21]

    Young E D,Galy A,Nagahara H.Kinetc and Equilibrium Mass-dependent Isotope Fractionation Laws in Nature and Their Geochemical and Cosmochemical Significance[J].Geochmica et Cosmochimica Acta,2002,66(6):1095-1104.

    [22]

    Valkiers S,Vendelbo D,Berglund M,et al.Preparation of Argon Primary Measurement Standards for the Calibration of Ion Current Ratios Measured in Argon[J].International Journal of Mass Spectrometry,2010,291:41-47.

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1283
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2015-08-08
修回日期:  2016-05-06
录用日期:  2016-05-20

目录