中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态

周姣花, 徐金沙, 牛睿, 周晶, 来佳仪. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J]. 岩矿测试, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114
引用本文: 周姣花, 徐金沙, 牛睿, 周晶, 来佳仪. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J]. 岩矿测试, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114
Jiao-hua ZHOU, Jin-sha XU, Rui NIU, Jing ZHOU, Jia-yi LAI. Application of SEM and EDS to Analyze the Occurrence of Platinum Group Elements and Characteristics of Platinum Group Minerals in the Pt-Pd Deposit from Huili, Sichuan Province, China[J]. Rock and Mineral Analysis, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114
Citation: Jiao-hua ZHOU, Jin-sha XU, Rui NIU, Jing ZHOU, Jia-yi LAI. Application of SEM and EDS to Analyze the Occurrence of Platinum Group Elements and Characteristics of Platinum Group Minerals in the Pt-Pd Deposit from Huili, Sichuan Province, China[J]. Rock and Mineral Analysis, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114

利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态

  • 基金项目:
    自然资源部公益性行业科研专项“铂钯矿物相态分析方法研究”(201211016-3)
详细信息
    作者简介: 周姣花, 高级工程师, 主要从事化学分析、岩矿鉴定、工艺矿物学研究工作。E-mail:1071732967@qq.com
  • 中图分类号: P575.2;P575.4;O614.82

Application of SEM and EDS to Analyze the Occurrence of Platinum Group Elements and Characteristics of Platinum Group Minerals in the Pt-Pd Deposit from Huili, Sichuan Province, China

  • 四川会理铂钯矿床是独立的铂族元素矿床,局部地段的铂钯含量已达工业品位,当前迫切需要详细掌握铂族矿物和铂族元素赋存状态。由于原矿铂族元素品位总体较低,采用化学分析方法分析测试只能间接研究铂族元素的赋存状态,所得结论并不全面。本文结合化学分析方法的测试结果,利用扫描电镜及能谱获得了会理铂钯矿床铂族矿物的精细特征。结果表明:该矿床中铂族元素主要是铂和钯;铑、铱、钌、锇含量很低,且未发现这四种元素的独立矿物。铂和钯有单质和与砷、碲、锑、铋形成的化合物;独立铂族矿物有17种,主要是自然铂、砷铂矿、砷钯铂矿或砷铂钯矿、钯铂铜矿或铂钯铜矿,其次可见少量承铂矿及其他铂族矿物。铂族矿物嵌布状态有两种——被包裹和粒间,被包裹占52.39%,粒间占47.62%。绝大多数铂族矿物呈他形粒状,只有少量砷铂矿晶形较好。铂族矿物粒径范围为1.36~32.7 μm,大小差异大。有的铂族矿物表面具微孔结构,有的呈葡萄状,有的可见环边现象。接触方式以曲线接触为主,直线接触次之。这些信息为该矿床矿石选冶和铂族资源评价提供了科学依据。
  • 加载中
  • 图 1  铂族矿物扫描电镜图像

    Figure 1. 

    表 1  样品中主次量元素分析

    Table 1.  Analytical results of major and minor elements in sample

    元素 样品1测定值(×10-2) 样品2测定值(×10-2)
    SiO2 70.33 47.84
    Al2O3 0.90 8.33
    Fe2O3 9.25 10.02
    MgO 2.68 9.16
    CaO 6.51 6.32
    Na2O 0.0031 0.093
    K2O 0.032 0.52
    MnO 0.023 0.085
    TiO2 0.037 1.40
    P2O5 0.080 0.10
    S 6.82 4.52
    Cr 0.0037 3.69
    Ni 0.065 0.098
    Co 0.0026 0.0067
    Cu 1.17 0.86
    Pb 0.10 0.026
    Zn 0.12 0.046
    注:样品1为蚀变破碎白云岩,样品2为蚀变破碎辉石岩。
    下载: 导出CSV

    表 2  贵金属化学分析结果

    Table 2.  Analytical results of precious metals in sample

    样品编号 测定值(×10-9)
    Pt Pd Rh Ir Au
    样品1 4847 1281 6.24 4.57 758
    样品2 1558 439 11.5 32.6 261
    注:样品1为蚀变破碎白云岩,样品2为蚀变破碎辉石岩,分析方法是锍镍试金-ICP-MS。
    下载: 导出CSV

    表 3  样品相态分析结果

    Table 3.  Analytical results of phase states in sample

    样品编号 元素 测定值(×10-9)
    硫化物相 类质同象相 独立矿物相 总和
    Pt 1049(22.10%) 734(15.47%) 2963(62.43%) 4746
    Pd 219(18.00%) 114(9.37%) 884(72.64%) 1217
    样品1 Rh 2.86(33.69%) 3.98(46.88%) 1.65(19.43%) 8.49
    Ir 1.97(39.01%) 1.24(24.55%) 1.84(36.44%) 5.05
    Au 83.2(11.65%) 383(53.63%) 248(34.72%) 714.2
    Pt 147(10.20%) 70.9(4.92%) 1223(84.87%) 1441
    Pd 40.5(8.72%) 196(42.20%) 228(49.09%) 464.5
    样品2 Rh 3.84(32.05%) 4.52(37.73%) 3.62(30.22%) 11.98
    Ir 11.1(31.28%) 7.68(21.65%) 16.7(47.07%) 35.48
    Au 57.4(23.64%) 142(58.48%) 43.4(17.87%) 242.8
    注:样品1为蚀变破碎白云岩,样品2为蚀变破碎辉石岩,括号内数据是各相态占总和百分含量。
    下载: 导出CSV

    表 4  铂族矿物能谱点分析结果和矿物定名

    Table 4.  Analytical results of platinum group elements measured by EDS point analysis and mineral naming

    序号 S Fe Ni Cu Cd Pb Bi Sb Te As Pt Pd 矿物名称
    1 - 3.70 0.54 2.83 - - - 3.66 2.37 3.99 80.52 2.40 自然铂
    2 - 0.77 - 2.48 - - - - - 2.01 94.74 - 自然铂
    3 - - - 14.82 - - - - - 4.23 71.47 9.48 自然铂
    4 - - - - - - - - - - 100.00 - 自然铂
    5 - - - 2.20 - - - - - - 97.80 - 自然铂
    6 - - - - - - - - - - 100.00 - 自然铂
    7 - 4.69 - 9.18 - - - 1.75 - 12.29 72.09 - 自然铂
    8 - - - - - - - - - - 100.00 - 自然铂
    9 4.01 0.77 - 13.94 - - - - - - 69.09 7.74 自然铂
    10 - - - 5.88 - - - - - - 94.12 - 自然铂
    11 - 1.32 - 4.37 - - - - - - 94.30 - 自然铂
    12 - 1.10 - - - - - - - - 98.90 - 自然铂
    13 - 3.03 - 2.51 - - - - - 2.04 92.42 - 自然铂
    14 - 3.89 - 16.47 - - - - - - 70.74 8.89 自然铂
    15 1.74 3.13 2.25 11.43 - - - - - 22.35 50.29 8.80 砷铂矿
    16 2.07 1.63 4.17 4.47 - - - 2.97 3.73 37.74 33.72 9.50 砷铂矿
    17 4.57 4.26 7.56 3.86 - - - 3.73 3.43 38.92 31.88 1.78 砷铂矿
    18 0.69 0.58 - 3.89 - - - - - 41.89 52.95 - 砷铂矿
    19 1.00 - - 0.86 - - - - - 41.67 56.47 - 砷铂矿
    20 1.44 0.74 - 1.14 - - - - - 41.26 55.42 - 砷铂矿
    21 - 0.66 - 2.81 - - - - - 41.87 54.67 - 砷铂矿
    22 1.03 - - - - - - - - 42.10 56.87 - 砷铂矿
    23 - - - 3.84 - - - - - 41.81 54.36 - 砷铂矿
    24 2.18 2.90 4.19 6.78 - - - 2.27 2.69 36.13 33.11 9.76 砷铂矿
    25 0.75 - - 1.77 - - - - - 42.21 55.27 - 砷铂矿
    26 - - - 1.26 - - - - - 41.36 57.39 - 砷铂矿
    27 - 2.20 - 1.19 - - - - - 41.39 55.21 - 砷铂矿
    28 - - 4.12 - - - - 3.33 3.64 41.48 41.43 6.00 砷铂矿
    29 0.91 - - - - - - - - 42.41 56.68 - 砷铂矿
    30 0.51 - 2.67 3.58 - - - - 1.60 36.63 19.32 35.68 砷铂钯矿
    31 2.06 2.62 1.72 8.89 - - - 2.42 - 26.06 39.26 16.89 砷钯铂矿
    32 2.74 - 4.86 2.61 - - - - 2.43 44.24 30.07 13.05 砷钯铂矿
    33 1.51 - 2.76 9.44 - - - 1.91 - 32.68 28.24 23.45 砷钯铂矿
    34 - - 1.64 6.94 - - - 3.59 3.80 26.76 41.08 16.19 砷钯铂矿
    35 - 1.66 2.66 7.20 - - - - 3.00 30.39 40.04 15.04 砷钯铂矿
    36 - 4.42 4.70 2.37 - - - - - 43.64 21.85 23.02 砷铂钯矿
    37 1.72 1.05 0.70 2.64 - - - 11.94 - 21.55 28.45 30.97 砷铂钯矿
    38 1.42 2.98 3.19 4.23 - - - 5.74 - 28.36 30.79 23.30 砷钯铂矿
    39 2.11 - 1.70 23.59 - - - 1.61 - 6.81 44.31 19.86 钯铂铜矿
    40 1.84 1.50 - 25.74 - - - - - 5.21 49.88 15.82 钯铂铜矿
    41 - - - 28.39 - - - - - 7.34 33.36 30.91 钯铂铜矿
    42 - - 1.49 28.63 - - - - 9.60 3.81 40.07 16.41 钯铂铜矿
    43 0.79 12.96 - 23.38 - - - - - 3.83 31.33 25.67 钯铂铜矿
    44 - 1.23 - 37.31 - - - - - - 36.99 24.48 钯铂铜矿
    45 - 1.99 - 20.93 - - - - - 1.85 43.58 27.00 钯铂铜矿
    46 - - - 29.69 - - - 4.84 - 9.87 12.53 43.07 铂钯铜矿
    47 - 1.20 - 32.25 - 1.80 - - - - 25.70 17.61 钯铂铜矿
    48 - - - 15.07 - - - - 3.88 2.38 56.75 21.92 铜钯铂矿
    49 - - 1.28 0.79 - - - - 57.08 1.54 35.65 3.67 承铂矿
    50 - - - - - - - - 57.81 - 37.38 4.81 承铂矿
    51 - 0.90 - 1.80 - - 16.50 - 30.21 6.76 8.01 35.81 黄铋碲钯矿
    52 - - 0.63 6.78 - - 7.04 - 37.82 2.52 43.06 2.15 铋碲铂矿
    53 - - 1.23 1.32 - - 6.51 - 53.61 - 32.16 5.17 铋碲铂矿
    54 3.69 - 2.35 12.72 - - - 5.72 14.28 10.58 45.18 5.49 砷碲铜铂矿
    55 - - 2.28 2.14 - - 9.34 - 56.73 - 17.08 12.43 铋碲钯铂矿
    56 - - - 1.06 - - 6.16 - 56.38 - 25.69 10.72 铋碲钯铂矿
    57 - 0.82 - 4.14 - - - 27.88 - - - 67.16 锑钯矿
    58 - - - 24.57 - - - 18.95 - - - 56.48 铜锑钯矿
    59 - - - 1.24 - - - - 62.56 - 18.44 17.76 碲铂钯矿
    60 - 30.24 - 6.62 - 4.41 - - - 2.57 51.13 5.03 铂铁矿
    61 - 22.49 - 22.40 - - - - - - 39.08 16.03 铜铁钯铂矿
    62 2.01 - - 22.24 - - - - - - 71.61 4.14 红石矿
    63 - 1.31 - 11.08 3.96 17.19 - - - 9.31 49.66 7.50 铜铅铂矿
    注:表格中数据为质量分数;“-”表示矿物不含该元素或低于能谱检出限而未被检出。
    下载: 导出CSV

    表 5  铂族矿物特征

    Table 5.  Characteristics of platinum group minerals

    矿物名称 化学组成 晶系 颗粒数 晶形 粒径(μm) 嵌布状态 接触方式
    自然铂 Pt。成分中常含有Ir、Pd、Fe、Cu、Rh、Ni等。自然铂中这些元素含量较高时,可分别称为自然铂的成分变种 等轴晶系 14 呈他形粒状,有的晶体表面有微孔结构 2.5~24.5 被包裹(6粒):被褐铁矿包裹(3粒)、赤铜矿包裹(1粒)、石英包裹(2粒);粒间(8粒):石英粒间(7粒),与砷铂矿连生(1粒),一起分布在石英粒间 多数曲线接触,少数直线接触
    砷铂矿 PtAs2。Pt 56.58,As 43.42。混入物有Sb、Rh、Cu、Fe,有时有Sn 等轴晶系 15 多数晶形较好,少部分呈他形粒状,有的晶体表面有微孔结构 2.5~24.5 被包裹(9粒):被褐铁矿包裹(3粒)、赤铜矿包裹(2粒)、石英包裹(2粒)、其他铜矿物包裹(2粒);粒间(6粒):石英粒间(2粒)、石英与自然铂粒间(1粒)、石英与黄铜矿粒间(1粒)、石英与砷铂钯矿粒间(2粒,这两粒均围绕砷铂钯矿分布) 多数直线接触,少数曲线接触
    砷钯铂矿或砷铂钯矿 主要成分是As、Pd、Pt,当Pd多于Pt,称为砷铂钯矿;当Pd小于Pt,称为砷钯铂矿 - 9 呈他形粒状,有圆形、长条形,有的晶体表面有微孔结构 2.7~25.5 被包裹(4粒):被褐铁矿包裹(1粒)、铜矿物包裹(2粒)、石英包裹(1粒);粒间(5粒):石英粒间(2粒)、石英与砷铂矿粒间(2粒)、石英与铜矿物粒间(1粒) 多数曲线接触,少数直线接触
    钯铂铜矿或铂钯铜矿 主要成分Cu、Pd、Pt,当Pd多于Pt,称为铂钯铜矿;当Pd小于Pt,称为钯铂铜矿,属于Cu-Pd-Pt合金 - 9 呈他形粒状,可见葡萄状,有的晶体表面有微孔结构 2.7~32.7 被包裹(3粒):被褐铁矿包裹(1粒)、石英包裹(1粒)、砷钯铂矿包裹(1粒);粒间(6粒):石英粒间(5粒)、石英与铜矿物粒间(1粒)。有的晶体中包裹有铜矿物 多数曲线接触,少数直线接触
    铜钯铂矿 本矿物类似自然铂变种铜钯自然铂,但铜含量偏高 - 1 呈他形粒状 5.45 被石英包裹 -
    承铂矿 PtTe2。组分中含钯 六方晶系 2 呈他形粒状 9.27~19.0 石英粒间 -
    黄铋碲钯矿 Pd(Te,Bi)。组成中有铜、铁、铋代替碲。可含银和汞 六方晶系 1 呈他形粒状 22.0 黄铜矿与石英粒间 -
    铋碲铂矿 (Pt)(Te,Bi)2。成分中Pt:Pd>4:1(原子数) 三方晶系 2 呈他形粒状 8.18~13.6 被包裹在赤铜矿中(1粒),被石英包裹(1粒) -
    砷碲铜铂矿 主要成分是As、Te、Cu、Pt - 1 呈他形粒状 3.8 石英粒间 -
    铋碲钯铂矿 (Pt、Pd)(Te,Bi)2。成分中Pt:Pd为4:1~1:1(原子数) 三方晶系 2 呈他形粒状 2.7~5.45 被石英包裹 -
    锑钯矿 Pd3Sb(Pd 72.44,Sb 27.56)。含少量铁和痕量Rh、Ir、Pt、Ag、Au - 1 呈他形粒状 6.06 被石英包裹 -
    铜锑钯矿 主要成分是Cu、Sb、Pd - 1 呈他形粒状 8.18 被石英包裹 -
    碲铂钯矿 可能是承铂矿变种 - 1 呈柱状 8.18 被石英包裹 -
    铂铁矿 Fe Pt。铂可被钯替代(可达9.9%) 四方晶系 1 呈他形粒状,晶体表面有微孔结构 15.0 被石英包裹 -
    铜铁钯铂矿 可能是一种Fe-Cu-Pd-Pt互化物 - 1 呈他形粒状 16.36 分布在石英和赤铜矿粒间 -
    红石矿 PtCu 三方晶系 1 呈他形粒状 10.9 被石英包裹 -
    铜铅铂矿 主要成分是Cu、Pb、Pt - 1 呈他形粒状 1.36 分布在石英粒间 -
    下载: 导出CSV

    表 6  铂族矿物粒度统计结果

    Table 6.  The statistical results of platinum group elements size

    粒径范围(μm) 颗粒数(n) 含量(%) 平均粒径(d) 颗粒数×平均粒径n·d(μm) 近似面积含量(%)
    -40.0+20.0 10 15.87 24.13 241.30 33.90
    -20.0+10.0 21 33.33 14.31 300.51 42.22
    -10.0+5.0 18 28.57 7.11 127.98 17.98
    -5.0+2.5 14 22.22 3.00 42.00 5.90
    合计 63 100 - 711.79 100
    下载: 导出CSV

    表 7  铂族矿物嵌布状态统计结果

    Table 7.  The statistical results of platinum group elements state

    类型 嵌布状态 颗粒数 含量(%) 各类含量(%)
    被包裹铂族矿物 被包裹在褐铁矿中 8 12.70 52.39
    被包裹在石英中 15 23.81
    被包裹在铜矿物中 9 14.29
    被包裹在其他铂族矿物 1 1.59
    粒间铂族矿物 石英粒间 19 30.16 47.62
    石英与铜矿物粒间 4 6.35
    铜矿物粒间 1 1.59
    石英与铂族矿物之间 6 9.52
    合计 63 100 100 -
    下载: 导出CSV
  • [1]

    张光弟, 毛景文, 熊群尧.中国铂族金属资源现状与前景[J].地球学报, 2001, 22(2):107-110. http://d.old.wanfangdata.com.cn/Periodical/dqxb200102003

    Zhang G D, Mao J W, Xiong Q Y.The present situation and prospects of platinum metals resources in China[J].Acta Geoscientia Sinica, 2001, 22(2):107-110. http://d.old.wanfangdata.com.cn/Periodical/dqxb200102003

    [2]

    成杭新, 谢学锦, 严光生, 等.中国泛滥平原沉积物中铂, 钯丰度值及地球化学省的初步研究[J].地球化学, 1998, 27(2):101-107.

    Cheng H X, Xie X J, Yan G S, et al.Platinum and palladium abundances in floodplain sediment and their geochemical provinces[J].Geochimica, 1998, 27(2):101-107.

    [3]

    俞祖根, 吴国义.用物相分析方法研究新疆某矿区铂钯赋存状态[J].岩矿测试, 1994, 13(3):185-188. http://www.ykcs.ac.cn/article/id/ykcs_19940371

    Yu Z G, Wu G Y.Use of phase analysis to study the occurrence of platinum and palladium[J].Rock and Mineral Analysis, 1994, 13(3):185-188. http://www.ykcs.ac.cn/article/id/ykcs_19940371

    [4]

    李春生, 柴之芳, 毛雪瑛, 等.化学溶解和电感耦合等离子体质谱法研究地质样品中铂族元素的物相分布[J].分析化学, 1998, 26(3):267-270. http://www.oalib.com/paper/4557805

    Li C S, Chai Z F, Mao X Y, et al.Stepwise chemical dissolution-inductively coupled plasma-mass spectrometry for speciation analysis of platinum group elements in geological samples[J].Chinese Journal of Analytical Chemistry, 1998, 26(3):267-270. http://www.oalib.com/paper/4557805

    [5]

    连文莉, 来新泽, 刘军, 等.黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究[J].岩矿测试, 2017, 36(2):107-116. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.003

    Lian W L, Lai X Z, Liu J, et al.Phase analysis of Pt, Pd and Au in black rock-type platinum group element minerals by ICP-MS[J].Rock and Mineral Analysis, 2017, 36(2):107-116. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.003

    [6]

    李贤珍, 王君玉, 连文莉, 等.黑色页岩中Au、Ag元素化学相态分析方法研究[J].贵金属, 2015, 36(1):58-61. http://industry.wanfangdata.com.cn/jt/Magazine?magazineId=gjs&yearissue=2015_1

    Li X Z, Wang J Y, Lian W L, et al.Study of Au, Ag distribution in black shale by chemical phase analysis method[J].Precious Metals, 2015, 36(1):58-61. http://industry.wanfangdata.com.cn/jt/Magazine?magazineId=gjs&yearissue=2015_1

    [7]

    曾明果.遵义黄家湾下寒武统底部Mo-Ni-PGE矿中铂族元素赋存形态分析及成因意义[J].贵州地质, 2007, 24(2):147-150. http://www.cnki.com.cn/Article/CJFDTotal-METE201410011.htm

    Zeng M G.Occurred appearance analysis and genetic implication for the platinoid of Mo-Ni-PGE ores at basement of lower Cambrian in Huangjiawan, Zunyi, Guizhou[J].Guizhou Geology, 2007, 24(2):147-150. http://www.cnki.com.cn/Article/CJFDTotal-METE201410011.htm

    [8]

    韩涛, 朱笑青, 陈南生.贵州遵义黑色岩系多金属层中铂族元素的赋存状态[J].矿物岩石地球化学通报, 2011, 30(2):142-149. http://www.irgrid.ac.cn/handle/1471x/376210?mode=full&submit_simple=Show+full+item+record

    Han T, Zhu X Q, Chen N S.Occurrence of PGE in the polymetallic layer of black shales, Zunyi, Guizhou, China[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2):142-149. http://www.irgrid.ac.cn/handle/1471x/376210?mode=full&submit_simple=Show+full+item+record

    [9]

    郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社, 2006.

    Guo S Z.Technique and Implication of Scanning Electron Microscope[M].Xiamen:Xiamen University Press, 2006.

    [10]

    王文魁, 王继扬, 赵珊茸.晶体形貌学[M].武汉:中国地质大学出版社, 2001.

    Wang W K, Wang J Y, Zhao S R.Crystal Microtopography[M].Wuhan:China University of Geosciences Press, 2001.

    [11]

    刘永康, 叶先贤, 李德忍, 等.我国铂族元素矿物的电子探针研究[J].地球化学, 1984(2):189-194.

    Liu Y K, Ye X X, Li D R, et al.Electron microprobe studies of platinum group minerals discovered in China[J].Geochimica, 1984(2):189-194.

    [12]

    Jannessary M R, Melcher F, Lodziak J, et al.Review of platinum-group element distribution and mineralogy in chromitite ores from Southern Iran[J].Ore Geology Reviews, 2012, 48(5):278-305. https://www.sciencedirect.com/science/article/pii/S0169136812001485

    [13]

    Fleet M E, Almeida C M D, Angeli N.Botryoidal platinum, palladium and potarite from the Bom Sucesso Stream, Minas Gerais, Brazil:Compositional zoning and origin[J].The Canadian Mineralogist, 2002, 40(2):341-355. doi: 10.2113/gscanmin.40.2.341

    [14]

    王坤阳, 徐金沙, 饶华文, 等.扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用[J].岩矿测试, 2013, 32(6):924-930. http://www.ykcs.ac.cn/article/id/34866334-73da-4743-8c8c-f72e0ba2486f

    Wang K Y, Xu J S, Rao H W, et al.Application of SEM and EDS for phase characteristics analysis of platinoid mineral in the Danba area[J].Rock and Mineral Analysis, 2013, 32(6):924-930. http://www.ykcs.ac.cn/article/id/34866334-73da-4743-8c8c-f72e0ba2486f

    [15]

    戴婕, 徐金沙, 杜谷, 等.利用扫描电镜-电子探针研究四川杨柳坪镍铜硫化物矿床铂钯的赋存状态及沉淀机制[J].岩矿测试, 2015, 34(2):161-168. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.002

    Dai J, Xu J S, Du G, et al.Analysis of the occurrence of platinum-palladium and precipitation mechanism by SEM and EPMA in the Ni-Cu sulphide deposits from Yangliupin, Sichuan Province, China[J].Rock and Mineral Analysis, 2015, 34(2):161-168. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.002

    [16]

    杨大宏, 刘俊思, 曾祥贵.四川会理大岩子铂矿成矿地质特征及找矿标志[J].四川地质学报, 2005, 25(4):208-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdzxb200504004

    Yang D H, Liu J S, Zeng X G.Geological features and prospecting criteria for the Dayanzi PGE deposit, Huili, Sichuan[J].Acta Geologica Sichuan, 2005, 25(4):208-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdzxb200504004

    [17]

    王登红, 屈文俊, 李纯杰, 等.四川会理大岩子铂钯矿的地质地球化学特征及找矿前景浅析[J].地质论评, 2006, 52(2):219-223. http://www.oalib.com/paper/4895686

    Wang D H, Qu W J, Li C J, et al.Geological and geochemical features of the Dayanzi Pt-Pd deposit, Huili, Sichuan and its implication for prospecting[J].Geological Review, 2006, 52(2):219-223. http://www.oalib.com/paper/4895686

    [18]

    成杭新, 赵传冬, 庄广民, 等.四川大岩子铂-钯矿床(点)热液成矿的地球化学证据[J].地球学报, 2005, 26(4):337-342. http://www.oalib.com/paper/4895686

    Cheng H X, Zhao C D, Zhuang G M, et al.Geochemical evidence for hydrothermal mineralization of the Dayanzi Pt-Pd deposit in Huili County, Sichuan Province[J].Acta Geoscientica Sinica, 2005, 26(4):337-342. http://www.oalib.com/paper/4895686

    [19]

    成杭新, 赵传冬, 庄广民, 等.四川大岩子Pt-Cu矿床水系沉积物中的地球化学异常特征及外围找矿预测[J].地球化学, 2004, 33(1):89-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200401011

    Cheng H X, Zhao C D, Zhuang G M, et al.Characteristics of geochemical anomalies in stream sediments in the Dayanzi Pt-Cu deposit and predication of ore prospecting in its surroundings[J].Geochimica, 2004, 33(1):89-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200401011

  • 加载中

(1)

(7)

计量
  • 文章访问数:  2503
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2016-05-05
修回日期:  2017-01-08
录用日期:  2018-03-21

目录