中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用

李立武, 刘艳, 王先彬, 张铭杰, 曹春辉, 邢蓝田, 李中平. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137
引用本文: 李立武, 刘艳, 王先彬, 张铭杰, 曹春辉, 邢蓝田, 李中平. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137
Li-wu LI, Yan LIU, Xian-bin WANG, Ming-jie ZHANG, Chun-hui CAO, Lan-tian XING, Zhong-ping LI. Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137
Citation: Li-wu LI, Yan LIU, Xian-bin WANG, Ming-jie ZHANG, Chun-hui CAO, Lan-tian XING, Zhong-ping LI. Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230. doi: 10.15898/j.cnki.11-2131/td.201609080137

高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用

  • 基金项目:
    国家自然科学基金资助项目(41473062)
详细信息
    作者简介: 李立武, 博士, 研究员, 主要从事气体地球化学实验与研究工作。E-mail:llwu@lzb.ac.cn
  • 中图分类号: O657.71;P619.227

Development of a Combined Device with High Vacuum and Pulsed Discharge Gas Chromatography and Its Application in Chemical Analysis of Gases from Rock Samples

  • 岩石中气体化学组成的分析具有重要意义。载气保护下的岩石脱气,过程比较复杂;高真空下岩石脱气的气相色谱分析报道较少,一般不能测量气体的总量;真空脱气质谱法对于分子量相近的气体,很难进行测量。针对上述问题,本文研制了高真空岩石样品脱气分析装置,该装置真空度 < 10-4 Pa,空白样品压强 < 0.1 Pa,N2含量测量精度为0.63%,标准温压下最少可测样品量 < 1 mm3。将其与带脉冲放电检测器的气相色谱仪联用,实现了岩石脱气及其微升量级气体化学组成的高灵敏气相色谱分析。利用本系统分析了五大连池火山岩、松辽盆地储层岩石和四川盆地页岩样品中释放的气体,结果表明:相比以往的实验装置和方法,该系统能够直接测量岩石脱出气体的总量,分段加热脱气分析样品用量更少,气体组成分析灵敏度更高,检测的主要成分是岩石脱气常见的成分,针对性较强。
  • 加载中
  • 图 1  岩石脱气化学组成分析装置示意图

    Figure 1. 

    图 2  空白样品电磁破碎脱气PDD气相色谱图

    Figure 2. 

    图 3  储层岩石样品高真空电磁破碎脱气典型色谱图

    Figure 3. 

    图 4  五大连池火山岩样品分段加热脱气化学组成

    Figure 4. 

    表 1  页岩样品的高真空电磁破碎脱气化学组成分析结果

    Table 1.  Chemical compositions of gases released from shale by high vacuum electromagnetic crushing

    样品编号 气体含量(mm3)
    H2 O2+Ar N2 CH4 CO CO2 C2H4 C2H6 C3H8
    1 20.06 0.00 0.45 92.96 1.64 135.98 0.00 0.93 0.00
    2 4.58 0.01 0.19 14.26 0.85 82.08 0.00 0.04 0.00
    3 7.21 0.00 0.15 2.10 0.00 92.39 0.03 0.09 0.01
    4 12.74 0.06 4.77 10.44 0.00 5.83 0.00 0.14 0.03
    5 4.46 0.01 0.23 9.67 0.41 13.17 0.00 0.04 0.00
    6 6.89 0.01 0.34 24.19 0.07 41.35 0.00 0.15 0.00
    7 7.67 0.01 0.28 17.06 0.05 10.89 0.00 0.04 0.00
    下载: 导出CSV
  • [1]

    Zelenski M E, Taran Y A, Dubinina E O, et al.Sources of volatiles for a subduction zone volcano:Mutnovsky volcano, Kamchatka[J].Geochemistry International, 2012, 50(6):502-521. doi: 10.1134/S001670291204009X

    [2]

    Zhang M L, Guo Z F, Sano Y J, et al.Stagnant subducted Pacific slab-derived CO2 emissions:Insights into magma degassing at Changbaishan volcano, NE China[J].Journal of Asian Earth Sciences, 2015, 106:49-63. doi: 10.1016/j.jseaes.2015.01.029

    [3]

    Benavente O, Tassi F, Reich M, et al.Chemical and isotopic features of cold and thermal fluids discharged in the southern volcanic zone between 32.5°S and 36°S:Insights into the physical and chemical processes controlling fluid geochemistry in geothermal systems of central Chile[J].Chemical Geology, 2016, 420:97-113. doi: 10.1016/j.chemgeo.2015.11.010

    [4]

    Kuritani T, Ohtani E, Kimura J I.Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation[J].Nature Geoscience, 2011, 4:713-716. doi: 10.1038/ngeo1250

    [5]

    GoncharovA G, Ionov D A, Doucet L S, et al.Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle:New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia[J].Earth and Planetary Science Letters, 2012, 357-358:99-110. doi: 10.1016/j.epsl.2012.09.016

    [6]

    Frezzotti M L, Ferrando S, Tecce F, et al.Water content and nature of solutes in shallow-mantle fluids from fluid inclusions[J].Earth and Planetary Science Letters, 2012, 351-352:70-83. doi: 10.1016/j.epsl.2012.07.023

    [7]

    Colin A, Burnard P, Marty B.Mechanisms of magma degassing at mid-oceanic ridges and the local volatile composition (4He-40Ar*-CO2) of the mantle by laser ablation analysis of individual MORB vesicles[J].Earth and Planetary Science Letters, 2013, 361:183-194. doi: 10.1016/j.epsl.2012.10.022

    [8]

    张凤奇, 钟红利, 张凤博, 等.鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J].兰州大学学报(自然科学版), 2016, 52(6):722-727. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm

    Zhang F Q, Zhong H L, Zhang F B, et al.Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos basin[J].Journal of Lanzhou University (Natural Sciences), 2016, 52(6):722-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201606002.htm

    [9]

    杨丹, 徐文艺.激光拉曼光谱测定流体包裹体成分研究进展[J].光谱学与光谱分析, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm

    Yang D, Xu W Y.Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4):874-878. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201504001.htm

    [10]

    Frezzotti M L, Tecce F, Casagli A.Raman spectroscopy for fluid inclusion analysis[J].Journal of Geochemical Exploration, 2012, 112:1-20. doi: 10.1016/j.gexplo.2011.09.009

    [11]

    倪培, 范宏瑞, 丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm

    Ni P, Fan H R, Ding J Y.Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201401001.htm

    [12]

    Clay P L, Busemann H, Sherlock S C, et al.40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland[J].Chemical Geology, 2015, 403:99-110. doi: 10.1016/j.chemgeo.2015.02.041

    [13]

    Armstrong L S, Hirschmann M M, Stanley B D, et al.Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171:283-302. doi: 10.1016/j.gca.2015.07.007

    [14]

    米敬奎, 王晓梅, 朱光有, 等.利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J].岩石学报, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm

    Mi J Q, Wang X M, Zhu G Y, et al.Origin determination of gas from Jingbian gas field in Ordos basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J].Acta Petrologica Sinica, 2012, 28(3):859-869. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203015.htm

    [15]

    李洪伟, 冯连君, 陈健, 等.密封石英管法快速分析包裹体中氢同位素[J].质谱学报, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050

    Li H W, Feng L J, Chen J, et al.A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(1):40-44. doi: 10.7538/zpxb.youxian.2014.0050

    [16]

    王健, 王毓, 胡永华, 等.热裂解-在线真空紫外光电离质谱法研究固体物热裂解[J].质谱学报, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035

    Wang J, Wang Y, Hu Y H, et al.Study on the pyrolysis of solid materials with pyrolysis-online vacuum ultraviolet photoionization mass spectrometry[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(6):513-520. doi: 10.7538/zpxb.youxian.2015.0035

    [17]

    史宝光, 王晓锋, 徐永昌, 等.烃源岩解析气获取新方法研究[J].沉积学报, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm

    Shi B G, Wang X F, Xu Y C, et al.New experimental methodology research for adsorbed gases on hydrocarbon-source rocks[J].Acta Sedimentologica Sinica, 2012, 30(6):1180-1184. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206021.htm

    [18]

    Shi B G, Shen P, Wang X F, et al.Groundbreaking gas source rock correlation research based on the application of a new experimental approach for adsorbed gas[J].Chinese Science Bulletin, 2012, 57:4746-4752. doi: 10.1007/s11434-012-5504-5

    [19]

    Zhang T W, Yang R S, Milliken K L, et al.Chemical and isotopic composition of gases released by crush methods from organic rich mudrocks[J].Organic Geochemistry, 2014, 73:16-28. doi: 10.1016/j.orggeochem.2014.05.003

    [20]

    Liu G, Wang X B, Li L W.Chemical composition of gas from mantle xenoliths in alkali-basalt from Damaping, Hebei[J].Chinese Science Bulletin, 1997, 42(6):470-472. doi: 10.1007/BF02882594

    [21]

    OklandI, Huang S, Thorseth I H.Formation of H2, CH4 and N-species during low-temperature experimental alteration of ultramafic rocks[J].Chemical Geology, 2014, 387:22-34. doi: 10.1016/j.chemgeo.2014.08.003

    [22]

    杨华敏, 王杰, 陶成, 等.储层岩石中稀有气体组分和同位素分析技术[J].天然气地球科学, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681

    Yang H M, Wang J, Tao C, et al.Measurement technology for content and isotopic compositions of noble gases in reservoir rocks[J].Natural Gas Geoscience, 2016, 27(4):681-687. doi: 10.11764/j.issn.1672-1926.2016.04.0681

    [23]

    Xing C M, Wang C Y, Zhang M J.Volatile and C-H-O isotopic compositions of giant Fe-Ti-V oxide deposits in the Panxi region and their implications for the sources of volatiles and the origin of Fe-Ti oxide ores[J].Science China Earth Science, 2012, 55:1782-1795. doi: 10.1007/s11430-012-4468-2

    [24]

    Fu P E, Tang Q Y, Zhang M J, et al.Ore genesis of the Kalatongke Cu-Ni sulfide deposits, Western China:Constraints from volatile chemical and carbon isotopic compositions[J].Acta Geologica Sinica, 2012, 86(3):568-578. doi: 10.1111/acgs.2012.86.issue-3

    [25]

    余明, 汤庆艳, 张铭杰, 等.腾冲新生代火山作用流体组成及其来源——火山岩流体化学组成和碳同位素制约[J].岩石学报, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm

    Yu M, Tang Q Y, Zhang M J, et al.Compositions and origin of volatiles in Tengchong cenozoic volcanism from SE margin of the Tibetan Plateau:Constraints from chemical and carbon isotopic compositions of volatiles in volcanic rocks[J].Acta Petrologica Sinica, 2014, 30(12):3635-3644. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412013.htm

    [26]

    Li L W, Guo L J, Xia Y Q, et al.A High Vacuum Automatic Inlet System for Microliter Gas Mass Spectrometry[C]//The Abstract of the 13th International Conference on Gas Geochemistry.2015:149-150.

    [27]

    Plessen B, Luders V.Simultaneous measurements of gas isotopic compositions of fluid inclusion gases (N2, CH4, CO2) using continuous-flow isotope ratio mass spectrometry[J].Rapid Communications Mass Spectrometry, 2012, 26:1157-1161. doi: 10.1002/rcm.6201

    [28]

    Klein F, Bach W, McCollom T M.Compositional controls on hydrogen generation during serpentinization of ultramafic rocks[J].Lithos, 2013, 178:55-69. doi: 10.1016/j.lithos.2013.03.008

    [29]

    Wang X B, Ouyang Z Y, Zhuo S G, et al.Serpentini-zation, abiogenic organic compounds, and deep life[J].Science China (Earth Sciences), 2014, 57(5):878-887. doi: 10.1007/s11430-014-4821-8

    [30]

    Tang Q Y, Zhang M J, Li C S, et al.The chemical compositions and abundances of volatiles in the Siberian large igneous province:Constraints on magmatic CO2 and SO2 emissions into the atmosphere[J].Chemical Geology, 2013, 339:84-91. doi: 10.1016/j.chemgeo.2012.08.031

    [31]

    Pearson D G, Brenker F E, Nestola F, et al.Hydrous mantle transition zone indicated by ringwoodite included within diamond[J].Nature, 2014, 507:221-224. doi: 10.1038/nature13080

    [32]

    李传亮, 朱苏阳.页岩气其实是自由气[J].岩性油气藏, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm

    Li C L, Zhu S Y.Shale gas is free gas underground[J].Lithologic Reservoir, 2013, 25(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX201301004.htm

    [33]

    Bali E, Audétat A, Keppler H.Water and hydrogen are immiscible in Earth's mantle[J].Nature, 2013, 495:220-222. doi: 10.1038/nature11908

    [34]

    Doucet L S, Peslier A H, Ionov D A, et al.High water contents in the Siberian Cratonic mantle linked to metasomatism:An FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137:159-187. doi: 10.1016/j.gca.2014.04.011

    [35]

    尚慧. 页岩中气体组成实验测定方法及实例分析[D]. 兰州: 兰州大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10730-1014304182.htm

    Shang H.Experimental Method for the Gas Composition Measurement in the Shale and a Primary Application[D].Lanzhou:Lanzhou University, 2014.

    [36]

    Dublyansky Y V.Design of two crushing devices for release of the fluid inclusion volatiles[J].Central European Journal of Geosciences, 2012, 4(2):219-224. http://www.academia.edu/2050879/Design_of_two_crushing_devices_for_release_of_the_fluid_inclusion_volatiles

  • 加载中

(4)

(1)

计量
  • 文章访问数:  838
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2016-09-08
修回日期:  2017-02-18
录用日期:  2017-05-29

目录