中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义

侯淋, 唐菊兴, 林彬, 宋扬, 王勤, 李玉彬, 冯军, 李彦波, 陈列, 唐晓倩. 西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义[J]. 岩矿测试, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179
引用本文: 侯淋, 唐菊兴, 林彬, 宋扬, 王勤, 李玉彬, 冯军, 李彦波, 陈列, 唐晓倩. 西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义[J]. 岩矿测试, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179
Lin HOU, Ju-xing TANG, Bin LIN, Yang SONG, Qin WANG, Yu-bin LI, Jun FENG, Yan-bo LI, Lie CHEN, Xiao-qian TANG. Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance[J]. Rock and Mineral Analysis, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179
Citation: Lin HOU, Ju-xing TANG, Bin LIN, Yang SONG, Qin WANG, Yu-bin LI, Jun FENG, Yan-bo LI, Lie CHEN, Xiao-qian TANG. Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance[J]. Rock and Mineral Analysis, 2017, 36(4): 440-449. doi: 10.15898/j.cnki.11-2131/td.201612050179

西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义

  • 基金项目:
    国家公益性行业科研专项"斑岩-浅成低温热液成矿系统研究及勘查评价示范——以西藏多龙整装勘查区为例"(201511017)
详细信息
    作者简介: 侯淋, 在读硕士研究生, 矿物学、岩石学、矿床学专业。E-mail:1126570067@qq.com
    通讯作者: 宋扬, 副研究员, 主要从事矿产勘查和区域成矿规律研究。E-mail:songyang100@126.com
  • 中图分类号: P619.273;P597.3

Element Migration during Alteration and 40Ar/39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Significance

More Information
  • 东窝东铜多金属矿床位于羌塘地体南缘,多龙铜金矿集区东侧。该矿床尚未开展矿化蚀变时限、成矿作用中元素迁移特征等问题的研究。为确定矿床的蚀变矿化作用时限,本文对东窝东矿床的黄铁绢英岩化蚀变带中的蚀变绢云母进行了40Ar-39Ar年代学测试,获得40Ar-39Ar坪年龄为122.20±0.84 Ma,该年龄与已有的斑岩体侵位时代(122 Ma)一致,说明东窝东矿床黄铁绢英岩化蚀变与斑岩体侵位有密切联系。此外,对比分析地表弱蚀变和钻孔中强黄铁绢英岩化花岗闪长斑岩的岩石地球化学结果,运用"等浓度线(isocon)方程"及其推导方程,探讨黄铁绢英岩化蚀变过程中的不同元素的带入、带出特点及元素迁移特征。结果表明:高场强元素质量基本守恒;轻稀土元素较重稀土元素迁移量较大,但总体上稀土元素的迁移程度较弱;主要的成矿元素Cu、Pb、Zn为带入元素。东窝东矿床含矿斑岩侵位时代和热液蚀变时限均与多龙矿集区内多不杂、波龙、铁格隆南等多个超大型-大型铜金矿床一致,说明东窝东矿床和多龙矿集区内的多个矿床受控于同一构造-岩浆成矿背景,东窝东矿区具有重要的找矿潜力。
  • 加载中
  • 图 1  东窝东矿区地质简图

    Figure 1. 

    图 2  东窝东矿区ZK0001典型矿石组构

    Figure 2. 

    图 3  东窝东矿床绢云母的(a)40Ar-39Ar年龄谱图、(b)等时线图及(c)反等时线图

    Figure 3. 

    表 1  东窝东矿区蚀变绢云母(样品号ZK0001-270) 的40Ar-39Ar测试结果

    Table 1.  Analytical results of 40Ar-39Ar for sericite (sample No.ZK0001-270) in Dongwodong deposit

    温度(℃)(40Ar/39Ar)m(36Ar/39Ar)m(37Ar/39Ar)m(38Ar/39Ar)m40Ar(%)40Ar*/39Ar39Ar(×10-14 mol)累计39Ar年龄±1σ(Ma)
    700100.22710.32521.58770.10914.224.23230.040.1836±16
    77027.71850.05350.30970.026343.0111.92420.321.4999.3±1.4
    81020.99040.02240.09640.018468.5414.38881.146.15119.2±1.3
    85017.56960.00860.03640.014485.5115.02362.0614.6124.3±1.2
    89016.86810.00670.03110.013888.314.89471.9722.66123.3±1.2
    92017.04050.00760.05130.014286.7414.78092.2731.97122.4±1.2
    95016.74560.00690.03670.013987.8114.70422.3641.65121.7±1.2
    98016.52320.00640.02480.013888.6114.64172.8153.15121.2±1.2
    102016.26960.00530.02460.013790.3814.7053.6167.94121.8±1.2
    106016.6290.00640.01230.01488.6714.74473.3181.51122.1±1.2
    112018.27430.01250.05030.015579.8414.59152.4791.61120.8±1.2
    120022.03290.02610.16230.0265.0114.3256195.72118.7±1.2
    140019.76750.01880.33740.030571.9314.22361.04100117.9±1.3
    注:样品质量m=16.55 mg,辐照参数J=0.004748。
    下载: 导出CSV

    表 2  多龙矿集区与东窝东矿床含矿岩体侵位时代及热液蚀变年龄

    Table 2.  Geochronology of ore-bearing intrusions and hydrothermal alteration from Duolong ore concentration area and Dongwodong deposit, Tibet

    矿床名称含矿岩体岩性岩体侵位时代(Ma)参考文献热液蚀变年龄(Ma)参考文献
    多不杂花岗闪长斑岩117.5±1.2~119.5±0.7孙嘉[4]115.8±1.4~118.1±1.3孙嘉[4];Li等[3]
    石英闪长斑岩116.4±2.5~127.8±2.6曲晓明等[1];Li等[2-3]
    波龙花岗闪长斑岩117.5±1.0~120.9 ±2.4佘宏全等[5];Li等[3]
    陈华安等[8]
    117.9±0.7~121.6±0.7祝向平等[6];孙嘉[4]
    石英闪长玢岩118.4±1.1~122.3±1.0Li等[3];吕立娜[7]
    铁格隆南花岗闪长斑岩121.1±0.5孙嘉[4];Lin等[9]116.3±0.8杨超[10]
    石英闪长玢岩120.2±1.0方向等[11]
    东窝东花岗闪长斑岩122.8±1.4林彬等(待刊)[14]122.20±0.84本文
    下载: 导出CSV

    表 3  东窝东矿区花岗闪长斑岩和黄铁绢英岩化花岗闪长斑岩主量、稀土元素和微量元素分析结果

    Table 3.  Analytical results of major, rare earth and trace elements for granodiorite and beresitizated granodiorite from Dongwodong deposit

    元素弱蚀变花岗闪长斑岩矿化花岗闪长斑岩ΔCi
    DL2014-06DL2014-07DL2014-08DL2014-09CiOZK0001-262ZK0001-268ZK0001-270ZK0001-300CiA
    SiO266.3061.8462.2263.9663.5865.9663.0965.41SiO20SiO21SiO22
    Al2O314.8716.1915.6614.4215.2914.4414.8714.90Al2O30Al2O31Al2O32
    Fe2O33.505.264.646.034.864.223.533.11Fe2O30Fe2O31Fe2O32
    MgO1.331.721.561.451.521.321.971.63MgO0MgO1MgO2
    CaO3.404.524.253.273.861.643.292.38CaO0CaO1CaO2
    Na2O3.143.623.613.223.400.060.080.07Na2O0Na2O1Na2O2
    K2O4.844.123.664.224.213.523.893.85K2O0K2O1K2O2
    TiO20.630.770.730.710.710.510.530.53TiO20TiO21TiO22
    MnO0.060.080.050.050.060.210.150.14MnO0MnO1MnO2
    P2O50.170.210.210.190.200.170.170.17P2O50P2O51P2O52
    LOI1.091.042.781.83-6.947.947.34LOI0LOI1LOI2
    Li36.6438.0237.78112.8556.3228.8025.9024.50Li0Li1Li2
    Ba608.04627.84590.22601.39606.87263.002.46610.00Ba0Ba1Ba2
    Cs1.992.103.147.863.775.686.466.97Cs0Cs1Cs2
    Cr9.119.596.9815.2010.2226.6043.8074.90Cr0Cr1Cr2
    Co5.035.317.3412.747.612.091.871.24Co0Co1Co2
    Ni4.074.532.985.044.168.229.926.33Ni0Ni1Ni2
    Cu14.3415.1936.6153.2729.85126.00231.00117.00Cu0Cu1Cu2
    Zn48.2749.7940.0060.8049.72153.00178.00120.00Zn0Zn1Zn2
    Ga19.1020.3020.1627.8621.8623.1023.1020.90Ga0Ga1Ga2
    Rb123.98130.24119.68182.89139.20180.00205.00202.00Rb0Rb1Rb2
    Sr496.20521.80558.00592.35542.0962.9091.2052.20Sr0Sr1Sr2
    Nb30.5032.0030.5040.2333.3122.5025.4024.10Nb0Nb1Nb2
    Ta1.912.001.882.161.991.631.871.72Ta0Ta1Ta2
    Pb16.7517.4314.1716.6016.2419.2010.202.76Pb0Pb1Pb2
    U3.503.683.152.143.122.9612.303.95U0U1U2
    Th14.8715.6316.2612.2914.7611.2011.8012.00Th0Th1Th2
    Zr229.40240.20242.00235.01236.65185.00177.00179.00Zr0Zr1Zr2
    Hf6.006.336.403.615.595.225.285.15Hf0Hf1Hf2
    La40.9742.8948.6033.5041.4956.3060.5046.30La0La1La2
    Ce84.1088.0088.8862.5380.8895.40102.0084.10Ce0Ce1Ce2
    Pr10.0610.579.827.129.3910.9011.609.53Pr0Pr1Pr2
    Nd35.9537.9333.9825.1933.2641.0043.0033.60Nd0Nd1Nd2
    Sm6.997.286.454.906.416.997.626.42Sm0Sm1Sm2
    Eu1.932.041.961.471.851.522.111.98Eu0Eu1Eu2
    Gd6.266.575.884.615.835.385.884.86Gd0Gd1Gd2
    Tb0.940.990.880.670.870.740.850.79Tb0Tb1Tb2
    Dy5.235.515.013.764.883.924.284.36Dy0Dy1Dy2
    Ho1.071.111.030.760.990.630.670.73Ho0Ho1Ho2
    Er2.983.132.892.122.781.911.972.13Er0Er1Er2
    Tm0.440.460.420.300.410.310.320.34Tm0Tm1Tm2
    Yb2.832.942.731.992.621.891.982.16Yb0Yb1Yb2
    Lu0.430.450.420.290.400.270.290.30Lu0Lu1Lu2
    Y27.6428.9226.6028.8228.0017.8019.1020.70Y0Y1Y2
    注:① 样品DL2014-06、DL2014-07、DL2014-08、DL2014-09的主量、微量元素数据引用自韦少港等[16]
    ② 主量元素含量单位为%,稀土及微量元素含量单位为×10-6
    CiOCiA分别为原岩、蚀变岩中第i种元素含量,为所采样品的平均值。元素迁移量ΔCi=CiA/k-CiO(本文选取TiO2作为不活动元素,k值为蚀变岩中TiO2含量与原岩中TiO2含量比值)。
    下载: 导出CSV
  • [1]

    曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25(7):792-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm

    Qu X M, Xin H B.Ages and tectonic environment of the Bangong Co porphyry copper belt in Western Tibet, China[J].Geological Bulletin of China, 2006, 25(7):792-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm

    [2]

    Li J X, Qin K Z, Li G M, et al.Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenetic belt, Tibet:Evidence from U-Pb and 40Ar/39Ar geochronology[J].Journal of Asian Earth Sciences, 2011, 41(6):525-536. doi: 10.1016/j.jseaes.2011.03.008

    [3]

    Li J X, Qin K Z, Li G M, et al.Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics[J].Lithos, 2013, 160-161:216-227. doi: 10.1016/j.lithos.2012.12.015

    [4]

    孙嘉. 西藏多龙矿集区岩浆成因与成矿作用研究[D]. 北京: 中国地质大学(北京), 2015: 1-198.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391711.htm

    Sun J.Magmatism and Metallogenesis at Duolong Ore District, Tibet[D].Beijing:China University of Geosciences (Beijing), 2015:1-198.

    [5]

    佘宏全, 李进文, 马东方, 等.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质, 2009, 28(6):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm

    She H Q, Li J W, Ma D F, et al.Molybdenite Re-Os and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications[J].Mineral Deposits, 2009, 28(6):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm

    [6]

    祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159-2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm

    Zhu X P, Chen H A, Ma D F, et al.Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance[J].Acta Petrologica Sinica, 2011, 27(7):2159-2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm

    [7]

    吕立娜. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型[D]. 北京: 中国地质科学院, 2012: 1-219.http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371246.htm

    Lü L N.Metallogenic Model of Rich Iron and Copper (Gold) Deposits in Western Part of Bangong-Nujiang Metallogenic Belt[D].Beijing:Chinese Academy of Geological Sciences, 2012:1-219.

    [8]

    陈华安, 祝向平, 马东方, 等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2013, 87(10):1593-1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm

    Chen H A, Zhu X P, Ma D F, et al.Geochronology and geochemistry of the Bolong porphyry Cu-Au deposit, Tibet and its mineralizing significance[J].Acta Geologica Sinica, 2013, 87(10):1593-1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm

    [9]

    Lin B, Chen Y C, Tang J X, et al.Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet:Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes[J].Resource Geology, 2016, Doi:10.1111/rge.12113.

    [10]

    杨超. 西藏铁格隆南浅成低温热液-斑岩型Cu(Au)矿床矿石、蚀变、流体特征研究[D]. 北京: 中国地质科学院, 2015: 1-77.http://cdmd.cnki.com.cn/Article/CDMD-82501-1015584795.htm

    Yang C.Minerals, Alteration and Fluid Characteristics Research of Southern Tiegelong High Sulfidation Epithermal-Porphyry Cu(Au) Deposit, Tibet[D].Beijing:Chinese Academy of Geological Sciences, 2015:1-77.

    [11]

    方向, 唐菊兴, 宋扬, 等.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报, 2015, 36(2):168-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm

    Fang X, Tang J X, Song Y, et al.Formation epoch of the south Tiegelong supelarge epithermal Cu(Au-Ag) deposit in Tibet and its geological implications[J].Acta Geoscientica Sinica, 2015, 36(2):168-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm

    [12]

    艾金彪, 马生明, 樊连杰, 等.内蒙古乌努格吐山斑岩型铜钼矿床元素迁移定量探讨[J].地球学报, 2013, 34(2):193-202. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302007.htm

    Ai J B, Ma S M, Fan L J, et al.A quantitative discussion on element mass migration in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J].Acta Geoscientica Sinica, 2013, 34(2):193-202. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201302007.htm

    [13]

    李培, 邓小虎, 陈守余, 等.个旧蚀变岩型铜多金属矿床围岩蚀变过程中元素迁移定量研究[J].地质找矿论丛, 2011, 26(2):176-181. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201102010.htm

    Li P, Deng X H, Chen S Y, et al.Quantitative study of elements migration during the wallrock alteration on Gejiu altered rock-type copper-polymetallic deposit[J].Contributions to Geology and Mineral Resources Research, 2011, 26(2):176-181. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201102010.htm

    [14]

    林彬, 陈毓川, 唐菊兴, 等.藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及勘查找矿方向[J].地质学报, 2017(待刊). http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017080400D&dbname=CAPJ2015

    Lin B, Chen Y C, Tang J X, et al.Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry, and exploration direction, Dongwodong copper polymetallic deposit, North Tibet[J].Acta Geologica Sinica, 2017(in press). http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017080400D&dbname=CAPJ2015

    [15]

    陈文, 刘新宇, 张思红.连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J].地质论评, 2002, 48(增刊):127-134. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1022.htm

    Chen W, Liu X Y, Zhang S H.Continuous laser stepwise heating 40Ar/39Ar dating technique[J].Geological Review, 2002, 48(Supplement):127-134. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1022.htm

    [16]

    韦少港, 唐菊兴, 宋扬, 等.西藏班公湖-怒江成矿带斑岩-浅成低温热液型矿床岩浆作用与成矿:以改则县东窝东铜多金属矿床为例[J].现代地质, 2016, 30(6):1179-1196. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201606001.htm

    Wei S G, Tang J X, Song Y, et al.Magmatism and mineralization of epithermal-porphyry deposit from Bangonghu-Nujiang metallogenic belt:Taking Dongwodong copper deposit from Gerze city for example[J].Geosciences, 2016, 30(6):1179-1196. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201606001.htm

    [17]

    Liu Y, Hu Z, Gao S, et al.In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [18]

    Gresens R L.The effect of structurally produced pressure gradients on diffusion in rocks[J].Journal of Geology, 1966, 74(3):307-321. doi: 10.1086/627165

    [19]

    Grant J A.The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration[J].Economic Geology, 1986, 81(8):1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    [20]

    周永章, 涂光炽, Chown E H, 等.热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估计——以广东河台金矿田为例[J].科学通报, 1994, 39(11):1026-1028. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199411019.htm

    Zhou Y Z, Tu G Z, Chown E H, et al.Search for the mathematical invariants and quantitative estimates of mass transfer during the hydrothermal rock alteration-A case study of Guangdong Hetai gold field[J].Chinese Science Bulletin, 1994, 39(11):1026-1028. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199411019.htm

    [21]

    翟裕生, 姚书振, 蔡克勤.矿床学(第3版)[M].北京:地质出版社, 2011.

    Zhai Y S, Yao S Z, Cai K Q.Mineral Deposits (3rd Edition)[M].Beijing:Geological Publishing House, 2011.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1592
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2016-12-05
修回日期:  2017-07-12
录用日期:  2017-07-20

目录