中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

中国南部湿润半湿润丘陵山区不同粒级水系沉积物地球化学特征对比研究

陈富荣, 史春鸿, 梁红霞. 中国南部湿润半湿润丘陵山区不同粒级水系沉积物地球化学特征对比研究[J]. 岩矿测试, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007
引用本文: 陈富荣, 史春鸿, 梁红霞. 中国南部湿润半湿润丘陵山区不同粒级水系沉积物地球化学特征对比研究[J]. 岩矿测试, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007
Fu-rong CHEN, Chun-hong SHI, Hong-xia LIANG. Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China[J]. Rock and Mineral Analysis, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007
Citation: Fu-rong CHEN, Chun-hong SHI, Hong-xia LIANG. Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China[J]. Rock and Mineral Analysis, 2017, 36(2): 136-145. doi: 10.15898/j.cnki.11-2131/td.2017.02.007

中国南部湿润半湿润丘陵山区不同粒级水系沉积物地球化学特征对比研究

  • 基金项目:
    中国地质调查局地质调查项目(1212011120938,1212011220592)
详细信息
    作者简介: 陈富荣, 高级工程师, 长期从事矿产资源与生态环境地球化学研究。E-mail:chfur@163.com
  • 中图分类号: P622.3;O657.31;O657.63

Geochemical Characteristics Comparison of Different Scale Sediments in the Humid and Semi-humid Hilly Area, Southern China

  • 不同景观条件下选取合适的采样粒级是准确地获取地球化学信息,提升地质找矿效果的关键。为研究中国南部湿润半湿润中低山丘陵景观区水系沉积物测量最佳采样粒级,本文在安徽省南部胡乐司—宁国墩地区开展了区域化探采样粒度方法技术试验,采集-60目和-10目~+80目两种粒级样品,采用波长色散X射线荧光光谱法和电感耦合等离子体质谱法为主体的配套分析方案和测试技术获取了全国区域化探扫面规定的40种元素高精度数据。研究表明:两种粒级水系沉积物中造岩元素背景含量与区域岩石背景值基本接近,其他微量元素多呈富集状态,以-10~+80目粒级中As、Au、Hg、Mo、Pb、Sb等成矿元素富集程度最强;-10~+80目粒级受后期表生改造作用影响较弱,最大限度保留了原生地球化学分布特征,并在准确圈定与矿化有关的异常和清晰反映矿致异常特征等方面明显优于-60目粒级。因此,建议在安徽省南部中低山丘陵景观区,选择-10~+80目粒级为水系沉积物测量的最佳采样粒级,研究结果可以为中国相似景观区地球化学勘查找矿水系沉积物测量采样粒级的选择提供参考。
  • 加载中
  • 图 1  胡乐司—宁国墩地区地质矿产简图

    Figure 1. 

    图 2  胡乐司—宁国墩地区两种粒级水系沉积物Ag (a) 和Hg (b) 地球化学图

    Figure 2. 

    图 3  胡乐司—宁国墩地区两种粒级水系沉积物元素富集系数对比图

    Figure 3. 

    图 4  胡乐司—宁国墩地区两种粒级水系沉积物F (a)、CaO (b)、W (c) 和Au (d) 衬度异常图

    Figure 4. 

    表 1  胡乐司—宁国墩地区水系沉积物元素地球化学特征参数

    Table 1.  Geochemical parameters of stream sediments in Hulesi—Ningguodun area

    元素 -60目水系沉积物 -10~+80目水系沉积物
    最大值 最小值 背景值 标准差 CV值 最大值 最小值 背景值 标准差 CV值
    Ag 1894 50 180.64 318.46 1.16 1066 45 159.94 188.1 0.99
    As 190 4.3 25.21 25.42 0.92 383 5.4 48.08 44.98 0.86
    Au 12.3 0.2 1.92 1.83 0.85 16.8 0.3 1.93 2.65 1.06
    B 103.5 28.1 61.8 12.8 0.21 104.8 28.5 63.1 14.4 0.23
    Ba 5652.2 452.1 1579 1198 0.73 17220 475.8 1913 2139 0.98
    Be 10.48 1.64 2.42 0.77 0.31 7.52 1.97 2.94 0.55 0.18
    Bi 3.93 0.18 0.42 0.35 0.73 4.48 0.24 0.47 0.56 0.92
    Cd 16074 109 725.6 2126 1.61 17070 72 861.5 1923.1 1.55
    Co 33.3 10.3 18.78 4.42 0.23 54.4 8.8 23.23 5.66 0.24
    Cr 863.3 31.7 73.7 67.8 0.82 225.3 34.4 95.1 24.7 0.26
    Cu 185.1 17.3 37.6 25.2 0.57 108.2 12.3 42.3 19.4 0.42
    F 11000 360 776 1095 1.12 28060 370 834 3273 2
    Hg 468 27 74.4 43.7 0.56 282 17 41.3 23.9 0.55
    La 63.8 29.7 43.5 6 0.14 61.6 21.9 37.8 7.2 0.19
    Li 68.5 27.9 40.6 8 0.19 62.1 20.2 42 7.8 0.19
    Mn 4245.6 454.2 1086 642 0.55 8042.6 489.1 1030 840 0.65
    Mo 28.96 0.43 1.89 5.13 1.35 41 0.52 6.46 8.09 1.25
    Nb 22 13.7 17.5 1.5 0.09 20.7 11.1 15.8 1.8 0.12
    Ni 270.1 15.3 39 24 0.57 159.6 16.8 48 16 0.32
    P 1640.2 394.9 653 272 0.36 1368.6 244.9 670 208 0.31
    Pb 71 17.1 32.73 10.06 0.3 92.5 26.8 36.54 9.98 0.26
    Rb 185.5 73.8 99 18 0.18 198.3 48 115 32 0.27
    Sb 16.8 0.26 2.04 2.89 1.09 26.5 0.49 3.38 4.29 0.99
    Sn 50 2.8 4.21 4.8 0.92 50 2.1 3.31 4.45 1.02
    Sr 154.7 28.2 46.2 18.2 0.36 165.5 21.7 37.1 20.6 0.5
    Th 21.1 8.1 11.6 2.16 0.18 18.2 6.4 11.67 2.59 0.22
    Ti 7390.2 3877.9 5465 703 0.13 7329.6 2737.7 4599 728 0.16
    U 23.68 1.73 3.01 3.79 0.86 18.85 1.52 2.95 2.99 0.74
    V 594.7 64.3 122.1 110.1 0.69 715.5 51.8 153.2 124.2 0.63
    W 49.01 1.47 2.43 4.04 1.34 51.02 1.2 2.11 4.31 1.56
    Y 52.9 22.1 30.4 5.1 0.16 35 17.3 24.2 2.8 0.12
    Zn 697.1 61.6 131.6 84 0.59 413.5 70.8 141.1 62.1 0.41
    Zr 350.6 144.1 243 42 0.18 241.3 91.5 167 37 0.22
    Al2O3 15.29 9.78 12.17 1.26 0.1 17.79 6.35 13.26 2.51 0.2
    CaO 8.78 0.21 0.59 1.6 1.4 9.55 0.16 0.36 1.74 1.68
    TFe2O3 7.64 3.98 5.2 0.83 0.16 11.65 4.23 7.61 1.23 0.16
    K2O 3.82 1.52 2.25 0.34 0.15 4.71 1.16 3.02 0.58 0.2
    MgO 4.1 0.93 1.67 0.6 0.35 4.2 0.68 1.87 0.7 0.36
    Na2O 1.29 0.19 0.29 0.2 0.57 1.25 0.08 0.21 0.18 0.69
    SiO2 76.15 56.61 69.55 3.65 0.05 82.06 54.25 68.26 4.88 0.07
    注:Au、Ag、Cd、Hg含量单位为ng/g,氧化物为%,其他元素为μg/g。
    下载: 导出CSV
  • [1]

    向运川, 任天祥, 牟绪赞, 等.化探资料应用技术要求[M].北京:地质出版社, 2010.

    Xiang Y C, Ren T X, Mou X Z, et al.Application and Technical Requirements of Geochemical Materials[M].Beijing:Geological Publishing House, 2010.

    [2]

    迟清华, 鄢明才.应用地球化学元素丰度手册[M].北京:地质出版社, 2007.

    Chi Q H, Yan M C.Application of Geochemical Element Abundance Data Handbook[M].Beijing:Geological Publishing House, 2007.

    [3]

    冷福荣, 李志强.1:20万区域化探方法核心技术"取样粒级"的讨论[J].物探与化探, 2009, 33(6):678-685. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200906016.htm

    Leng F R, Li Z Q.A discussion on the "sampling grade", a key technology in 1:200000 regional geochemical exploration[J].Geophysical & Geochemical Exploration, 2009, 33(6):678-685. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200906016.htm

    [4]

    禹斌, 李惠, 张国义, 等.不同地球化学景观区的化探方法及实例[J].地质找矿论丛, 2005, 12(3):182-186. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK2005S1047.htm

    Yu B, Li H, Zhang G Y, et al.Geochemical exploration at various landscapes and the examples[J].Geological Prospecting Series, 2005, 12(3):182-186. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK2005S1047.htm

    [5]

    贾玉杰, 龚庆杰, 韩东昱, 等.化探方法技术之取样粒度研究——以豫西牛头沟金矿1:5万化探普查为例[J].地质与勘探, 2013, 49(5):928-938. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201305015.htm

    Jia Y J, Gong Q J, Han D Y, et al.Sample granularity of soils and stream sediments in geochemical surveys:A case study of the Niutougou gold deposit, Xiong' erShan gold mine in Western Hennan Province[J].Geology and Exploration, 2013, 49(5):928-938. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201305015.htm

    [6]

    郭玉生.元素的赋存状态、样品粒度、取样量对试样代表性的影响[J].岩矿测试, 1987, 6(2):147-150. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=19870239&flag=1

    Guo Y S.Effect of elemental occurrence phases, sample size and sampling mass on sample's representation[J].Rock and Mineral Analysis, 1987, 6(2):147-150. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=19870239&flag=1

    [7]

    沈莽庭, 徐鸣, 姚春彦, 等.巴西巴伊亚州阿巴伊拉地区水系沉积物采样粒级方法试验[J].地质找矿论丛, 2015, 30(3):392-399. doi: 10.6053/j.issn.1001-1412.2015.03.011

    Shen M T, Xu M, Yao C Y, et al.Grain size test for sampling media from river sediments in Arbari area, Bahia state, Brazil[J].Geological Prospecting Series, 2015, 30(3):392-399. doi: 10.6053/j.issn.1001-1412.2015.03.011

    [8]

    张华, 张玉领, 史新民.河北围场幅1:20万区域化探方法技术讨论[J].物探与化探, 2004, 28(1):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200401008.htm

    Zhang H, Zhang Y L, Shi X M.A discussion on methods and techniques for 1:200000 geochemical exploration in Weichang sheet, Hebei Province[J].Geophysical & Geochemical Exploration, 2004, 28(1):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200401008.htm

    [9]

    魏印涛, 邱成贵, 张斌, 等.区域化探方法试验探讨——以胶东半岛莱阳幅1:20万水系沉积物测量为例[J].山东国土资源, 2015, 31(12):54-57. doi: 10.3969/j.issn.1672-6979.2015.12.021

    Wei Y T, Qiu C G, Zhang B, et al.Study on regional geochemical sampling method-setting stream sediment survey of Laiyang map with the scale of 1:200000 in Jiaodong Peninsula as an example[J].Shandong Land and Resources, 2015, 31(12):54-57. doi: 10.3969/j.issn.1672-6979.2015.12.021

    [10]

    Gong Q J, Deng J, Wang C M, et al.Element behaviors due to rock weathering and its implication to geochemical anomaly recognition:A case study on Linglong biotite granite in Jiaodong Peninsula, China[J].Journal of Geochemical Exploration, 2013, 128:14-24. doi: 10.1016/j.gexplo.2013.01.004

    [11]

    王会峰, 彭立华, 安兴, 等.森林沼泽区区域化探新旧方法技术应用效果对比[J].物探与化探, 2008, 32(5):502-508. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDY200702006.htm

    Wang H F, Peng L H, An X, et al.The preparation of geochemical speciation certified reference materials for main soil types of China[J].Geophysical & Geochemical Exploration, 2008, 32(5):502-508. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDY200702006.htm

    [12]

    Wang X, Xu S, Zhang B, et al. Deep-penetrating geochemistry for sandstone-type uranium deposits in the Turpan-Hami Basin, North-Western China[J].Applied Geochemistry, 2011, 26(12):2238-2246. doi: 10.1016/j.apgeochem.2011.08.006

    [13]

    徐永利, 郑有业, 徐广东, 等.青海省大柴旦双口山荒漠戈壁景观区1:5万水系沉积物测量采样方法技术研究[J].西北地质, 2012, 45(1):307-316. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201201047.htm

    Xu Y L, Zheng Y Y, Xu G D, et al.Study on sampling methods for 1:50000 stream sediment geochemical survey in the Go-bi desert landscape area of Shuangkoushan, Dachaidan, Qinghai Province[J].Northwestern Geology, 2012, 45(1):307-316. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201201047.htm

    [14]

    康明, 岑况, 吴悦斌, 等.北山戈壁荒漠景观1:5万地球化学测量方法研究[J].地质与勘探, 2004, 40(3):64-68. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403014.htm

    Kang M, Cen K, Wu Y B, et al.1:50000 geochemical prospecting methods and techniques in GoBi desert landscape in the Beishan area, Northwestern China[J].Geology and Exploration, 2004, 40(3):64-68. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200403014.htm

    [15]

    杨帆, 孔牧, 刘华忠, 等.北山干旱荒漠戈壁残山景观1:5万地球化学勘查方法技术的选择[J].物探与化探, 2011, 35(3):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201103006.htm

    Yang F, Kong M, Liu H Z, et al.The choice of methods and technologies for 1:50000 geochemical exploration in Beishan arid desert GoBi relict mountain landscape[J]. Geophysical & Geochemical Exploration, 2011, 35(3):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201103006.htm

    [16]

    冯治汉, 徐家乐.甘肃省景观地球化学特征及区域化探工作方法研究[J].地质与勘探, 2003, 39(6):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200306001.htm

    Feng Z H, Xu J L.Landscape geochemistry features and working methods of regional geochemistry in Gansu Province[J]. Geology and Exploration, 2003, 39(6):2-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200306001.htm

    [17]

    程志中, 王学求, 谢学锦, 等.黑龙江森林沼泽区超低密度地球化学调查采样介质对比[J].物探与化探, 2005, 29(3):201-204. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200503003.htm

    Cheng Z Z, Wang X Q, Xie X J, et al.A comparison of sampling media in ultra-low density geochemical investigation in the forest-swamp area of Heilongjiang Province[J].Geophysical & Geochemical Exploration, 2005, 29(3):201-204. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200503003.htm

    [18]

    贾先巧, 张丽春, 任利民, 等.矿区及外围土壤地球化学测量采样深度与粒度方法试验——以江西省九江市城门山铜矿为例[J].地质通报, 2009, 28(7):963-969. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200907018.htm

    Jia X Q, Zhang C L, Ren L M, et al.Examination of sampling depth and granularity on geochemical soil survey at mining and external areas—Taking the Chengmenshan copper mine, Jiujiang city, Jiangxi Province, China as an Example[J].Geological Bulletin of China, 2009, 28(7):963-969. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200907018.htm

    [19]

    席明杰, 马生明, 赵波, 等.西藏羊八井—青龙地区水系沉积物元素背景值及分布特征[J].岩矿测试, 2014, 33(1):81-89. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20140115&flag=1

    Xi M J, Ma S M, Zhao B, et al.The background values and distribution characteristics of stream sediments in the Yangbajain—Qinglong region, Tibet[J].Rock and Mineral Analysis, 2014, 33(1):81-89. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20140115&flag=1

    [20]

    周向辉, 侯光久.大兴安岭水系沉积物采样介质粒级段对圈定元素异常的影响[J].资源环境与工程, 2008, 22(6):569-576. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200806004.htm

    Zhou X H, Hou G J.Effect of different mesh of stream sediment sampling media in Daxinganling to delineate element anomalies[J].Resources Environment & Engineering, 2008, 22(6):569-576. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200806004.htm

    [21]

    Rose A W, Hawkes H E, Webb J S.Geochemistry in Mineral Exploration[M].London:Academic Press, 1979.

    [22]

    Xu R T.The study on geochemical technology for mineral exploration in the Arid Gobi desert terrain, Beishan mountains area, Gansu[R].Beijing:China University of Geosciences, 2006.

    [23]

    陈富荣.安徽宁墩地区金钨地球化学异常找矿远景[J].物探与化探, 2010, 34(2):150-153. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002006.htm

    Chen F R.Ore-search prospects of gold and tungsten geochemical anomalies in Ningdun area, Anhui Province[J].Geophysical & Geochemical Exploration, 2010, 34(2):150-153. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201002006.htm

    [24]

    佟依坤, 龚庆杰, 韩东昱, 等.化探技术之成矿指示元素组合研究——以豫西牛头沟金矿为例[J].地质与勘探, 2014, 50(4):712-724. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201404011.htm

    Tong Y K, Gong Q J, Han D Y, et al.Indicator element association in geochemical surveys:A case study of the Niutougou gold deposit in Western Henan Province[J].Geology and Exploration, 2014, 50(4):712-724. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201404011.htm

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1744
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2016-10-08
修回日期:  2017-03-13
录用日期:  2017-03-20

目录