中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞

周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024
引用本文: 周慧君, 帅琴, 黄云杰, 汤志勇, 曾梦. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024
Hui-jun ZHOU, Qin SHUAI, Yun-jie HUANG, Zhi-yong TANG, Meng ZENG. On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024
Citation: Hui-jun ZHOU, Qin SHUAI, Yun-jie HUANG, Zhi-yong TANG, Meng ZENG. On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480. doi: 10.15898/j.cnki.11-2131/td.201703010024

双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞

  • 基金项目:
    中国地质调查局地质调查项目(12120113014300);国土资源公益性行业专项项目(201211003)
详细信息
    作者简介: 周慧君, 硕士研究生, 化学工程与技术专业。E-mail:867166585@qq.com
    通讯作者: 帅琴, 教授, 主要从事原子光谱分析、色谱分析及其联用技术研究。E-mail:shuaiqin@cug.edu.cn
  • 中图分类号: O657.31;O614.243

On-line Determination of Hg (Ⅱ) in Geological Samples by AFS after Solid Phase Extraction Using Dithizone-modified Graphene Oxide/Chitosan Composite Microspheres

More Information
  • 汞可以指示矿床或矿化存在,是一种重要的地质过程示踪元素,因此汞的测定是十分重要的。由于汞在地质矿床中丰度较低,直接测定存在困难,需要进行预分离富集处理。目前采用的分离富集手段大多数是离线,自动化程度较低。本文将合成的双硫腙改性氧化石墨烯/壳聚糖复合微球制成固相萃取小柱,考察了溶液pH、吸附剂种类和体积对汞的吸附效果的影响,优化了固相萃取在线采样/洗脱时间和速率对汞的吸附/洗脱效果的影响,建立了固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞的分析方法。结果表明:溶液pH=3.0时,以5 mL/min的采样速率进样5 min,汞的吸附率大于90%;用20 g/L硫脲-1.0 mol/L硝酸混合溶液作洗脱液,以1 mL/min的洗脱速度洗脱1 min,洗脱率大于95%。汞含量在0.050~5.0 μg/L范围内线性关系良好,富集因子为22,检出限为0.0019 μg/L。采用本方法测定了土壤和沉积物国家标准物质样品,Hg的测定值与参考值的相对误差小于±13%。与离线分析相比,本方法具有灵敏度高、操作简单快速等特点。
  • 加载中
  • 图 1  固相萃取在线富集-原子荧光测定地质样品中痕量汞示意图

    Figure 1. 

    图 2  氧化石墨烯/壳聚糖复合微球(GO/CS)和双硫腙改性氧化石墨烯/壳聚糖复合微球(DZ-GO/CS)红外光谱图

    Figure 2. 

    图 3  双硫腙改性氧化石墨烯/壳聚糖复合微球的光学显微形貌图

    Figure 3. 

    图 4  GO/CS(a)和DZ-GO/CS(b)吸附实际样品后的能谱(EDS)分析

    Figure 4. 

    表 1  不同洗脱剂对汞的洗脱效果

    Table 1.  Elution effect of different elution agents on mercury

    洗脱剂 汞的洗脱率(%)
    2.0 mol/L硝酸 2.25
    50 g/L硫脲 10.34
    50 g/L硫脲-0.5 mol/L盐酸 47.63
    50 g/L硫脲-1.5 mol/L盐酸 38.05
    20 g/L硫脲-1.0 mol/L硝酸 91.25
    40 g/L硫脲-1.0 mol/L硝酸 40.05
    50 g/L硫脲-1.0 mol/L硝酸 60.70
    下载: 导出CSV

    表 2  实际地质样品中汞含量的分析结果

    Table 2.  Analytical results of mercury in geological samples

    标准物质编号 Hg含量的参考值(μg/g) Hg含量的测量值(μg/g) 相对误差(%)
    GBW07447 0.015 0.015 0.0
    GBW07449 0.008 0.009 12.5
    GBW07450 0.020 0.018 -10.0
    GBW07303 0.050 0.046 -8.0
    GBW07305 0.100 0.090 -10.0
    下载: 导出CSV
  • [1]

    赵博, 张德会, 于蕾, 等.从克拉克值到元素的地球化学性质或行为再到成矿作用[J].矿物岩石地球化学通报, 2014(2):252-261. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm

    Zhao B, Zhang D H, Yu L, et al.From clark values to elemental geochemical properties or behaviors, and to mineralization[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014(2):252-261. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201402015.htm

    [2]

    李惠, 张国义, 禹斌, 等.构造叠加晕找盲矿法及其在矿山深部找矿效果[J].地学前缘, 2010, 17(1):287-293. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm

    Li H, Zhang G Y, Yu B, et al.Structural superimposed halos method for prospecting blind ore-body in the deep of ore districts[J].Earth Science Frontiers, 2010, 17(1):287-293. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001028.htm

    [3]

    迟清华.汞在地壳、岩石和疏松沉积物中的分布[J].地球化学, 2004, 33(6):641-648. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406012.htm

    Chi Q H.Abundance of mercury in crust, rocks and loose sediments[J].Geochimica, 2004, 33(6):641-648. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200406012.htm

    [4]

    陈静生.环境地球化学[M].北京:海洋出版社, 1990:1-69.

    Chen J S.Environmental Geochemistry[M].Beijing:Ocean Press House, 1990:1-69.

    [5]

    Hu B, He M, Chen B.Nanometer-sized materials for solid-phase extraction of trace elements[J].Analytical and Bioanalytical Chemistry, 2015, 407(10):2685-2710. doi: 10.1007/s00216-014-8429-9

    [6]

    Seidi S, Yamini Y, Rezazadeh M.Electrochemically assi-sted solid based extraction techniques:A review[J].Talanta, 2015, 132(10):339-353. http://www.academia.edu/15115147/Electrochemically_assisted_solid_based_extraction_techniques_A_review

    [7]

    黄运瑞, 周庆祥.固相萃取吸附剂的研究进展[J].冶金分析, 2012, 32(12):22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004

    Huang Y R, Zhou Q X.Research progress of solid phase extraction and sorbent[J].Metallurgical Analysis, 2012, 32(12):22-28. doi: 10.3969/j.issn.1000-7571.2012.12.004

    [8]

    蔡述伟.黄原酯棉富集-冷原子吸收法测定水和地质样品中的痕量汞[J].岩矿测试, 1992, 11(4):348-349. http://www.ykcs.ac.cn/article/id/ykcs_19920499

    Cai S W.Derermination of trace mercury in water and geological samples by cold-AAS after enrichment with xanthate cotton[J].Rock and Mineral Analysis, 1992, 11(4):348-349. http://www.ykcs.ac.cn/article/id/ykcs_19920499

    [9]

    陈焱, 李勇, 李长青.巯基棉分离富集-原子荧光光谱法测定重晶石中痕量汞[J].岩矿测试, 2008, 27(6):431-434. http://www.ykcs.ac.cn/article/id/ykcs_20080608

    Chen Y, Li Y, Li C Q.Separation and enrichment with sulfhydryl cotton-atomic fluorescence spectrometric determination of trace mercury in barit[J].Rock and Mineral Analysis, 2008, 27(6):431-434. http://www.ykcs.ac.cn/article/id/ykcs_20080608

    [10]

    Shakerian F, Haji S A, Dadfarnia S, et al.Hydride gene-ration atomic absorption spectrometric determination of bismuth after separation and preconcentration with modified alumina[J].Journal of Separation Science, 2015, 38(4):677-682. doi: 10.1002/jssc.201401050

    [11]

    吴芳华.固相萃取新技术研究进展[J].分析测试技术与仪器, 2012(2):114-120. http://youxian.cnki.com.cn/yxdetail.aspx?filename=BQGB20161107000&dbname=CAPJ2015

    Wu F H.Study of new technology on solid phase extraction[J].Analytical Testing Techniques and Instruments, 2012(2):114-120. http://youxian.cnki.com.cn/yxdetail.aspx?filename=BQGB20161107000&dbname=CAPJ2015

    [12]

    Liu Q, Shi J, Jiang G.Application of graphene in analy-tical sample preparation[J].TrAC Trends in Analytical Chemistry, 2012, 37:1-11. doi: 10.1016/j.trac.2012.03.011

    [13]

    Yu J G, Yu L Y, Yang H, et al.Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions[J].Science of the Total Environment, 2015, 502:70-79. doi: 10.1016/j.scitotenv.2014.08.077

    [14]

    Chen Y, Chen L, Bai H, et al.Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J].Journal of Materials Chemistry A, 2013, 1(6):1992-2001. doi: 10.1039/C2TA00406B

    [15]

    Hsu S H, Wang M C, Lin J J.Biocompatibility and anti-microbial evaluation of montmorillonite/chitosan nanocomposites[J].Applied Clay Science, 2012, 56(1):53-62. http://www.sciencedirect.com/science/article/pii/S0169131711003887

    [16]

    Tang C Y, Chen N X, Zhang Q.Preparation and proper-ties of chitosan nanocomposites with nanofillers of different dimensions[J].Polymer Degradation & Stability, 2009, 94(1):124-131. http://linkinghub.elsevier.com/retrieve/pii/S0141391008003066

    [17]

    Yang X M, Tu Y F, Li L.Well-dispersed chitosan/gra-phene oxide nanocomposites[J].Applied Materials & Interfaces, 2010, 2(6):1707-1713. http://pubs.acs.org/doi/pdf/10.1021/am100222m

    [18]

    Travlou N A, Kyzas G Z, Lazaridis N K, et al.Graphite oxide/chitosan composite for reactive dye removal[J].Chemical Engineering Journal, 2013, 217:256-265. doi: 10.1016/j.cej.2012.12.008

    [19]

    Djerahov L, Vasileva P, Karadjova I, et al.Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(Ⅲ), Cd(Ⅱ), Cu(Ⅱ), Co(Ⅱ), Fe(Ⅲ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ)[J].Carbohydrate Polymers, 2016, 147:45-52. doi: 10.1016/j.carbpol.2016.03.080

    [20]

    Chandio Z A, Talpur F N, Khan H, et al.On-line pre-concentration and determination of ultra trace amounts of mercury using surfactant coated alumina modified by dithizone with cold vapor atomic absorption spectrometry[J].RSC Advances, 2014, 4(7):3326-3331. doi: 10.1039/C3RA43712D

    [21]

    Carasek E, Tonjes J W, Scharf M.A new method of mic-rovolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry[J].Talanta, 2002, 56(1):185-191. doi: 10.1016/S0039-9140(01)00556-2

    [22]

    Peng Q, Liu M, Zheng J, et al.Adsorption of dyes in aqu-eous solutions by chitosan-halloysite nanotubes composite hydrogel beads[J].Microporous and Mesoporous Materials, 2015, 201:190-201. doi: 10.1016/j.micromeso.2014.09.003

    [23]

    Liu L, Li C, Bao C, et al.Preparation and characteriza-tion of chitosan/graphene oxide composites for the adsorption of Au(Ⅲ) and Pd(Ⅱ)[J].Talanta, 2012, 93(2):350-357. http://www.sciencedirect.com/science/article/pii/S1876107016303984

    [24]

    Chen J, Yao B, Li C, et al.An improved Hummers me-thod for eco-friendly synthesis of graphene oxide[J].Carbon, 2013, 64:225-229. doi: 10.1016/j.carbon.2013.07.055

    [25]

    Travlou N A, Kyzas G Z, Lazaridis N K, et al.Func-tionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent[J].Langmuir, 2013, 29(5):1657-1668. doi: 10.1021/la304696y

    [26]

    Kyzas G Z, Travlou N A, Deliyanni E A.The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions[J].Colloids & Surfaces B Biointerfaces, 2014, 113(1):467. https://www.ncbi.nlm.nih.gov/pubmed/23973000

  • 加载中

(4)

(2)

计量
  • 文章访问数:  4661
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2017-03-01
修回日期:  2017-05-09
录用日期:  2017-06-02

目录