Determination of Rare Earth Elements in Peridotite by Inductively Coupled Plasma-Mass Spectrometry after Alkali Fusion and Mg(OH)2 and Fe(OH)3 Coprecipitation
-
摘要: 橄榄岩的稀土元素特征对研究岩石成因、岩浆作用过程具有重要的意义。橄榄岩中的稀土元素含量低(∑REEs=0.1~1 μg/g),且存在镁、铁等基体元素的干扰,难以准确测定。前人通常利用高压密闭酸溶-离子交换法处理样品,将稀土元素与镁、铁等基体元素分离,达到了预富集的效果,但耗时长(消解时间接近7天)、操作步骤繁多,不利于大批量样品的分析。本文建立了过氧化钠碱熔、Fe(OH)3和Mg(OH)2共沉淀的样品前处理方法,通过离心使溶液与沉淀分离,从而实现了稀土元素与镁、铁等基体元素的快速分离,再采用电感耦合等离子体质谱法测定稀土元素含量。方法检出限为0.17~2.18 ng/g,加标回收率为95%~101%,国家标准物质(GBW07101和GBW07102)的测定值与标准值的相对误差小于20%,相对标准偏差(RSD,n=11)小于10%。该方法既减少了分步沉淀过程中带来的损失,也缩短了分析周期(消解时间仅需一天),操作简便,分析效率高。
-
关键词:
- 橄榄岩 /
- 稀土元素 /
- 碱熔 /
- 共沉淀 /
- 电感耦合等离子体质谱法
Abstract: Characteristics of REEs in peridotite is significant for studying petrogenesis and magmatic processes. Due to the serious interference of matrix elements such as Mg and Fe, it is difficult to determine the low contents of REEs in peridotite (∑REEs=0.1-1 μg/g) accurately. The previous method was sealed acid digestion at high pressure combined with ion-exchange which was used to separate REEs and matrix elements of Mg and Fe and preconcentrate REEs. However, due to the long digesting time (almost 7 days) and various operating steps, it is not conducive to the analysis of lots of samples. In this study, the sample was decomposed by Na2O2 alkali fusion, and coprecipitated with Mg(OH)2 and Fe(OH)3. Then, the solution was separated from precipitation by centrifuging for a rapid separation of REEs from matrix elements of Mg and Fe. Contents of REEs are determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). For this method, the detection limits of REEs range from 0.17 to 2.18 ng/g, and the recoveries are 95%-101%. This method was used to analyze the national standard reference materials GBW07101 and GBW07102. The relative error between analytical results and recommended values is less than 20%, and the relative standard deviation (RSD, n=11) is less than 10%. The method not only reduces the losses caused by stepped precipitation, but also shortens the analysis period (only one day for sample-digestion). It is simple to operate, and efficient in analysis. -
-
表 1 稀土元素同位素选择
Table 1. Selection ofrare earth element isotopes
稀土元素 测量同位素 镧 139 铈 140 镨 141 钕 146 钐 147 铕 151 钆 158 铽 159 镝 163 钬 165 铒 166 铥 169 镱 172 镥 175 钇 89 钇 89 表 2 稀土元素的检出限
Table 2. The detection limits of rare earth elements
稀土元素 本文检出限(ng/g) 前人检出限(ng/g) 镧 1.75 1.87 铈 2.18 2.02 镨 0.52 0.55 钕 1.57 1.35 钐 0.31 0.25 铕 0.17 0.09 钆 0.35 0.22 铽 0.22 0.09 镝 0.59 0.47 钬 0.12 0.09 铒 0.24 0.17 铥 0.17 0.09 镱 0.29 0.31 镥 0.17 0.09 钇 0.64 0.42 表 3 稀土元素的回收率
Table 3. Recovery tests of rare earth elements
稀土元素 加入量(ng) 回收量(ng) 回收率(%) 加入量(ng) 回收量(ng) 回收率(%) 镧 50 49.1 98.2 100 98.2 98.2 铈 50 48.4 96.8 100 98.5 98.5 镨 50 48.9 97.8 100 100.7 100.7 钕 50 50.6 101.2 100 99.1 99.1 钐 50 49.2 98.4 100 98.2 98.2 铕 50 48.1 96.2 100 101.4 101.4 钆 50 50.5 101.0 100 97.5 97.5 铽 50 47.6 95.2 100 96.9 96.9 镝 50 48.9 97.8 100 98.8 98.8 钬 50 48.8 97.6 100 101.1 101.1 铒 50 50.4 100.8 100 97.5 97.5 铥 50 48.2 96.4 100 96.2 96.2 镱 50 47.9 95.8 100 96.7 96.7 镥 50 48.0 96.0 100 95.9 95.9 钇 50 47.7 95.4 100 98.4 98.4 表 4 GBW07101和GBW07102中稀土元素的分析结果
Table 4. Analytical results of rare earth elements in GBW07101 and GBW07102
稀土元素 GBW07101 GBW07102 测定值(μg/g) 标准值(μg/g) RSD(%) 相对误差(%) 测定值(μg/g) 标准值(μg/g) RSD(%) 相对误差(%) 镧 0.1900 0.2000 3.21 5.00 0.2000 0.2100 3.72 4.76 铈 0.3600 0.3400 2.74 5.88 0.3800 0.4000 2.50 5.00 镨 0.0410 0.0450 4.11 8.89 0.0430 0.0470 4.65 8.51 钕 0.1700 0.1600 3.89 6.25 0.1600 0.1800 3.14 11.1 钐 0.0220 0.0250 5.34 12.00 0.0260 0.0280 4.22 7.14 铕 0.0047 0.0043 7.11 9.30 0.0054 0.0061 5.47 11.5 钆 0.0220 0.0240 4.99 8.33 0.3000 0.3100 3.80 3.22 铽 0.0025 0.0029 5.97 13.80 0.0025 0.0030 5.74 16.7 镝 0.0180 0.0200 4.08 10.00 0.0190 0.0210 5.41 9.52 钬 0.0044 0.0049 5.27 10.20 0.0038 0.0043 6.14 11.6 铒 0.0130 0.0140 4.33 7.14 0.0130 0.0120 4.94 8.33 铥 0.0026 0.0030 6.12 13.30 0.0024 0.0028 5.61 14.3 镱 0.0220 0.0200 4.88 10.00 0.0110 0.0120 4.03 8.33 镥 0.0037 0.0040 4.52 7.50 0.0024 0.0022 6.42 9.09 钇 0.1300 0.1400 3.93 7.14 0.1300 0.1400 3.48 7.14 表 5 本法与前人分析稀土元素方法的结果对比
Table 5. A comparison of analytical results of rare earth elements determinated by different sample digestion methods
稀土元素 本法测定值(μg/g) 高压密闭酸溶-离子交换树脂富集前处理方法测定值(μg/g) 样品1 样品2 样品3 样品4 样品1 样品2 样品3 样品4 镧 0.1300 0.1700 0.1000 0.2100 0.1200 0.1800 0.1100 0.2000 铈 0.2700 0.3500 0.2100 0.3900 0.2500 0.3400 0.2200 0.4000 镨 0.0300 0.0390 0.0240 0.0430 0.0280 0.038 0.02600 0.0450 钕 0.1100 0.1300 0.0880 0.1500 0.1000 0.1200 0.0900 0.1600 钐 0.0170 0.0220 0.0130 0.0230 0.0150 0.0210 0.0140 0.0240 铕 0.0037 0.0043 0.0026 0.0047 0.0034 0.0045 0.0028 0.0049 钆 0.0170 0.0220 0.0140 0.0270 0.0150 0.0210 0.0150 0.0280 铽 0.0028 0.0036 0.0022 0.0043 0.0025 0.0038 0.0024 0.0045 镝 0.0170 0.0220 0.0140 0.0260 0.0160 0.0230 0.0140 0.0270 钬 0.0038 0.0046 0.0030 0.0055 0.0036 0.0044 0.0032 0.0057 铒 0.0120 0.0140 0.0092 0.0170 0.0110 0.0150 0.0094 0.0170 铥 0.0021 0.0023 0.0014 0.0027 0.0019 0.0025 0.0016 0.0029 镱 0.0150 0.0160 0.0092 0.0180 0.0150 0.0170 0.0095 0.0190 镥 0.0026 0.0025 0.0015 0.0029 0.0024 0.0026 0.0016 0.0031 钇 0.1000 0.1300 0.0920 0.1700 0.1100 0.1200 0.0970 0.1800 -
[1] Han R S, Liu C Q, Emmanuel J M C, et al.REE geochemistry of altered tectonites in the Huize base-metal district, Yunnan, China[J].Geochemistry:Exploration, Environment, Analysis, 2012, 12:127-146. doi: 10.1144/1467-7873/10-MINDEP-053
[2] 李丽君, 王娜.电感耦合等离子体质谱法测定高岭土中的15种稀土元素[J].理化检验(化学分析), 2017, 53(6):689-692. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lhjh201706017&dbname=CJFD&dbcode=CJFQ
Li L J, Wang N.Determination of 15 rare earth elements in kaolin by ICP-MS[J].Physical Testing and Chemistry Analysis Part B (Chemistry Analysis), 2017, 53(6):689-692. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lhjh201706017&dbname=CJFD&dbcode=CJFQ
[3] 付伟, 黄小荣, 杨梦力, 等.超基性岩红土风化壳中REE地球化学:不同气候风化剖面的对比[J].地球科学——中国地质大学学报, 2014, 39(6):716-732. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406007.htm
Fu W, Huang X R, Yang M L, et al.REE geochemistry in the laterite crusts derived from ultramafic rocks:Comparative study of two laterite profiles under different climate condition[J].Earth Science-Journal of China University of Geosciences, 2014, 39(6):716-732. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406007.htm
[4] 李冰, 杨红霞.电感耦合等离子体质谱(ICP-MS)技术在地学研究中的应用[J].地学前缘, 2003, 10(2):367-377. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002089.htm
Li B, Yang H X.Applications of inductively coupled plasma mass spectrometry in earth science[J].Earth Science Frontiers, 2003, 10(2):367-377. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002089.htm
[5] 周国兴, 刘玺祥, 崔德松.碱熔ICP-MS法测定岩石中稀土等28种金属元素[J].质谱学报, 2010, 31(2):120-124. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zpxb201002014&dbname=CJFD&dbcode=CJFQ
Zhou G X, Liu X X, Cui D S.Determination of 28 elements including rare earth elements by ICP-MS in alkali melted rock sample[J].Journal of Chinese Mass Spectrometry Society, 2010, 31(2):120-124. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zpxb201002014&dbname=CJFD&dbcode=CJFQ
[6] 杨小丽, 崔森, 杨梅, 等.碱熔离子交换-电感耦合等离子体质谱法测定多金属矿中痕量稀土元素[J].冶金分析, 2011, 31(3):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201414154.htm
Yang X L, Cui S, Yang M, et al.Determination of rare earth elements in polymetallic ore by inductively coupled plasma mass spectrometry after alkali fusion and ion exchange[J].Metallurgical Analysis, 2011, 31(3):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201414154.htm
[7] 高朋, 杨佳妮, 王秋丽, 等.微波消解电感耦合等离子体质谱法测定土壤中稀土金属元素[J].中国环境监测, 2011, 27(2):68-69. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201102019.htm
Gao P, Yang J N, Wang Q L, et al.Determination of rare earth elements in the soil by the inductively coupled plasma mass spectrometry and microwave digestion[J].Environmental Monitoring in China, 2011, 27(2):68-69. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201102019.htm
[8] 王佩佩, 李霄, 宋伟娇.微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J].分析测试学报, 2016, 35(2):235-240. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700G&dbname=CAPJ2015
Wang P P, Li X, Song W J.Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis, 2016, 35(2):235-240. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700G&dbname=CAPJ2015
[9] 张亚峰, 冯俊, 唐杰, 等.基于五酸溶样体系-ICP-MS同时测定地质样品中稀土等46种元素[J].质谱学报, 2016, 37(2):186-192. doi: 10.7538/zpxb.2016.37.02.0186
Zhang Y F, Feng J, Tang J, et al.Simultaneous determination of 46 species of micro, trace and rare earth elements by ICP-MS based on the system of five-acids dissolution of sample[J].Journal of Chinese Mass Spectrometry Society, 2016, 37(2):186-192. doi: 10.7538/zpxb.2016.37.02.0186
[10] 张楠, 王家松, 吴磊, 等.电感耦合等离子体质谱法测定石榴石中痕量稀土元素[J].广州化工, 2015, 43(19):108-110. doi: 10.3969/j.issn.1001-9677.2015.19.040
Zhang N, Wang J S, Wu L, et al.Determination of rare earth elements in garnet samples by inductively coupled plasma mass spectrometry[J].Guangzhou Chemical Industry, 2015, 43(19):108-110. doi: 10.3969/j.issn.1001-9677.2015.19.040
[11] Nakamura K, Chang Q.Precise determination of ultra-low (sub-ng g-1) level rare earth elements in ultramafic rocks by quadrupole ICP-MS[J].Geostandards and Geoanalytical Research, 2007, 31(3):185-197. doi: 10.1111/ggr.2007.31.issue-3
[12] Bayon G, Barrat J A, Etoubleau J, et al.Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP-MS after Tm addition and alkaline fusion[J].Geostandards and Geoanalytical Research, 2009, 33(1):51-62. doi: 10.1111/ggr.2009.33.issue-1
[13] Ulrich M, Bureau S, Chauvel C, et al.Accurate measure-ment of rare earth elements by ICP-MS after ion-exchange separation:Application to ultra-depleted samples[J].Geostandards and Geoanalytical Research, 2011, 36(1):7-20. http://linkinghub.elsevier.com/retrieve/pii/S0304420303000707
[14] Qi L, Zhou M F, Sun M, et al.Determination of rare earth elements and Y in ultramafic rocks by ICP-MS after preconcentration using Fe(OH)3 and Mg(OH)2 coprecipitation[J].Geostandards and Geoanalytical Research, 2005, 29(1):131-141. doi: 10.1111/ggr.2005.29.issue-1
[15] 王冠, 李华玲, 任静, 等.高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J].岩矿测试, 2013, 32(4):561-567. http://www.ykcs.ac.cn/article/id/38069f63-06ff-42f3-987f-79bf9cdbb629
Wang G, Li H L, Ren J, et al.Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS[J].Rock and Mineral Analysis, 2013, 32(4):561-567. http://www.ykcs.ac.cn/article/id/38069f63-06ff-42f3-987f-79bf9cdbb629
[16] 王初丹, 侯明.电感耦合等离子体质谱法测定地质样品中的稀土、钍元素[J].桂林理工大学学报, 2011, 31(3):454-456. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201103025.htm
Wang C D, Hou M.Determination of rare earth and thorium elements in geochemical samples by inductively coupled plasma mass spectrometry[J].Journal of Guilin University of Technology, 2011, 31(3):454-456. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201103025.htm
[17] 吴磊, 曾江萍, 刘义博, 等.硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素[J].岩矿测试, 2014, 33(1):20-24. http://www.ykcs.ac.cn/article/id/aa2d6e32-3328-43ed-bad2-e295345632ab
Wu L, Zeng J P, Liu Y B, et al.Determination of rare earth elements in fluorite samples by open boric acid dissolution and inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(1):20-24. http://www.ykcs.ac.cn/article/id/aa2d6e32-3328-43ed-bad2-e295345632ab
-