Inter-Laboratory Comparison of Analysis for Hydrogen and Oxygen Stable Isotope Ratios in Water Samples by Laser Absorption Spectroscopy
-
摘要: 激光同位素光谱分析方法是近些年使用较广泛的一种便捷、快速的测试稳定同位素组成的技术,能同时分析出水中δD、δ18O同位素组成,因其操作简单,检测效率高,体积小,野外现场测试携带方便,迅速在环境、地质、生态和能源等领域得到广泛应用,但是该测试分析方法尚没有相应的国家标准,测试结果得不到有效的溯源,在使用过程中缺乏规范和统一。为此,本文通过在全国范围内12家实验室选取8个比对水样(δD值在-189.1‰~-0.4‰内,δ18O值在-24.52‰~0.32‰内),利用激光同位素光谱法测试比对D/H和18O/16O值,探讨激光同位素光谱仪分析水中δD、δ18O值的准确度和精密度。测试结果表明:各个协作实验室数据准确、稳定,方法的重复性和再现性良好;激光光谱法测定的δD精密度为0.4‰(1σ),δ18O精密度为0.05‰(1σ),与传统稳定同位素质谱的精度几乎一致,因此适用于常规水样中δD、δ18O测定,可以开展野外在线实时检测水中氢氧同位素组成。本研究为开展制定激光同位素光谱法测定环境液态水中δD、δ18O同位素组成标准方法的工作推广和应用提供了参考。Abstract: Laser Absorption Spectroscopy technology is a convenient and rapid method for the simultaneous determination of hydrogen and oxygen isotope ratios in environmental water samples. This method has been widely used in the environment, geology, ecology, and energy fields due to its simplicity, high detection efficiency, and portability. However, no national standards are available for this method and thus the analytical results are not traceable effectively. Moreover, the use of this method lacks norms and unity. In order to evaluate the accuracy and precision of the Laser Absorption Spectroscopy method for the determination of δD, δ18O, D/H and 18O/16O values of eight water samples (δD value of within -189.1‰-0.4‰, δ18O value of within -24.52‰-0.32‰), values were determined by 12 laboratories using optical cavity enhanced absorption spectroscopy. Data from each collaboration laboratory is accurate, stable, and reproducible. The precision value of δD is 0.4‰ (1σ) and δ18O is 0.05‰ (1σ), comparable to the traditional mass spectrometry method. Therefore, the method is suitable for the on-line and real-time determination of hydrogen and oxygen isotope ratio in the field. This study provides a reference for the development and application of the standard method for determination of δD and δ18O isotopes in environmental water.
-
-
表 1 测试样品的δD和δ18O参考值
Table 1. The reference hydrogen and oxygen isotope ratios of water sample
样品编号 名称 水样类型 δDV-SMOW(‰) δ18OV-SMOW(‰) 备注 水平1 GBW04401 人工配置 -0.4±1.0 0.32±0.19 国家一级标准 水平2 YHS 人工配置 -12.0±1.0 -1.50±0.20 - 水平3 L4A 人工配置 -50.5±0.5 -7.69±0.10 - 水平4 GBW04402 地表水 -64.8±1.1 -8.79±0.14 国家一级标准 水平5 YYNS 地下水 -72.6±1.0 -10.23±0.10 - 水平6 L3A 人工配置 -96.4±0.5 -13.10±0.10 - 水平7 YXZS 天然水 -134.7±0.5 -17.68±0.10 - 水平8 GBW04403 人工配置 -189.1±1.1 -24.52±0.20 国家一级标准 表 2 激光同位素光谱法协作实验测量的δD和δ18O精密度统计
Table 2. The precision statistics of δD and δ18O obtained from inter-laboratory by Laser Absorption Spectroscopy
统计参数 GBW04401 YHS L4A GBW04402 YYN L3A YXZS GBW04403 δD、δ18O实验室数(p) 12 12 12 12 12 12 12 12 δD参考值(‰) -0.4 -11.9 -50.5 -64.8 -72.6 -96.4 -134.7 -189.1 δD总平均值±1σ(‰) -0.4±0.17 -11.2±0.26 -50.4±0.40 -64.9±0.32 -72.6±0.32 -96.2±0.40 -134.3±0.26 -189.1±0.10 δD实验室偏倚δ 0.030 0.746 0.638 -0.016 -0.066 0.230 0.373 0.033 δD偏倚区间[δ-ASR, δ+ASR] -0.07~0.13 0.59~0.90 0.40~0.87 -0.20~0.17 -0.25~0.12 -0.01~0.47 0.22~0.53 -0.03~0.09 δ18O参考值(‰) 0.32 -1.50 -7.69 -8.79 -10.20 -13.10 -17.66 -24.52 δ18O总平均值±1σ(‰) 0.33±0.02 -1.47±0.03 -7.74±0.03 -8.78±0.05 -10.13±0.03 -13.15±0.05 -17.62±0.04 -24.52±0.01 δ18O方法偏倚δ 0.007 0.132 -0.051 0.010 0.069 -0.051 0.038 0.001 δ18O偏倚区间[δ-ASR, δ+ASR] -0.01~0.02 0.11~0.15 -0.07~-0.03 -0.02~0.04 0.05~0.09 -0.08~-0.02 0.01~0.06 -0.01~0.01 注:表中重复性限r、再现性限R和测量方法偏倚ASR基于95%的置信区间,n=60。 表 3 不同实验室δD和δ18O的测试结果
Table 3. The measurement results of δD and δ18O obtained from different laboratories
样品编号 A B C D E F G H I J K L δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O GBW 04401 -0.2 0.32 -0.4 0.31 -0.3 0.32 -0.2 0.33 -0.3 0.31 -0.3 0.31 -0.4 0.32 -0.4 0.32 -0.4 0.28 -0.7 0.28 -0.8 0.29 -0.4 0.32 -0.2 0.34 -0.4 0.33 -0.2 0.32 -0.3 0.33 -0.2 0.34 -0.2 0.31 -0.4 0.34 -0.4 0.37 -0.4 0.29 -0.7 0.30 -0.8 0.29 -0.4 0.32 -0.1 0.36 -0.3 0.35 -0.2 0.33 -0.3 0.34 -0.3 0.33 -0.2 0.32 -0.3 0.34 -0.4 0.38 -0.3 0.30 -0.7 0.30 -0.8 0.30 -0.4 0.32 -0.2 0.37 -0.3 0.36 -0.2 0.33 -0.3 0.35 -0.2 0.33 -0.2 0.32 -0.3 0.34 -0.4 0.36 -0.4 0.30 -0.7 0.31 -0.7 0.30 -0.4 0.32 -0.3 0.39 -0.3 0.37 -0.3 0.34 -0.2 0.35 -0.2 0.32 -0.2 0.34 -0.3 0.36 -0.4 0.33 -0.4 0.32 -0.6 0.31 -0.7 0.30 -0.4 0.32 YHS -11.0 -1.49 -11.1 -1.47 -11.5 -1.48 -11.5 -1.55 -11.3 -1.47 -11.1 -1.51 -11.6 -1.50 -11.5 -1.52 -11.5 -1.44 -11.3 -1.51 -10.8 -1.42 -11.2 -1.44 -11.0 -1.49 -11.1 -1.48 -11.3 -1.47 -11.4 -1.54 -11.3 -1.46 -11.0 -1.49 -11.6 -1.49 -11.4 -1.50 -11.8 -1.44 -11.2 -1.51 -10.7 -1.42 -11.0 -1.46 -10.9 -1.48 -11.0 -1.51 -11.4 -1.46 -11.3 -1.50 -11.3 -1.48 -11.0 -1.47 -11.3 -1.47 -11.4 -1.50 -11.6 -1.44 -11.1 -1.50 -10.6 -1.41 -11.0 -1.44 -10.9 -1.47 -10.9 -1.47 -11.2 -1.46 -11.2 -1.49 -11.4 -1.46 -11.0 -1.47 -11.2 -1.45 -11.3 -1.49 -11.4 -1.42 -11.1 -1.48 -10.6 -1.41 -10.9 -1.44 -10.7 -1.46 -10.9 -1.46 -11.2 -1.44 -11.2 -1.49 -11.4 -1.44 -10.9 -1.43 -11.2 -1.43 -11.1 -1.48 -11.3 -1.40 -11.0 -1.48 -10.6 -1.40 -11.1 -1.47 L4A -50.7 -7.72 -50.6 -7.76 -50.7 -7.78 -50.6 -7.80 -50.8 -7.77 -50.5 -7.77 -50.6 -7.79 -50.6 -7.77 -50.8 -7.75 -49.8 -7.72 -49.7 -7.71 -50.4 -7.75 -50.9 -7.80 -50.5 -7.74 -50.7 -7.78 -50.4 -7.78 -50.8 -7.75 -50.5 -7.76 -50.4 -7.76 -50.4 -7.76 -50.6 -7.70 -49.7 -7.71 -49.7 -7.69 -50.1 -7.75 -50.7 -7.72 -50.5 -7.76 -50.6 -7.77 -50.4 -7.72 -50.8 -7.78 -50.5 -7.74 -50.3 -7.76 -50.3 -7.76 -50.7 -7.68 -49.6 -7.71 -49.6 -7.69 -50.0 -7.73 -50.6 -7.70 -50.4 -7.74 -50.7 -7.75 -50.8 -7.72 -50.8 -7.78 -50.5 -7.73 -50.2 -7.75 -50.3 -7.75 -50.5 -7.76 -49.6 -7.68 -49.5 -7.68 -50.0 -7.70 -50.5 -7.78 -50.3 -7.79 -50.8 -7.75 -50.7 -7.70 -50.7 -7.75 -50.3 -7.73 -50.1 -7.74 -50.6 -7.74 -50.5 -7.74 -49.5 -7.68 -49.5 -7.68 -50.0 -7.73 GBW 04402 -65.1 -8.79 -64.9 -8.80 -65.0 -8.82 -65.1 -8.84 -65.2 -8.77 -65.1 -8.84 -65.0 -8.88 -65.1 -8.77 -64.9 -8.70 -64.5 -8.77 -64.3 -8.76 -64.5 -8.77 -65.1 -8.87 -64.9 -8.77 -65.0 -8.82 -65.0 -8.83 -65.0 -8.81 -65.1 -8.81 -64.9 -8.88 -65.1 -8.75 -64.8 -8.69 -64.4 -8.77 -64.3 -8.75 -64.3 -8.77 -65.2 -8.81 -64.8 -8.77 -65.1 -8.81 -65.0 -8.83 -65.3 -8.82 -65.1 -8.80 -64.9 -8.84 -65.1 -8.74 -64.8 -8.69 -64.4 -8.76 -64.3 -8.74 -64.3 -8.77 -65.2 -8.81 -64.8 -8.75 -65.0 -8.79 -65.0 -8.82 -65.0 -8.79 -65.0 -8.80 -64.9 -8.83 -64.9 -8.73 -64.8 -8.67 -64.4 -8.75 -64.2 -8.74 -64.2 -8.76 -65.0 -8.79 -64.7 -8.74 -65.0 -8.78 -65.0 -8.81 -65.2 -8.82 -65.0 -8.77 -64.7 -8.81 -64.9 -8.73 -64.7 -8.66 -64.4 -8.73 -64.2 -8.74 -64.3 -8.77 YYN -72.8 -10.18 -72.7 -10.17 -73.1 -10.15 -73.1 -10.11 -72.8 -10.13 -72.8 -10.16 -72.8 -10.21 -72.7 -10.16 -72.3 -10.10 -72.3 -10.13 -72.1 -10.09 -72.6 -10.13 -72.9 -10.19 -72.7 -10.15 -72.9 -10.14 -73.1 -10.18 -73.0 -10.15 -72.8 -10.14 -72.6 -10.20 -72.6 -10.16 -72.5 -10.10 -72.2 -10.13 -72.0 -10.09 -72.3 -10.11 -72.9 -10.14 -72.6 -10.14 -72.9 -10.14 -72.9 -10.14 -72.7 -10.14 -72.8 -10.13 -72.6 -10.19 -72.3 -10.12 -72.7 -10.10 -72.1 -10.12 -72.0 -10.08 -72.2 -10.11 -72.8 -10.13 -72.4 -10.11 -72.8 -10.13 -72.9 -10.13 -72.9 -10.14 -72.8 -10.12 -72.4 -10.18 -72.5 -10.12 -72.6 -10.09 -72.1 -10.12 -72.0 -10.07 -72.3 -10.10 -72.7 -10.13 -72.4 -10.10 -72.9 -10.13 -72.9 -10.12 -72.5 -10.13 -72.8 -10.11 -72.4 -10.18 -72.4 -10.12 -72.8 -10.07 -72.1 -10.11 -72.0 -10.06 -72.2 -10.12 L3A -96.4 -13.25 -96.3 -13.20 -96.4 -13.18 -96.3 -13.21 -96.4 -13.17 -95.9 -13.15 -96.4 -13.13 -96.8 -13.08 -96.1 -13.07 -95.5 -13.12 -95.9 -13.17 -96.1 -13.21 -96.3 -13.23 -96.3 -13.18 -96.4 -13.17 -96.1 -13.20 -96.8 -13.18 -95.9 -13.15 -96.4 -13.12 -96.7 -13.18 -96.3 -13.12 -95.4 -13.12 -95.8 -13.16 -95.9 -13.22 -96.4 -13.19 -96.3 -13.18 -96.5 -13.15 -96.5 -13.18 -96.8 -13.13 -95.8 -13.12 -96.3 -13.11 -96.5 -13.12 -96.2 -13.21 -95.3 -13.10 -95.8 -13.13 -95.8 -13.21 -96.4 -13.17 -96.2 -13.16 -96.7 -13.13 -96.4 -13.17 -96.7 -13.15 -95.8 -13.12 -96.2 -13.08 -96.5 -13.11 -96.2 -13.11 -95.3 -13.19 -95.7 -13.13 -95.7 -13.21 -96.3 -13.14 -96.2 -13.15 -96.6 -13.11 -96.4 -13.16 -96.5 -13.11 -95.8 -13.11 -96.2 -13.06 -96.4 -13.10 -96.7 -13.20 -95.3 -13.15 -95.3 -13.02 -95.9 -13.21 YXZS -134.5 -17.70 -134.6 -17.72 -134.5 -17.62 -134.7 -17.66 -134.4 -17.63 -134.6 -17.63 -134.5 -17.71 -134.0 -17.69 -134.3 -17.59 -134.5 -17.65 -134.4 -17.62 -134.2 -17.59 -134.6 -17.65 -134.5 -17.70 -134.5 -17.60 -134.6 -17.65 -134.7 -17.68 -134.6 -17.62 -134.4 -17.68 -133.8 -17.65 -134.3 -17.57 -134.3 -17.64 -134.4 -17.60 -134.0 -17.59 -134.5 -17.65 -134.5 -17.66 -134.7 -17.60 -134.5 -17.63 -134.2 -17.65 -134.6 -17.61 -134.3 -17.68 -133.8 -17.65 -134.4 -17.57 -134.3 -17.64 -134.4 -17.60 -133.9 -17.58 -134.4 -17.62 -134.4 -17.60 -134.6 -17.58 -134.5 -17.59 -134.6 -17.65 -134.3 -17.61 -134.2 -17.65 -133.8 -17.62 -134.0 -17.56 -134.3 -17.63 -134.4 -17.60 -133.9 -17.57 -134.4 -17.61 -134.4 -17.60 -134.6 -17.55 -134.1 -17.56 -134.5 -17.64 -134.3 -17.56 -134.1 -17.58 -133.7 -17.58 -133.9 -17.56 -134.3 -17.63 -134.3 -17.59 -133.9 -17.59 GBW 04403 -189.0 -24.52 -189.1 -24.52 -189.1 -24.52 -189.0 -24.51 -188.9 -24.52 -189.0 -24.53 -189.1 -24.52 -189.1 -24.50 -189.1 -24.55 -189.3 -24.54 -189.3 -24.55 -189.1 -24.52 -189.0 -24.53 -189.1 -24.52 -189.0 -24.52 -189.0 -24.51 -189.0 -24.52 -189.0 -24.52 -189.1 -24.52 -189.0 -24.53 -189.1 -24.54 -189.3 -24.53 -189.3 -24.54 -189.0 -24.52 -189.0 -24.51 -189.1 -24.52 -189.0 -24.52 -189.0 -24.51 -189.0 -24.51 -189.0 -24.51 -189.1 -24.51 -188.9 -24.52 -189.1 -24.54 -189.2 -24.53 -189.3 -24.54 -189.0 -24.52 -189.0 -24.50 -189.1 -24.50 -189.0 -24.52 -189.0 -24.51 -189.0 -24.52 -189.0 -24.51 -189.0 -24.50 -188.9 -24.51 -189.1 -24.54 -189.2 -24.53 -189.3 -24.53 -189.0 -24.51 -189.0 -24.50 -189.1 -24.50 -189.0 -24.51 -189.0 -24.50 -189.0 -24.52 -189.0 -24.51 -189.0 -24.50 -188.9 -24.50 -189.2 -24.53 -189.2 -24.53 -189.2 -24.53 -189.0 -24.51 注:测试结果单位均为‰,所报数据均为相对于国际标准V-SMOW的比值。 -
[1] 杨会, 王华, 应启和, 等.不同检测方法对氢氧同位素分馏的影响[J].岩矿测试, 2012, 31(2):225-228. http://www.ykcs.ac.cn/article/id/ykcs_20120205
Yang H, Wang H, Ying Q H, et al.The impact of hydrogen and oxygen isotope mass fractionation for different detection methods[J].Rock and Mineral Analysis, 2012, 31(2):225-228. http://www.ykcs.ac.cn/article/id/ykcs_20120205
[2] 刘运德, 甘义群, 余婷婷, 等.微量水氢氧同位素在线同时测试技术——热转换元素分析+同位素比质谱法[J].岩矿测试, 2010, 29(6):643-647. http://www.ykcs.ac.cn/article/id/ykcs_20100603
Liu Y D, Gan Y Q, Yu T T, et al.Online simultaneous determination of δD and δ18O in micro-liter water samples by thermal conversion/elemental analysis-isotope ratio mass spectrometry[J].Rock and Mineral Analysis, 2010, 29(6):643-647. http://www.ykcs.ac.cn/article/id/ykcs_20100603
[3] 张琳, 陈宗宇, 刘福亮, 等.水中氢氧同位素不同分析方法的对比[J].岩矿测试, 2011, 30(2):160-163. http://www.ykcs.ac.cn/article/id/ykcs_20110208
Zhang L, Cheng Z Y, Liu F L, et al.Study on metheds for hydrogen and oxygen isotope analysis of water samples[J].Rock and Mineral Analysis, 2011, 30(2):160-163. http://www.ykcs.ac.cn/article/id/ykcs_20110208
[4] 石晓, 刘汉彬, 张佳, 等.激光光谱技术在稳定同位素组成分析中的应用现状[J].世界核地质科学, 2016, 33(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201604009.htm
Shi X, Liu H B, Zhang J, et al.Laser spectrometry for stable isotope analysis and its application status[J].World Nuclear Geoscience, 2016, 33(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201604009.htm
[5] 柳景峰, 效存德, 丁明虎, 等.南极科考断面水汽同位素观测与模拟及其反映的水循环信息[J].冰川冻土, 2014, 36(6):1440-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406012.htm
Liu J F, Xiao C D, Ding M H, et al.Observing and modeling the atmospheric water vapor isotopes in south hemisphere and their implication of water cycle[J].Journal of Glaciology and Geocryology, 2014, 36(6):1440-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406012.htm
[6] Gupta P, Noone D, Galewsky J, et al.Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology[J].Rapid Communications in Mass Spectrometry, 2009(23):2534-2542. http://onlinelibrary.wiley.com/doi/10.1002/rcm.4100/abstract
[7] 刘文茹, 彭新华, 沈业杰, 等.激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J].生态学杂志, 2013, 32(5):1181-1186. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305015.htm
Liu W R, Peng X H, Shen Y J, et al.Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections[J].Chinese Journal of Ecology, 2013, 32(5):1181-1186. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305015.htm
[8] Natalie M, Schultz T J G X.Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J].Rapid Communications in Mass Spectrometry, 2011(25):3360-3368. http://onlinelibrary.wiley.com/doi/10.1002/rcm.5236/references
[9] Geldern R V, Barth J A C.Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS)[J].Limnology and Oceanography, 2012(10):1024-1036. http://onlinelibrary.wiley.com/doi/10.4319/lom.2012.10.1024/epdf
[10] Maselli O J, Fritzsche D, Layman L, et al.Comparison of water isotope-ratio determinations using two cavity ring-down instruments and classical mass spectrometry in continuous ice-core analysis[J].Isotopes in Environmental & Health Studies, 2013, 49(3):387-398. https://www.ncbi.nlm.nih.gov/pubmed/23713832?format=text
[11] Gaj M, Beyer M, Koeniger P, et al.In-situ unsaturated zone stable water isotope (2H and 18O) measurements in semi-arid environments using tunable off-axis integrated cavity output spectroscopy[J].Hydrology and Earth System Sciences, 2015(12):6115-6149. http://unam-na.academia.edu/Departments/Geology/Documents?page=5
[12] 赵国琴, 李小雁, 吴华武, 等.青海湖流域具鳞水柏枝植物水分利用氢同位素示踪研究[J].植物生态学报, 2013, 37(12):1091-1100. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201312003.htm
Zhao G Q, Li X Y, Wu H W, et al.Study on plant water use in myricaria squamosa with stable hydrogen isotope tracer in Qinghai lake basin[J].Chinese Journal of Plant Ecology, 2013, 37(12):1091-1100. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201312003.htm
[13] Klaus J, McDonnell J J, Jackson C R, et al.Where does streamwater come from in low relief forested watersheds? A dual isotope approach[J].Hydrology and Earth System Sciences, 2014(11):2613-2638. https://www.hydrol-earth-syst-sci.net/19/125/2015/hess-19-125-2015-metrics.html
[14] 靳静静, 李俊超, 司炳成.激光水稳定性同位素分析仪测定矿泉水中的δ2H、δ18O和δ17O[J].分析仪器, 2016(6):33-36. http://d.wanfangdata.com.cn/Periodical/fxyq201606014
Jin J J, Li J C, Si B C, et al.Determination of δ2H, δ18O and δ17O in mineral water by laser water stable isotopes analyzer[J].Analytical Instrumentation, 2016(6):33-36. http://d.wanfangdata.com.cn/Periodical/fxyq201606014
[15] Grady S P O, Enright L E, Barnette J E, et al.Accuracy and precision of a laser-spectroscopy approach to the analysis of δ2H and δ18O in human urine[J].Isotopes in Environmental and Health Studies, 2010, 46(4):476-483. doi: 10.1080/10256016.2010.536229
[16] Sturm P, Knohl A.Water vapor δ2H and δ18O measurements using off-axis integrated cavity output spectroscopy[J].Atmospheric Measurement Techniques, 2010(3):67-77. http://jxb.oxfordjournals.org/external-ref?access_num=10.5194/amt-3-67-2010&link_type=DOI
[17] Volkmann T H M, Kühnhammer K, Herbstritt B, et al.A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy[J].Plant Cell & Environment, 2016, 39(9):2055-2063. http://onlinelibrary.wiley.com/doi/10.1111/pce.12725/pdf
[18] Munksgaard N C, Cheesman A W, Wurster C M, et al.Microwave extraction-isotope ratio infrared spectroscopy (ME-IRIS):A novel technique for rapid extraction and in-line analysis of δ18O and δ2H values of water in plants, soils and insects[J].Rapid Communications in Mass Spectrometry, 2014(28):2151-2161. http://onlinelibrary.wiley.com/doi/10.1002/rcm.7005/suppinfo
[19] 张琳, 韩梅, 贾艳琨, 等.同位素比值质谱与激光吸收光谱分析水中氢氧同位素方法的比较[J].质谱学报, 2015, 36(6):559-564. doi: 10.7538/zpxb.2015.36.06.0559
Zhang L, Han M, Jia Y K, et al.Analysis of hydrogen and oxygen isotope in water sample using isotope ratio mass spectrometry and laser spectroscopy[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(6):559-564. doi: 10.7538/zpxb.2015.36.06.0559
[20] Wassenaar L I, Coplen T B, Aggarwal P K.Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers[J].Environmental Science & Technology, 2013(48):1123-1131. http://www.academia.edu/10216484/STABLE_ISOTOPE_GEOCHEMISTRY-HOEFS
[21] 王华, 吴夏, 蓝高勇, 等.GasBenchⅡ-IRMS稳定同位素质谱法高精度测定环境水体中δD、δ18O和δ13CDIC同位素比值:实验室间对比研究[J].地质学报, 2015, 89(10):1804-1813. doi: 10.3969/j.issn.0001-5717.2015.10.008
Wang H, Wu X, Lan G Y, et al.High precision measurement of hydrogen, oxygen and dissolve inorganic carbon isotope in water samples by GasBenchⅡ-IRMS:An interlaboratory comparison study[J].Acta Geologica Sinica, 2015, 89(10):1804-1813. doi: 10.3969/j.issn.0001-5717.2015.10.008
[22] Penna D, Stenni B, Sanda M, et al.On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis[J].Hydrology and Earth System Sciences, 2010(14):1551-1566. http://www.cabdirect.org/abstracts/20103288759.html
[23] West A G, Goldsmith G R, Matimati I, et al.Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared pectroscopy (IRIS)[J].Rapid Communications in Mass Spectrometry, 2011(25):2268-2274. http://onlinelibrary.wiley.com/doi/10.1002/rcm.5126/full?scrollTo=references
-