中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究

蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究[J]. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049
引用本文: 蓝高勇, 吴夏, 杨会, 唐伟, 应启和, 王华. 激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究[J]. 岩矿测试, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049
Gao-yong LAN, Xia WU, Hui YANG, Wei TANG, Qi-he YING, Hua WANG. Inter-Laboratory Comparison of Analysis for Hydrogen and Oxygen Stable Isotope Ratios in Water Samples by Laser Absorption Spectroscopy[J]. Rock and Mineral Analysis, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049
Citation: Gao-yong LAN, Xia WU, Hui YANG, Wei TANG, Qi-he YING, Hua WANG. Inter-Laboratory Comparison of Analysis for Hydrogen and Oxygen Stable Isotope Ratios in Water Samples by Laser Absorption Spectroscopy[J]. Rock and Mineral Analysis, 2017, 36(5): 460-467. doi: 10.15898/j.cnki.11-2131/td.201704060049

激光同位素光谱法测量水中氢氧同位素组成的实验室间比对研究

  • 基金项目:
    国土资源部公益性行业专项(21411075-03);国家自然科学基金资助项目(41501222);广西青年科学基金项目(2014GXNSFBA118227);中国地质科学院岩溶地质研究所基本科研业务费项目(2016003)
详细信息
    作者简介: 蓝高勇, 助理研究员, 从事同位素分析测试研究。E-mail:langaoyong@karst.ac.cn
    通讯作者: 王华, 高级工程师, 从事同位素分析测试研究。E-mail:wanghua1@163.com
  • 中图分类号: O657.38;O613.2;O613.3

Inter-Laboratory Comparison of Analysis for Hydrogen and Oxygen Stable Isotope Ratios in Water Samples by Laser Absorption Spectroscopy

More Information
  • 激光同位素光谱分析方法是近些年使用较广泛的一种便捷、快速的测试稳定同位素组成的技术,能同时分析出水中δD、δ18O同位素组成,因其操作简单,检测效率高,体积小,野外现场测试携带方便,迅速在环境、地质、生态和能源等领域得到广泛应用,但是该测试分析方法尚没有相应的国家标准,测试结果得不到有效的溯源,在使用过程中缺乏规范和统一。为此,本文通过在全国范围内12家实验室选取8个比对水样(δD值在-189.1‰~-0.4‰内,δ18O值在-24.52‰~0.32‰内),利用激光同位素光谱法测试比对D/H和18O/16O值,探讨激光同位素光谱仪分析水中δD、δ18O值的准确度和精密度。测试结果表明:各个协作实验室数据准确、稳定,方法的重复性和再现性良好;激光光谱法测定的δD精密度为0.4‰(1σ),δ18O精密度为0.05‰(1σ),与传统稳定同位素质谱的精度几乎一致,因此适用于常规水样中δD、δ18O测定,可以开展野外在线实时检测水中氢氧同位素组成。本研究为开展制定激光同位素光谱法测定环境液态水中δD、δ18O同位素组成标准方法的工作推广和应用提供了参考。
  • 加载中
  • 图 1  A~L实验室δD和δ18O值测试准确度

    Figure 1. 

    图 2  A~L实验室比对δD和δ18O曼德尔h-k统计图

    Figure 2. 

    表 1  测试样品的δD和δ18O参考值

    Table 1.  The reference hydrogen and oxygen isotope ratios of water sample

    样品编号 名称 水样类型 δDV-SMOW(‰) δ18OV-SMOW(‰) 备注
    水平1 GBW04401 人工配置 -0.4±1.0 0.32±0.19 国家一级标准
    水平2 YHS 人工配置 -12.0±1.0 -1.50±0.20 -
    水平3 L4A 人工配置 -50.5±0.5 -7.69±0.10 -
    水平4 GBW04402 地表水 -64.8±1.1 -8.79±0.14 国家一级标准
    水平5 YYNS 地下水 -72.6±1.0 -10.23±0.10 -
    水平6 L3A 人工配置 -96.4±0.5 -13.10±0.10 -
    水平7 YXZS 天然水 -134.7±0.5 -17.68±0.10 -
    水平8 GBW04403 人工配置 -189.1±1.1 -24.52±0.20 国家一级标准
    下载: 导出CSV

    表 2  激光同位素光谱法协作实验测量的δD和δ18O精密度统计

    Table 2.  The precision statistics of δD and δ18O obtained from inter-laboratory by Laser Absorption Spectroscopy

    统计参数 GBW04401 YHS L4A GBW04402 YYN L3A YXZS GBW04403
    δD、δ18O实验室数(p) 12 12 12 12 12 12 12 12
    δD参考值(‰) -0.4 -11.9 -50.5 -64.8 -72.6 -96.4 -134.7 -189.1
    δD总平均值±1σ(‰) -0.4±0.17 -11.2±0.26 -50.4±0.40 -64.9±0.32 -72.6±0.32 -96.2±0.40 -134.3±0.26 -189.1±0.10
    δD实验室偏倚δ 0.030 0.746 0.638 -0.016 -0.066 0.230 0.373 0.033
    δD偏倚区间[δ-ASR, δ+ASR] -0.07~0.13 0.59~0.90 0.40~0.87 -0.20~0.17 -0.25~0.12 -0.01~0.47 0.22~0.53 -0.03~0.09
    δ18O参考值(‰) 0.32 -1.50 -7.69 -8.79 -10.20 -13.10 -17.66 -24.52
    δ18O总平均值±1σ(‰) 0.33±0.02 -1.47±0.03 -7.74±0.03 -8.78±0.05 -10.13±0.03 -13.15±0.05 -17.62±0.04 -24.52±0.01
    δ18O方法偏倚δ 0.007 0.132 -0.051 0.010 0.069 -0.051 0.038 0.001
    δ18O偏倚区间[δ-ASR, δ+ASR] -0.01~0.02 0.11~0.15 -0.07~-0.03 -0.02~0.04 0.05~0.09 -0.08~-0.02 0.01~0.06 -0.01~0.01
    注:表中重复性限r、再现性限R和测量方法偏倚ASR基于95%的置信区间,n=60。
    下载: 导出CSV

    表 3  不同实验室δD和δ18O的测试结果

    Table 3.  The measurement results of δD and δ18O obtained from different laboratories

    样品编号 A B C D E F G H I J K L
    δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O δD δ18O
    GBW 04401 -0.2 0.32 -0.4 0.31 -0.3 0.32 -0.2 0.33 -0.3 0.31 -0.3 0.31 -0.4 0.32 -0.4 0.32 -0.4 0.28 -0.7 0.28 -0.8 0.29 -0.4 0.32
    -0.2 0.34 -0.4 0.33 -0.2 0.32 -0.3 0.33 -0.2 0.34 -0.2 0.31 -0.4 0.34 -0.4 0.37 -0.4 0.29 -0.7 0.30 -0.8 0.29 -0.4 0.32
    -0.1 0.36 -0.3 0.35 -0.2 0.33 -0.3 0.34 -0.3 0.33 -0.2 0.32 -0.3 0.34 -0.4 0.38 -0.3 0.30 -0.7 0.30 -0.8 0.30 -0.4 0.32
    -0.2 0.37 -0.3 0.36 -0.2 0.33 -0.3 0.35 -0.2 0.33 -0.2 0.32 -0.3 0.34 -0.4 0.36 -0.4 0.30 -0.7 0.31 -0.7 0.30 -0.4 0.32
    -0.3 0.39 -0.3 0.37 -0.3 0.34 -0.2 0.35 -0.2 0.32 -0.2 0.34 -0.3 0.36 -0.4 0.33 -0.4 0.32 -0.6 0.31 -0.7 0.30 -0.4 0.32
    YHS -11.0 -1.49 -11.1 -1.47 -11.5 -1.48 -11.5 -1.55 -11.3 -1.47 -11.1 -1.51 -11.6 -1.50 -11.5 -1.52 -11.5 -1.44 -11.3 -1.51 -10.8 -1.42 -11.2 -1.44
    -11.0 -1.49 -11.1 -1.48 -11.3 -1.47 -11.4 -1.54 -11.3 -1.46 -11.0 -1.49 -11.6 -1.49 -11.4 -1.50 -11.8 -1.44 -11.2 -1.51 -10.7 -1.42 -11.0 -1.46
    -10.9 -1.48 -11.0 -1.51 -11.4 -1.46 -11.3 -1.50 -11.3 -1.48 -11.0 -1.47 -11.3 -1.47 -11.4 -1.50 -11.6 -1.44 -11.1 -1.50 -10.6 -1.41 -11.0 -1.44
    -10.9 -1.47 -10.9 -1.47 -11.2 -1.46 -11.2 -1.49 -11.4 -1.46 -11.0 -1.47 -11.2 -1.45 -11.3 -1.49 -11.4 -1.42 -11.1 -1.48 -10.6 -1.41 -10.9 -1.44
    -10.7 -1.46 -10.9 -1.46 -11.2 -1.44 -11.2 -1.49 -11.4 -1.44 -10.9 -1.43 -11.2 -1.43 -11.1 -1.48 -11.3 -1.40 -11.0 -1.48 -10.6 -1.40 -11.1 -1.47
    L4A -50.7 -7.72 -50.6 -7.76 -50.7 -7.78 -50.6 -7.80 -50.8 -7.77 -50.5 -7.77 -50.6 -7.79 -50.6 -7.77 -50.8 -7.75 -49.8 -7.72 -49.7 -7.71 -50.4 -7.75
    -50.9 -7.80 -50.5 -7.74 -50.7 -7.78 -50.4 -7.78 -50.8 -7.75 -50.5 -7.76 -50.4 -7.76 -50.4 -7.76 -50.6 -7.70 -49.7 -7.71 -49.7 -7.69 -50.1 -7.75
    -50.7 -7.72 -50.5 -7.76 -50.6 -7.77 -50.4 -7.72 -50.8 -7.78 -50.5 -7.74 -50.3 -7.76 -50.3 -7.76 -50.7 -7.68 -49.6 -7.71 -49.6 -7.69 -50.0 -7.73
    -50.6 -7.70 -50.4 -7.74 -50.7 -7.75 -50.8 -7.72 -50.8 -7.78 -50.5 -7.73 -50.2 -7.75 -50.3 -7.75 -50.5 -7.76 -49.6 -7.68 -49.5 -7.68 -50.0 -7.70
    -50.5 -7.78 -50.3 -7.79 -50.8 -7.75 -50.7 -7.70 -50.7 -7.75 -50.3 -7.73 -50.1 -7.74 -50.6 -7.74 -50.5 -7.74 -49.5 -7.68 -49.5 -7.68 -50.0 -7.73
    GBW 04402 -65.1 -8.79 -64.9 -8.80 -65.0 -8.82 -65.1 -8.84 -65.2 -8.77 -65.1 -8.84 -65.0 -8.88 -65.1 -8.77 -64.9 -8.70 -64.5 -8.77 -64.3 -8.76 -64.5 -8.77
    -65.1 -8.87 -64.9 -8.77 -65.0 -8.82 -65.0 -8.83 -65.0 -8.81 -65.1 -8.81 -64.9 -8.88 -65.1 -8.75 -64.8 -8.69 -64.4 -8.77 -64.3 -8.75 -64.3 -8.77
    -65.2 -8.81 -64.8 -8.77 -65.1 -8.81 -65.0 -8.83 -65.3 -8.82 -65.1 -8.80 -64.9 -8.84 -65.1 -8.74 -64.8 -8.69 -64.4 -8.76 -64.3 -8.74 -64.3 -8.77
    -65.2 -8.81 -64.8 -8.75 -65.0 -8.79 -65.0 -8.82 -65.0 -8.79 -65.0 -8.80 -64.9 -8.83 -64.9 -8.73 -64.8 -8.67 -64.4 -8.75 -64.2 -8.74 -64.2 -8.76
    -65.0 -8.79 -64.7 -8.74 -65.0 -8.78 -65.0 -8.81 -65.2 -8.82 -65.0 -8.77 -64.7 -8.81 -64.9 -8.73 -64.7 -8.66 -64.4 -8.73 -64.2 -8.74 -64.3 -8.77
    YYN -72.8 -10.18 -72.7 -10.17 -73.1 -10.15 -73.1 -10.11 -72.8 -10.13 -72.8 -10.16 -72.8 -10.21 -72.7 -10.16 -72.3 -10.10 -72.3 -10.13 -72.1 -10.09 -72.6 -10.13
    -72.9 -10.19 -72.7 -10.15 -72.9 -10.14 -73.1 -10.18 -73.0 -10.15 -72.8 -10.14 -72.6 -10.20 -72.6 -10.16 -72.5 -10.10 -72.2 -10.13 -72.0 -10.09 -72.3 -10.11
    -72.9 -10.14 -72.6 -10.14 -72.9 -10.14 -72.9 -10.14 -72.7 -10.14 -72.8 -10.13 -72.6 -10.19 -72.3 -10.12 -72.7 -10.10 -72.1 -10.12 -72.0 -10.08 -72.2 -10.11
    -72.8 -10.13 -72.4 -10.11 -72.8 -10.13 -72.9 -10.13 -72.9 -10.14 -72.8 -10.12 -72.4 -10.18 -72.5 -10.12 -72.6 -10.09 -72.1 -10.12 -72.0 -10.07 -72.3 -10.10
    -72.7 -10.13 -72.4 -10.10 -72.9 -10.13 -72.9 -10.12 -72.5 -10.13 -72.8 -10.11 -72.4 -10.18 -72.4 -10.12 -72.8 -10.07 -72.1 -10.11 -72.0 -10.06 -72.2 -10.12
    L3A -96.4 -13.25 -96.3 -13.20 -96.4 -13.18 -96.3 -13.21 -96.4 -13.17 -95.9 -13.15 -96.4 -13.13 -96.8 -13.08 -96.1 -13.07 -95.5 -13.12 -95.9 -13.17 -96.1 -13.21
    -96.3 -13.23 -96.3 -13.18 -96.4 -13.17 -96.1 -13.20 -96.8 -13.18 -95.9 -13.15 -96.4 -13.12 -96.7 -13.18 -96.3 -13.12 -95.4 -13.12 -95.8 -13.16 -95.9 -13.22
    -96.4 -13.19 -96.3 -13.18 -96.5 -13.15 -96.5 -13.18 -96.8 -13.13 -95.8 -13.12 -96.3 -13.11 -96.5 -13.12 -96.2 -13.21 -95.3 -13.10 -95.8 -13.13 -95.8 -13.21
    -96.4 -13.17 -96.2 -13.16 -96.7 -13.13 -96.4 -13.17 -96.7 -13.15 -95.8 -13.12 -96.2 -13.08 -96.5 -13.11 -96.2 -13.11 -95.3 -13.19 -95.7 -13.13 -95.7 -13.21
    -96.3 -13.14 -96.2 -13.15 -96.6 -13.11 -96.4 -13.16 -96.5 -13.11 -95.8 -13.11 -96.2 -13.06 -96.4 -13.10 -96.7 -13.20 -95.3 -13.15 -95.3 -13.02 -95.9 -13.21
    YXZS -134.5 -17.70 -134.6 -17.72 -134.5 -17.62 -134.7 -17.66 -134.4 -17.63 -134.6 -17.63 -134.5 -17.71 -134.0 -17.69 -134.3 -17.59 -134.5 -17.65 -134.4 -17.62 -134.2 -17.59
    -134.6 -17.65 -134.5 -17.70 -134.5 -17.60 -134.6 -17.65 -134.7 -17.68 -134.6 -17.62 -134.4 -17.68 -133.8 -17.65 -134.3 -17.57 -134.3 -17.64 -134.4 -17.60 -134.0 -17.59
    -134.5 -17.65 -134.5 -17.66 -134.7 -17.60 -134.5 -17.63 -134.2 -17.65 -134.6 -17.61 -134.3 -17.68 -133.8 -17.65 -134.4 -17.57 -134.3 -17.64 -134.4 -17.60 -133.9 -17.58
    -134.4 -17.62 -134.4 -17.60 -134.6 -17.58 -134.5 -17.59 -134.6 -17.65 -134.3 -17.61 -134.2 -17.65 -133.8 -17.62 -134.0 -17.56 -134.3 -17.63 -134.4 -17.60 -133.9 -17.57
    -134.4 -17.61 -134.4 -17.60 -134.6 -17.55 -134.1 -17.56 -134.5 -17.64 -134.3 -17.56 -134.1 -17.58 -133.7 -17.58 -133.9 -17.56 -134.3 -17.63 -134.3 -17.59 -133.9 -17.59
    GBW 04403 -189.0 -24.52 -189.1 -24.52 -189.1 -24.52 -189.0 -24.51 -188.9 -24.52 -189.0 -24.53 -189.1 -24.52 -189.1 -24.50 -189.1 -24.55 -189.3 -24.54 -189.3 -24.55 -189.1 -24.52
    -189.0 -24.53 -189.1 -24.52 -189.0 -24.52 -189.0 -24.51 -189.0 -24.52 -189.0 -24.52 -189.1 -24.52 -189.0 -24.53 -189.1 -24.54 -189.3 -24.53 -189.3 -24.54 -189.0 -24.52
    -189.0 -24.51 -189.1 -24.52 -189.0 -24.52 -189.0 -24.51 -189.0 -24.51 -189.0 -24.51 -189.1 -24.51 -188.9 -24.52 -189.1 -24.54 -189.2 -24.53 -189.3 -24.54 -189.0 -24.52
    -189.0 -24.50 -189.1 -24.50 -189.0 -24.52 -189.0 -24.51 -189.0 -24.52 -189.0 -24.51 -189.0 -24.50 -188.9 -24.51 -189.1 -24.54 -189.2 -24.53 -189.3 -24.53 -189.0 -24.51
    -189.0 -24.50 -189.1 -24.50 -189.0 -24.51 -189.0 -24.50 -189.0 -24.52 -189.0 -24.51 -189.0 -24.50 -188.9 -24.50 -189.2 -24.53 -189.2 -24.53 -189.2 -24.53 -189.0 -24.51
    注:测试结果单位均为‰,所报数据均为相对于国际标准V-SMOW的比值。
    下载: 导出CSV
  • [1]

    杨会, 王华, 应启和, 等.不同检测方法对氢氧同位素分馏的影响[J].岩矿测试, 2012, 31(2):225-228. http://www.ykcs.ac.cn/article/id/ykcs_20120205

    Yang H, Wang H, Ying Q H, et al.The impact of hydrogen and oxygen isotope mass fractionation for different detection methods[J].Rock and Mineral Analysis, 2012, 31(2):225-228. http://www.ykcs.ac.cn/article/id/ykcs_20120205

    [2]

    刘运德, 甘义群, 余婷婷, 等.微量水氢氧同位素在线同时测试技术——热转换元素分析+同位素比质谱法[J].岩矿测试, 2010, 29(6):643-647. http://www.ykcs.ac.cn/article/id/ykcs_20100603

    Liu Y D, Gan Y Q, Yu T T, et al.Online simultaneous determination of δD and δ18O in micro-liter water samples by thermal conversion/elemental analysis-isotope ratio mass spectrometry[J].Rock and Mineral Analysis, 2010, 29(6):643-647. http://www.ykcs.ac.cn/article/id/ykcs_20100603

    [3]

    张琳, 陈宗宇, 刘福亮, 等.水中氢氧同位素不同分析方法的对比[J].岩矿测试, 2011, 30(2):160-163. http://www.ykcs.ac.cn/article/id/ykcs_20110208

    Zhang L, Cheng Z Y, Liu F L, et al.Study on metheds for hydrogen and oxygen isotope analysis of water samples[J].Rock and Mineral Analysis, 2011, 30(2):160-163. http://www.ykcs.ac.cn/article/id/ykcs_20110208

    [4]

    石晓, 刘汉彬, 张佳, 等.激光光谱技术在稳定同位素组成分析中的应用现状[J].世界核地质科学, 2016, 33(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201604009.htm

    Shi X, Liu H B, Zhang J, et al.Laser spectrometry for stable isotope analysis and its application status[J].World Nuclear Geoscience, 2016, 33(4):237-243. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201604009.htm

    [5]

    柳景峰, 效存德, 丁明虎, 等.南极科考断面水汽同位素观测与模拟及其反映的水循环信息[J].冰川冻土, 2014, 36(6):1440-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406012.htm

    Liu J F, Xiao C D, Ding M H, et al.Observing and modeling the atmospheric water vapor isotopes in south hemisphere and their implication of water cycle[J].Journal of Glaciology and Geocryology, 2014, 36(6):1440-1449. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201406012.htm

    [6]

    Gupta P, Noone D, Galewsky J, et al.Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology[J].Rapid Communications in Mass Spectrometry, 2009(23):2534-2542. http://onlinelibrary.wiley.com/doi/10.1002/rcm.4100/abstract

    [7]

    刘文茹, 彭新华, 沈业杰, 等.激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J].生态学杂志, 2013, 32(5):1181-1186. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305015.htm

    Liu W R, Peng X H, Shen Y J, et al.Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections[J].Chinese Journal of Ecology, 2013, 32(5):1181-1186. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305015.htm

    [8]

    Natalie M, Schultz T J G X.Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J].Rapid Communications in Mass Spectrometry, 2011(25):3360-3368. http://onlinelibrary.wiley.com/doi/10.1002/rcm.5236/references

    [9]

    Geldern R V, Barth J A C.Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS)[J].Limnology and Oceanography, 2012(10):1024-1036. http://onlinelibrary.wiley.com/doi/10.4319/lom.2012.10.1024/epdf

    [10]

    Maselli O J, Fritzsche D, Layman L, et al.Comparison of water isotope-ratio determinations using two cavity ring-down instruments and classical mass spectrometry in continuous ice-core analysis[J].Isotopes in Environmental & Health Studies, 2013, 49(3):387-398. https://www.ncbi.nlm.nih.gov/pubmed/23713832?format=text

    [11]

    Gaj M, Beyer M, Koeniger P, et al.In-situ unsaturated zone stable water isotope (2H and 18O) measurements in semi-arid environments using tunable off-axis integrated cavity output spectroscopy[J].Hydrology and Earth System Sciences, 2015(12):6115-6149. http://unam-na.academia.edu/Departments/Geology/Documents?page=5

    [12]

    赵国琴, 李小雁, 吴华武, 等.青海湖流域具鳞水柏枝植物水分利用氢同位素示踪研究[J].植物生态学报, 2013, 37(12):1091-1100. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201312003.htm

    Zhao G Q, Li X Y, Wu H W, et al.Study on plant water use in myricaria squamosa with stable hydrogen isotope tracer in Qinghai lake basin[J].Chinese Journal of Plant Ecology, 2013, 37(12):1091-1100. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201312003.htm

    [13]

    Klaus J, McDonnell J J, Jackson C R, et al.Where does streamwater come from in low relief forested watersheds? A dual isotope approach[J].Hydrology and Earth System Sciences, 2014(11):2613-2638. https://www.hydrol-earth-syst-sci.net/19/125/2015/hess-19-125-2015-metrics.html

    [14]

    靳静静, 李俊超, 司炳成.激光水稳定性同位素分析仪测定矿泉水中的δ2H、δ18O和δ17O[J].分析仪器, 2016(6):33-36. http://d.wanfangdata.com.cn/Periodical/fxyq201606014

    Jin J J, Li J C, Si B C, et al.Determination of δ2H, δ18O and δ17O in mineral water by laser water stable isotopes analyzer[J].Analytical Instrumentation, 2016(6):33-36. http://d.wanfangdata.com.cn/Periodical/fxyq201606014

    [15]

    Grady S P O, Enright L E, Barnette J E, et al.Accuracy and precision of a laser-spectroscopy approach to the analysis of δ2H and δ18O in human urine[J].Isotopes in Environmental and Health Studies, 2010, 46(4):476-483. doi: 10.1080/10256016.2010.536229

    [16]

    Sturm P, Knohl A.Water vapor δ2H and δ18O measurements using off-axis integrated cavity output spectroscopy[J].Atmospheric Measurement Techniques, 2010(3):67-77. http://jxb.oxfordjournals.org/external-ref?access_num=10.5194/amt-3-67-2010&link_type=DOI

    [17]

    Volkmann T H M, Kühnhammer K, Herbstritt B, et al.A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy[J].Plant Cell & Environment, 2016, 39(9):2055-2063. http://onlinelibrary.wiley.com/doi/10.1111/pce.12725/pdf

    [18]

    Munksgaard N C, Cheesman A W, Wurster C M, et al.Microwave extraction-isotope ratio infrared spectroscopy (ME-IRIS):A novel technique for rapid extraction and in-line analysis of δ18O and δ2H values of water in plants, soils and insects[J].Rapid Communications in Mass Spectrometry, 2014(28):2151-2161. http://onlinelibrary.wiley.com/doi/10.1002/rcm.7005/suppinfo

    [19]

    张琳, 韩梅, 贾艳琨, 等.同位素比值质谱与激光吸收光谱分析水中氢氧同位素方法的比较[J].质谱学报, 2015, 36(6):559-564. doi: 10.7538/zpxb.2015.36.06.0559

    Zhang L, Han M, Jia Y K, et al.Analysis of hydrogen and oxygen isotope in water sample using isotope ratio mass spectrometry and laser spectroscopy[J].Journal of Chinese Mass Spectrometry Society, 2015, 36(6):559-564. doi: 10.7538/zpxb.2015.36.06.0559

    [20]

    Wassenaar L I, Coplen T B, Aggarwal P K.Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers[J].Environmental Science & Technology, 2013(48):1123-1131. http://www.academia.edu/10216484/STABLE_ISOTOPE_GEOCHEMISTRY-HOEFS

    [21]

    王华, 吴夏, 蓝高勇, 等.GasBenchⅡ-IRMS稳定同位素质谱法高精度测定环境水体中δD、δ18O和δ13CDIC同位素比值:实验室间对比研究[J].地质学报, 2015, 89(10):1804-1813. doi: 10.3969/j.issn.0001-5717.2015.10.008

    Wang H, Wu X, Lan G Y, et al.High precision measurement of hydrogen, oxygen and dissolve inorganic carbon isotope in water samples by GasBenchⅡ-IRMS:An interlaboratory comparison study[J].Acta Geologica Sinica, 2015, 89(10):1804-1813. doi: 10.3969/j.issn.0001-5717.2015.10.008

    [22]

    Penna D, Stenni B, Sanda M, et al.On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis[J].Hydrology and Earth System Sciences, 2010(14):1551-1566. http://www.cabdirect.org/abstracts/20103288759.html

    [23]

    West A G, Goldsmith G R, Matimati I, et al.Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared pectroscopy (IRIS)[J].Rapid Communications in Mass Spectrometry, 2011(25):2268-2274. http://onlinelibrary.wiley.com/doi/10.1002/rcm.5126/full?scrollTo=references

  • 加载中

(2)

(3)

计量
  • 文章访问数:  4266
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2017-04-06
修回日期:  2017-07-11
录用日期:  2017-07-20

目录