中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究

吴石头, 许春雪, KlausSimon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044
引用本文: 吴石头, 许春雪, KlausSimon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044
Shi-tou WU, Chun-xue XU, Simon Klaus, Yi-lin XIAO, Ya-ping WANG. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044
Citation: Shi-tou WU, Chun-xue XU, Simon Klaus, Yi-lin XIAO, Ya-ping WANG. Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究

  • 基金项目:
    中国地质科学院基本科研业务费项目(YYWF201622);国家公派留学基金(201306410007)
详细信息
    作者简介: 吴石头, 在读博士研究生, 研究方向为地球化学。E-mail:wushitou111@hotmail.com
    通讯作者: 许春雪, 博士, 副研究员, 研究方向为标准物质研制。E-mail:xuchunxue1980@163.com
  • 中图分类号: O657.63

Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis

More Information
  • 探究LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率,可为激光参数设定、基体匹配选择、数据质量保证等方面提供重要参考。本文研究了193 nm ArF准分子激光系统对人工合成/地质样品玻璃、常见矿物和粉末压片的剥蚀行为,同时探究了激光参数(束斑直径、能量密度和剥蚀频率)对剥蚀速率的影响情况。从剥蚀坑形貌可知,193nm ArF激光对玻璃和绝大多数矿物的剥蚀行为良好,但对石英相对较差,这可能与石英内含有微观包裹体,剥蚀过程中局部受热不均有关。粉末压片的剥蚀行为呈现出不可控,可通过提高粉末压片的压制压力或降低粉末颗粒的粒径来改善剥蚀行为;当剥蚀深度大于1.5倍束斑直径时,剥蚀速率随剥蚀深度的增加而逐渐减小,剥蚀深度最多可达束斑直径的两倍左右(RESOlution M-50型号激光系统,3.0 J/cm2激光能量密度);剥蚀速率随激光能量密度的增加而增大,但基本不受剥蚀频率(2~20 Hz)影响。不同基体具有特征的剥蚀速率,本文报道了43种基体的剥蚀速率参数,总体而言,NIST系列玻璃的剥蚀速率大于地质样品玻璃,碳酸盐矿物和硫化物矿物大于硅酸岩矿物,粉末压片大于玻璃和常见矿物。
  • 加载中
  • 图 1  形状测量激光显微系统对剥蚀坑形貌和剥蚀深度等信息采集及分析过程(这里的样品为NIST610)

    Figure 1. 

    图 2  NIST610、BCR-2G、磷灰石、黄铁矿、石英、MACS-3、GBW01730和PB40-1的剥蚀坑三维形貌图(激光能量密度为5.0 J/cm2,束斑直径为75 μm)

    Figure 2. 

    图 3  不同束斑直径下剥蚀深度随激光脉冲的变化情况(激光能量密度为3.0 J/cm2,剥蚀频率为10 Hz)

    Figure 3. 

    图 4  剥蚀速率随激光能量密度和剥蚀频率的变化情况。能量密度实验是在设定激光频率5 Hz、束斑直径75 μm、剥蚀时间20 s等固定参数下,通过改变能量密度来进行;剥蚀频率实验是在设定能量密度为4.2 J/cm2、束斑直径75 μm、150激光脉冲等固定参数下,通过改变剥蚀频率来进行

    Figure 4. 

    图 5  43种基体的激光剥蚀速率。激光能量为2.0 J/cm2(石英除外,为5.0 J/cm2),每个点重复三次以上,图中的误差棒为深度测量的一倍标准偏差

    Figure 5. 

    表 1  LA-ICP-MS仪器工作参数

    Table 1.  Operation conditions of LA-ICP-MS system

    激光剥蚀系统 电感耦合等离子体质谱
    激光类型 RESOlution M-50 ArF准分子 ICP-MS Element 2
    波长 193 nm RF功率 1500 W
    脉冲时间 20 ns 屏蔽圈(Pt) 悬浮
    能量密度 1.0~11.0 J/cm2 冷却气(Ar)流量 15.00 L/min
    激光频率 2~20 Hz 辅助气(Ar)流量 1.00 L/min
    剥蚀池 Laurin Technic S-155 载气(Ar)流量 0.95 L/min
    激光束斑直径 10~90 μm 停留时间 10 ms
    剥蚀气(He)流量 0.65 L/min 检测器 计数与模拟
    剥蚀时间 20~120 s 分辨率 低(~300)
    下载: 导出CSV
  • [1]

    Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878. doi: 10.1007/s11434-013-5901-4

    [2]

    Russo R E, Mao X, Gonzalez J J, et al.Laser ablation in analytical chemistry[J].Analytical Chemistry, 2013, 85(13):6162-6177. doi: 10.1021/ac4005327

    [3]

    Li Z, Hu Z, Günther D, et al.Ablation characteristics of ilmenite using UV nanosecond and femtosecond lasers:Implications for non-matrix-matched quantification[J].Geostandards and Geoanalytical Research, 2016, 40(4):477-491. doi: 10.1111/ggr.2016.40.issue-4

    [4]

    Flem B, Larsen R B, Grimstvedt A, et al.In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology, 2002, 182(2-4):237-247. doi: 10.1016/S0009-2541(01)00292-3

    [5]

    Stead C V, Tomlinson E L, Kamber B S, et al.Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS:An analytical strategy and applications[J].Geostandards and Geoanalytical Research, 2017:DOI:10.1111/ggr.12157.

    [6]

    Chew D M, Donelick R A, Donelick M B, et al.Apatite chlorine concentration measurements by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2014, 38(1):23-35. doi: 10.1111/j.1751-908X.2013.00246.x

    [7]

    Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    [8]

    Li C Y, Zhang R Q, Ding X, et al.Dating cassiterite using laser ablation ICP-MS[J].Ore Geology Reviews, 2016, 72:313-322. doi: 10.1016/j.oregeorev.2015.07.016

    [9]

    Yang Y H, Wu F Y, Li Y, et al.In situ U-Pb dating of bastnaesite by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):1017-1023. doi: 10.1039/C4JA00001C

    [10]

    Zack T, Stockli D F, Luvizotto G L, et al.In situ U-Pb rutile dating by LA-ICP-MS:208Pb correction and pros-pects for geological applications[J].Contributions to Mineralogy and Petrology, 2011, 162(3):515-530. doi: 10.1007/s00410-011-0609-4

    [11]

    Cruz-Uribe A M, Mertz-Kraus R, Zack T, et al.A new LA-ICP-MS method for Ti in quartz:Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge[J].Geostandards and Geoanalytical Research, 2016, 41(1):29-40. http://onlinelibrary.wiley.com/doi/10.1111/ggr.12132/full

    [12]

    Audétat A, Garbe-Schönberg D, Kronz A, et al.Charac-terisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J].Geostandards and Geoanalytical Research, 2015, 39(2):171-184. doi: 10.1111/ggr.2015.39.issue-2

    [13]

    He Z, Huang F, Yu H, et al.A flux-free fusion tech-nique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1):5-21. doi: 10.1111/ggr.2016.40.issue-1

    [14]

    Peters D, Pettke T.Evaluation of major to ultra trace element bulk rock chemical analysis of nanoparticulate pressed powder pellets by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(1):5-28. doi: 10.1111/ggr.12125

    [15]

    Tang M, Arevalo Jr R, Goreva Y, et al.Elemental frac-tionation during condensation of plasma plumes generated by laser ablation:A ToF-SIMS study of condensate blankets[J].Journal of Analytical Atomic Spectrometry, 2015, 30(11):2316-2322. doi: 10.1039/C5JA00320B

    [16]

    吴石头, 王亚平, 詹秀春, 等.CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J].岩矿测试, 2016, 35(6):612-620. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.007

    Wu S T, Wang Y P, Zhan X C, et al.Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J].Rock and Mineral Analysis, 2016, 35(6):612-620. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.007

    [17]

    Hu Z C, Liu Y S, Chen L, et al.Contrasting matrix ind-uced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2):425-430. doi: 10.1039/C0JA00145G

    [18]

    Jochum K P, Stoll B, Weis U, et al.Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200nm femtosecond LA-ICP-MS:A comparison with nanosecond lasers[J].Geostandards and Geoanalytical Research, 2014, 38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3

    [19]

    Sylvester P J.Matrix effects in laser ablation ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:67-78. http://www.worldcat.org/title/laser-ablation-icp-ms-in-the-earth-sciences-current-practices-and-outstanding-issues/oclc/253374987

    [20]

    Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [21]

    Jackson S E.Calibration strategies for elemental analysis by LA-ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:169-188. http://www.tandfonline.com/doi/full/10.1080/00032719.2016.1225305

    [22]

    Paton C, Woodhead J D, Hellstrom J C, et al.Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J].Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-36. http://onlinelibrary.wiley.com/doi/10.1029/2009GC002618/abstract?globalMessage=0

    [23]

    吴石头, 王亚平, 许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试, 2015, 34(5):503-511. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.002

    Wu S T, Wang Y P, Xu C X.Research progress on reference mterials for in situ elemental analysis by laser ablation-inductive coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):503-511. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.002

    [24]

    Yang Q C, Jochum K P, Stoll B, et al.BAM-S005 type A and B:New silicate reference glasses for microanalysis[J].Geostandards and Geoanalytical Research, 2012, 36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3

    [25]

    Jochum K P, Wilson S A, Becker H, et al.FeMnOx-1:A new microanalytical reference material for the investigation of Mn-Fe rich geological samples[J].Chemical Geology, 2016, 432:34-40. doi: 10.1016/j.chemgeo.2016.03.026

    [26]

    Tabersky D, Luechinger N A, Rossier M, et al.Develop-ment and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):955-962. doi: 10.1039/C4JA00054D

    [27]

    Klemme S, Prowatke S, Münker C, et al.Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses[J].Geostandards and Geoanalytical Research, 2008, 32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x

    [28]

    Horn I, Guillong M, Günther D.Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science, 2001, 182(1-2):91-102. doi: 10.1016/S0169-4332(01)00465-2

    [29]

    Borisov O V, Mao X, Russo R E.Effects of crater develop-ment on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(11):1693-1704. doi: 10.1016/S0584-8547(00)00272-X

    [30]

    Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153. doi: 10.1039/a903304a

    [31]

    Li X, Liu X, Liu Y, et al.Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China Earth Sciences, 2015, 58(10):1722-1730. doi: 10.1007/s11430-015-5110-x

    [32]

    Horstwood M S, Košler J, Gehrels G, et al.Community-derived standards for LA-ICP-MS U-(Th-) Pb geochro-nology-uncertainty propagation, age interpretation and data reporting[J].Geostandards and Geoanalytical Research, 2016, 40(3):311-332. doi: 10.1111/ggr.2016.40.issue-3

    [33]

    吴石头, 王亚平, 许春雪, 等.193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006

    Wu S T, Wang Y P, Xu C X, et al.Elemental fractionation studies of 193nm ArF excimer laser ablation system at high spatial resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006

    [34]

    Günther D, Heinrich C A.Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1369-1374. doi: 10.1039/A901649J

    [35]

    Jeffries T E, Jackson S E, Longerich H P.Application of a frequency quintupled Nd:YAG source (λ=213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J].Journal of Analytical Atomic Spectrometry, 1998, 13(9):935-940. doi: 10.1039/A801328D

    [36]

    Kuhn B K, Birbaum K, Luo Y, et al.Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1):21-27. doi: 10.1039/B917261K

    [37]

    Garbe-Schonberg D, Müller S.Nano-particulate pressed powder tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):990-1000. doi: 10.1039/C4JA00007B

    [38]

    Zhang C, Hu Z, Zhang W, et al.A green and fast laser fusion technique for bulk silicate rock analysis by laser ablation ICP-MS[J].Analytical Chemistry, 2016, 88(20):10088-10094. doi: 10.1021/acs.analchem.6b02471

    [39]

    Ubide T, McKenna C A, Chew D M, et al.High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J].Chemical Geology, 2015, 409:157-168. doi: 10.1016/j.chemgeo.2015.05.020

    [40]

    Raimondo T, Payne J, Wade B, et al.Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J].Contributions to Mineralogy and Petrology, 2017, 172(4):17. doi: 10.1007/s00410-017-1339-z

    [41]

    Bi M, Ruiz A M, Gornushkin I, et al.Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Applied Surface Science, 2000, 158(3-4):197-204. doi: 10.1016/S0169-4332(00)00027-1

    [42]

    Müller W, Shelley M, Miller P, et al.Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell[J].Journal of Analytical Atomic Spectrometry, 2009, 24(2):209-214. doi: 10.1039/B805995K

    [43]

    Steely A N, Hourigan J K, Juel E.Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS:Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation[J].Chemical Geology, 2014, 372:92-108. doi: 10.1016/j.chemgeo.2014.02.021

    [44]

    Jackson S E, Günther D.The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2003, 18(3):205-212. doi: 10.1039/b209620j

    [45]

    Gaboardi M, Humayun M.Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9):1188-1197. doi: 10.1039/b900876d

    [46]

    Mao X L, Russo R E.Invited paper observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles[J].Applied Physics A:Materials Science & Processing, 1996, 64(1):1-6. https://link.springer.com/article/10.1007/s003390050437

    [47]

    Russo R E, Mao X L, Liu C, et al.Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9):1084-1089. doi: 10.1039/b403368j

  • 加载中

(5)

(1)

计量
  • 文章访问数:  5158
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2017-03-29
修回日期:  2017-07-09
录用日期:  2017-07-15

目录