Study on Ablation Behaviors and Ablation Rates of a 193nm ArF Excimer Laser System for Selected Substrates in LA-ICP-MS Analysis
-
摘要: 探究LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率,可为激光参数设定、基体匹配选择、数据质量保证等方面提供重要参考。本文研究了193 nm ArF准分子激光系统对人工合成/地质样品玻璃、常见矿物和粉末压片的剥蚀行为,同时探究了激光参数(束斑直径、能量密度和剥蚀频率)对剥蚀速率的影响情况。从剥蚀坑形貌可知,193nm ArF激光对玻璃和绝大多数矿物的剥蚀行为良好,但对石英相对较差,这可能与石英内含有微观包裹体,剥蚀过程中局部受热不均有关。粉末压片的剥蚀行为呈现出不可控,可通过提高粉末压片的压制压力或降低粉末颗粒的粒径来改善剥蚀行为;当剥蚀深度大于1.5倍束斑直径时,剥蚀速率随剥蚀深度的增加而逐渐减小,剥蚀深度最多可达束斑直径的两倍左右(RESOlution M-50型号激光系统,3.0 J/cm2激光能量密度);剥蚀速率随激光能量密度的增加而增大,但基本不受剥蚀频率(2~20 Hz)影响。不同基体具有特征的剥蚀速率,本文报道了43种基体的剥蚀速率参数,总体而言,NIST系列玻璃的剥蚀速率大于地质样品玻璃,碳酸盐矿物和硫化物矿物大于硅酸岩矿物,粉末压片大于玻璃和常见矿物。
-
关键词:
- LA-ICP-MS /
- 193nm ArF激光 /
- 剥蚀行为 /
- 剥蚀速率 /
- 能量密度
Abstract: Understanding laser ablation behaviors of different target materials is essential for optimum laser parameters, external reference materials selection, as well as for data quality assurance. In this study, ablation behaviors of a 193nm ArF excimer laser for silicate glasses, common minerals, and powder pellets were investigated. Ablation rates influenced by laser parameters (including spot size, energy density, and laser frequency) were evaluated. Topographic images of craters generated during ablation illustrate that glasses and most minerals have controllable ablation behaviors, except for quartz. The worse ablation behavior of quartz may be ascribed to the micro-fluid inclusions, which could result in the overheating effect in laser pits. In general, powder pellets have worse ablation behaviors, but the increase of tableting pressure or reducing the particle grain size could improve the ablation behaviors. Ablation rates gradually decrease if the ablation depth is larger than 1.5 times of the spot size. The maximum ablation depth can reach twice the spot size when the energy density is 3.0 J/cm2 for the RESOlution M-50 laser system). Ablation rates increase with the increase of laser energy density, but ablation rates are not affected by the laser frequency (2-20 Hz). Ablation rates are specific to the individual substrates. In conclusion, the ablation rate data of 43 substrates, in which ablation rates of powder pellets are larger than glasses and minerals, whereas those of carbonates and sulfides are larger than silicate minerals, and those of NIST glasses are larger than geological glasses.-
Key words:
- LA-ICP-MS /
- 193nm ArF excimer laser /
- ablation behavior /
- ablation rate /
- energy density
-
-
表 1 LA-ICP-MS仪器工作参数
Table 1. Operation conditions of LA-ICP-MS system
激光剥蚀系统 电感耦合等离子体质谱 激光类型 RESOlution M-50 ArF准分子 ICP-MS Element 2 波长 193 nm RF功率 1500 W 脉冲时间 20 ns 屏蔽圈(Pt) 悬浮 能量密度 1.0~11.0 J/cm2 冷却气(Ar)流量 15.00 L/min 激光频率 2~20 Hz 辅助气(Ar)流量 1.00 L/min 剥蚀池 Laurin Technic S-155 载气(Ar)流量 0.95 L/min 激光束斑直径 10~90 μm 停留时间 10 ms 剥蚀气(He)流量 0.65 L/min 检测器 计数与模拟 剥蚀时间 20~120 s 分辨率 低(~300) -
[1] Liu Y S, Hu Z C, Li M, et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J].Chinese Science Bulletin, 2013, 58(32):3863-3878. doi: 10.1007/s11434-013-5901-4
[2] Russo R E, Mao X, Gonzalez J J, et al.Laser ablation in analytical chemistry[J].Analytical Chemistry, 2013, 85(13):6162-6177. doi: 10.1021/ac4005327
[3] Li Z, Hu Z, Günther D, et al.Ablation characteristics of ilmenite using UV nanosecond and femtosecond lasers:Implications for non-matrix-matched quantification[J].Geostandards and Geoanalytical Research, 2016, 40(4):477-491. doi: 10.1111/ggr.2016.40.issue-4
[4] Flem B, Larsen R B, Grimstvedt A, et al.In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology, 2002, 182(2-4):237-247. doi: 10.1016/S0009-2541(01)00292-3
[5] Stead C V, Tomlinson E L, Kamber B S, et al.Rare earth element determination in olivine by laser ablation-quadrupole-ICP-MS:An analytical strategy and applications[J].Geostandards and Geoanalytical Research, 2017:DOI:10.1111/ggr.12157.
[6] Chew D M, Donelick R A, Donelick M B, et al.Apatite chlorine concentration measurements by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2014, 38(1):23-35. doi: 10.1111/j.1751-908X.2013.00246.x
[7] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
[8] Li C Y, Zhang R Q, Ding X, et al.Dating cassiterite using laser ablation ICP-MS[J].Ore Geology Reviews, 2016, 72:313-322. doi: 10.1016/j.oregeorev.2015.07.016
[9] Yang Y H, Wu F Y, Li Y, et al.In situ U-Pb dating of bastnaesite by LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):1017-1023. doi: 10.1039/C4JA00001C
[10] Zack T, Stockli D F, Luvizotto G L, et al.In situ U-Pb rutile dating by LA-ICP-MS:208Pb correction and pros-pects for geological applications[J].Contributions to Mineralogy and Petrology, 2011, 162(3):515-530. doi: 10.1007/s00410-011-0609-4
[11] Cruz-Uribe A M, Mertz-Kraus R, Zack T, et al.A new LA-ICP-MS method for Ti in quartz:Implications and application to high pressure rutile-quartz veins from the Czech Erzgebirge[J].Geostandards and Geoanalytical Research, 2016, 41(1):29-40. http://onlinelibrary.wiley.com/doi/10.1111/ggr.12132/full
[12] Audétat A, Garbe-Schönberg D, Kronz A, et al.Charac-terisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J].Geostandards and Geoanalytical Research, 2015, 39(2):171-184. doi: 10.1111/ggr.2015.39.issue-2
[13] He Z, Huang F, Yu H, et al.A flux-free fusion tech-nique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2016, 40(1):5-21. doi: 10.1111/ggr.2016.40.issue-1
[14] Peters D, Pettke T.Evaluation of major to ultra trace element bulk rock chemical analysis of nanoparticulate pressed powder pellets by LA-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(1):5-28. doi: 10.1111/ggr.12125
[15] Tang M, Arevalo Jr R, Goreva Y, et al.Elemental frac-tionation during condensation of plasma plumes generated by laser ablation:A ToF-SIMS study of condensate blankets[J].Journal of Analytical Atomic Spectrometry, 2015, 30(11):2316-2322. doi: 10.1039/C5JA00320B
[16] 吴石头, 王亚平, 詹秀春, 等.CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J].岩矿测试, 2016, 35(6):612-620. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.007
Wu S T, Wang Y P, Zhan X C, et al.Study on the elemental fractionation effect of CGSG reference materials and the related within-unit homogeneity of major and trace elements[J].Rock and Mineral Analysis, 2016, 35(6):612-620. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.007
[17] Hu Z C, Liu Y S, Chen L, et al.Contrasting matrix ind-uced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2):425-430. doi: 10.1039/C0JA00145G
[18] Jochum K P, Stoll B, Weis U, et al.Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200nm femtosecond LA-ICP-MS:A comparison with nanosecond lasers[J].Geostandards and Geoanalytical Research, 2014, 38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3
[19] Sylvester P J.Matrix effects in laser ablation ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:67-78. http://www.worldcat.org/title/laser-ablation-icp-ms-in-the-earth-sciences-current-practices-and-outstanding-issues/oclc/253374987
[20] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
[21] Jackson S E.Calibration strategies for elemental analysis by LA-ICP-MS.Laser ablation ICP-MS in the earth sciences:Current practices and outstanding issues (Sylvester P, ed.)[J].Mineralogical Association of Canada, 2008, 40:169-188. http://www.tandfonline.com/doi/full/10.1080/00032719.2016.1225305
[22] Paton C, Woodhead J D, Hellstrom J C, et al.Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J].Geochemistry, Geophysics, Geosystems, 2010, 11(3):1-36. http://onlinelibrary.wiley.com/doi/10.1029/2009GC002618/abstract?globalMessage=0
[23] 吴石头, 王亚平, 许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试, 2015, 34(5):503-511. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.002
Wu S T, Wang Y P, Xu C X.Research progress on reference mterials for in situ elemental analysis by laser ablation-inductive coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2015, 34(5):503-511. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.05.002
[24] Yang Q C, Jochum K P, Stoll B, et al.BAM-S005 type A and B:New silicate reference glasses for microanalysis[J].Geostandards and Geoanalytical Research, 2012, 36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3
[25] Jochum K P, Wilson S A, Becker H, et al.FeMnOx-1:A new microanalytical reference material for the investigation of Mn-Fe rich geological samples[J].Chemical Geology, 2016, 432:34-40. doi: 10.1016/j.chemgeo.2016.03.026
[26] Tabersky D, Luechinger N A, Rossier M, et al.Develop-ment and characterization of custom-engineered and compacted nanoparticles as calibration materials for quantification using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):955-962. doi: 10.1039/C4JA00054D
[27] Klemme S, Prowatke S, Münker C, et al.Synthesis and preliminary characterisation of new silicate, phosphate and titanite reference glasses[J].Geostandards and Geoanalytical Research, 2008, 32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x
[28] Horn I, Guillong M, Günther D.Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles-Implications for LA-ICP-MS[J].Applied Surface Science, 2001, 182(1-2):91-102. doi: 10.1016/S0169-4332(01)00465-2
[29] Borisov O V, Mao X, Russo R E.Effects of crater develop-ment on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2000, 55(11):1693-1704. doi: 10.1016/S0584-8547(00)00272-X
[30] Mank A J G, Mason P R D.A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples[J].Journal of Analytical Atomic Spectrometry, 1999, 14(8):1143-1153. doi: 10.1039/a903304a
[31] Li X, Liu X, Liu Y, et al.Accuracy of LA-ICPMS zircon U-Pb age determination:An inter-laboratory comparison[J].Science China Earth Sciences, 2015, 58(10):1722-1730. doi: 10.1007/s11430-015-5110-x
[32] Horstwood M S, Košler J, Gehrels G, et al.Community-derived standards for LA-ICP-MS U-(Th-) Pb geochro-nology-uncertainty propagation, age interpretation and data reporting[J].Geostandards and Geoanalytical Research, 2016, 40(3):311-332. doi: 10.1111/ggr.2016.40.issue-3
[33] 吴石头, 王亚平, 许春雪, 等.193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006
Wu S T, Wang Y P, Xu C X, et al.Elemental fractionation studies of 193nm ArF excimer laser ablation system at high spatial resolution mode[J].Chinese Journal of Analytical Chemistry, 2016, 44(7):1035-1041. doi: 10.11895/j.issn.0253-3820.151006
[34] Günther D, Heinrich C A.Comparison of the ablation behaviour of 266nm Nd:YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9):1369-1374. doi: 10.1039/A901649J
[35] Jeffries T E, Jackson S E, Longerich H P.Application of a frequency quintupled Nd:YAG source (λ=213nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals[J].Journal of Analytical Atomic Spectrometry, 1998, 13(9):935-940. doi: 10.1039/A801328D
[36] Kuhn B K, Birbaum K, Luo Y, et al.Fundamental studies on the ablation behaviour of Pb/U in NIST 610 and zircon 91500 using laser ablation inductively coupled plasma mass spectrometry with respect to geochronology[J].Journal of Analytical Atomic Spectrometry, 2010, 25(1):21-27. doi: 10.1039/B917261K
[37] Garbe-Schonberg D, Müller S.Nano-particulate pressed powder tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(6):990-1000. doi: 10.1039/C4JA00007B
[38] Zhang C, Hu Z, Zhang W, et al.A green and fast laser fusion technique for bulk silicate rock analysis by laser ablation ICP-MS[J].Analytical Chemistry, 2016, 88(20):10088-10094. doi: 10.1021/acs.analchem.6b02471
[39] Ubide T, McKenna C A, Chew D M, et al.High-resolution LA-ICP-MS trace element mapping of igneous minerals:In search of magma histories[J].Chemical Geology, 2015, 409:157-168. doi: 10.1016/j.chemgeo.2015.05.020
[40] Raimondo T, Payne J, Wade B, et al.Trace element mapping by LA-ICP-MS:Assessing geochemical mobility in garnet[J].Contributions to Mineralogy and Petrology, 2017, 172(4):17. doi: 10.1007/s00410-017-1339-z
[41] Bi M, Ruiz A M, Gornushkin I, et al.Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Applied Surface Science, 2000, 158(3-4):197-204. doi: 10.1016/S0169-4332(00)00027-1
[42] Müller W, Shelley M, Miller P, et al.Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell[J].Journal of Analytical Atomic Spectrometry, 2009, 24(2):209-214. doi: 10.1039/B805995K
[43] Steely A N, Hourigan J K, Juel E.Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS:Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation[J].Chemical Geology, 2014, 372:92-108. doi: 10.1016/j.chemgeo.2014.02.021
[44] Jackson S E, Günther D.The nature and sources of laser induced isotopic fractionation in laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2003, 18(3):205-212. doi: 10.1039/b209620j
[45] Gaboardi M, Humayun M.Elemental fractionation during LA-ICP-MS analysis of silicate glasses:Implications for matrix-independent standardization[J].Journal of Analytical Atomic Spectrometry, 2009, 24(9):1188-1197. doi: 10.1039/b900876d
[46] Mao X L, Russo R E.Invited paper observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles[J].Applied Physics A:Materials Science & Processing, 1996, 64(1):1-6. https://link.springer.com/article/10.1007/s003390050437
[47] Russo R E, Mao X L, Liu C, et al.Laser assisted plasma spectrochemistry:Laser ablation[J].Journal of Analytical Atomic Spectrometry, 2004, 19(9):1084-1089. doi: 10.1039/b403368j
-