Evaluation in the Application of Multi-instrument Synergy X-ray Fluorescence Spectrometry in a Regional Geochemical Survey
-
摘要: 在区域地球化学调查样品多元素分析测试中,通常将XRF、ICP-OES、ICP-MS、AFS等仪器相互配套使用,但由于XRF测定20多个元素,与其他仪器测定速度并不同步,影响了项目的整体进度。本方法对配套方案进行了优化,调整了XRF部分测量元素的分析方法,即将基体校正和谱线重叠校正涉及Na2O、MgO、V的数据由ICP-OES法测量;Cu、Pb、Zn、Mn、Th的数据由ICP-MS法测量;As、Bi的数据由AFS法测量。优化后的XRF方法测量元素减少为16个:SiO2、Al2O3、CaO、TFe2O3、K2O、Ti、P、Sr、Ba、Zr、Nb、Y、Rb、Br、Ga、Cl。通过设计的XRF数据处理程序,实现了这些不同方法的测量数据共享,利用ICP-OES、ICP-MS、AFS等测量数据对XRF数据进行基体效应和谱线重叠干扰校正。本方法精密度(RSD,n=12)为0.55%~8.22%,准确度(△logC)为0.000~0.031,用国家标准物质及实际样品验证的结果满足区域地球化学调查样品分析测试质量规范要求。本方案减少了XRF直接测量元素的数量,提高了多种仪器协同的分析效率。
-
关键词:
- 区域地球化学调查分析 /
- 多仪器协同 /
- X射线荧光光谱法 /
- 基体效应
Abstract: Multi-element analysis of a regional geochemical survey sample usually involves X-ray Fluorescence Spectrometry (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), Atomic Fluorescence Spectrometry (AFS) and other instruments. Because there are more than 20 elements determined by XRF, the detection speed of XRF is not synchronous with other instruments, which influences the overall progress of the project. The matching scheme is optimized, and the analysis method of XRF for part of the elements is adjusted in this study. The data of Na2O, MgO and V involved in matrix correction and spectral overlap correction are measured by ICP-OES. The data of Cu, Pb, Zn, Mn, and Th were measured by ICP-MS. As and Bi data were measured by AFS. The optimized XRF method reduces the number of elements to 16, namely SiO2, Al2O3, CaO, Fe2O3, K2O, Ti, P, Sr, Ba, Zr, Nb, Y, Rb, Br, Ga and Cl. Through the designed XRF data reduction program, the data sharing of different analysis methods is realized, and the influence of XRF data caused by matrix effects and spectral line overlap is corrected using the data from XRF, ICP-OES, ICP-MS and AFS. The precision of this method (RSD, n=12) is 0.55%-8.22%, and the accuracies (△logC) are 0-.0.031. The method is validated by determination of national standard reference materials and actual samples. The results meet the quality requirements for a regional geochemical survey. This scheme reduces the number of elements directly measured by XRF, and improves the analysis efficiency of various collaborative instruments. -
-
表 1 XRF仪器工作参数
Table 1. Working parameters of the XRF instrument
元素 电压(kV) 电流(mA) 滤光片 准直器 晶体 探测器 PHA 2θ(°) 测量时间(s) 谱峰 背景1 背景2 谱峰 背景 Cl 50 70 OUT Std Ge PC 140~300 92.780 94.35 - 60 20 Nb 50 70 F-Cu Fine LiF1 SC 100~280 21.374 20.98 21.76 15 5 Zr 50 70 OUT Std LiF1 SC 100~300 22.502 23.02 - 15 5 Y 50 70 OUT Std LiF1 SC 100~280 23.759 23.02 24.44 15 5 Sr 50 70 OUT Std LiF1 SC 100~300 25.123 24.64 25.64 15 5 Rb 50 70 OUT Std LiF1 SC 100~290 26.600 26.00 - 15 5 Th 50 70 F-Cu Fine LiF1 SC 70~270 27.455 27.08 - 20 10 Br 50 70 OUT Std LiF1 SC 100~300 29.943 30.92 - 30 15 Bi 50 70 F-Cu Fine LiF1 SC 90~270 32.990 32.46 - 20 8 Pb 50 70 OUT Std LiF1 SC 100~300 28.240 28.94 - 20 10 Ga 50 70 OUT Std LiF1 SC 80~290 38.879 38.42 39.56 15 5 Zn 50 70 OUT Std LiF1 SC 90~300 41.785 42.38 - 15 5 Cu 50 70 OUT Std LiF1 SC 100~300 45.010 45.56 - 20 10 Ni 50 70 OUT Std LiF1 SC 80~310 48.639 48.12 49.36 20 10 TFe2O3 50 70 F-Ti Fine LiF1 SC 90~330 57.471 58.40 - 10 4 Mn 50 70 OUT Std LiF1 SC 90~330 62.957 63.70 - 15 5 Cr 50 70 OUT Ultra LiF1 SC 70~340 69.321 68.50 - 20 10 V 50 70 OUT Fine LiF1 SC 100~270 76.877 76.08 - 20 10 Ti 50 70 OUT Std LiF1 SC 70~360 86.110 85.00 - 15 5 Ba 50 70 OUT Fine LiF1 SC 100~300 87.135 86.72 87.94 15 5 CaO 50 70 OUT Fine LiF1 PC 120~280 113.125 110.90 - 10 4 K2O 50 70 OUT Std LiF1 PC 120~280 136.675 133.55 - 10 4 P 50 70 OUT Std Ge PC 150~290 141.021 143.55 - 10 4 SiO2 50 70 OUT Fine PET PC 100~330 108.936 110.30 - 10 4 Al2O3 50 70 OUT Fine PET PC 100~300 144.562 147.45 - 10 4 MgO 50 70 OUT Std RX35 PC 100~330 21.165 23.55 - 15 5 Na2O 50 70 OUT Std RX35 PC 110~350 25.605 27.50 - 15 5 As 50 70 OUT Std LiF1 SC 100~300 33.980 33.50 33.56 20 5 Rh 50 70 OUT Std LiF1 SC 100~300 18.385 - - 20 - 注:背景栏中“-”表示不扣背景。 表 2 基体效应校正和谱线重叠校正元素
Table 2. The correction of matrix effect and spectral line overlap interference
元素 吸收-增强 谱线重叠 Cl CaO,Fe2O3,Al2O3 - Nb Fe2O3,Al2O3,Na2O,K2O - Zr SiO2,Fe2O3,CaO,Al2O3 Sr Y - Rb Sr Fe2O3,CaO,Al2O3 - Rb Fe2O3,CaO,Al2O3 - Th SiO2,Fe2O3 Rb,Bi Br Fe2O3,CaO,Al2O3 As,Pb Bi Fe2O3,Al2O3 - Pb SiO2,Al2O3 Th Ga Fe2O3,CaO - Zn SiO2,Fe2O3,Al2O3,MgO - Cu Fe2O3,CaO,Al2O3,Na2O,K2O - Ni SiO2,Fe2O3,Al2O3 Y TFe2O3 CaO,K2O,MgO,Na2O - Mn Fe2O3,CaO,Al2O3 - Cr SiO2,Fe2O3,CaO,Al2O3 V V CaO,Al2O3 Ti,Ba Ti Fe2O3,CaO,Al2O3,MgO - Ba Fe2O3,CaO Ti CaO SiO2,Fe2O3,Al2O3,MgO - K2O Fe2O3,CaO,Al2O3,Na2O - P CaO - SiO2 Fe2O3,CaO,Al2O3,MgO - Al2O3 Fe2O3,CaO,K2O,MgO,Na2O - MgO SiO2,Fe2O3,CaO,Al2O3,Na2O - Na2O SiO2,Fe2O3,CaO,Al2O3,K2O - As - Bi,Pb,Th 表 3 方法检出限
Table 3. Detection limits of the method
组分 检出限 本法 规范 SiO2 0.100 0.10 Al2O3 0.039 0.05 CaO 0.047 0.05 K2O 0.048 0.05 Fe2O3 0.049 0.05 Ti 9.800 10.00 P 8.700 10.00 Nb 1.800 2.00 Zr 1.7 2.0 Y 1.0 1.0 Sr 4.7 5.0 Ba 7.9 10 Rb 8.3 10 Br 0.9 1.0 Ga 1.9 2 Cl 19.4 20 注:氧化物的单位为10-2,其他元素的单位为10-6。 表 4 方法准确度和精密度
Table 4. Accuracy and precision tests of the method
组分 △logC RSD(%) SiO2 0.000~0.011 0.58~1.14 Al2O3 0.002~0.017 0.65~1.62 CaO 0.000~0.019 0.62~1.25 TFe2O3 0.000~0.019 0.57~1.33 K2O 0.000~0.015 0.55~1.06 Ti 0.001~0.019 1.05~1.58 P 0.006~0.024 2.39~4.53 Zr 0.001~0.018 0.86~2.29 Nb 0.001~0.019 1.98~3.42 Y 0.002~0.022 0.88~3.75 Sr 0.003~0.019 0.81~1.88 Ba 0.000~0.027 2.11~2.96 Rb 0.001~0.011 0.63~1.45 Br 0.002~0.031 2.56~7.92 Ga 0.002~0.019 2.77~5.37 Cl 0.004~0.030 2.57~8.22 -
[1] 周国华.多目标区域地球化学调查:分析测试面临的机遇和挑战[J].岩矿测试, 2010, 29(3):296-300. http://www.ykcs.ac.cn/article/id/ykcs_20100321
Zhou G H.Multi-purpose regional geochemical survey:Opportunities and challenges for geochemical analysis[J].Rock and Mineral Analysis, 2010, 29(3):296-300. http://www.ykcs.ac.cn/article/id/ykcs_20100321
[2] 叶家瑜, 张蕾.多目标地球化学勘查样品分析方法配套方案[J].地质通报, 2006, 25(6):741-744. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200606015.htm
Ye J Y, Zhang L.Combination schemes of sample analysis methods for multitarget geochemical survey[J].Geological Bulletin of China, 2006, 25(6):741-744. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200606015.htm
[3] 张勤.多目标区域地球化学填图中的54种指标配套分析方案和分析质量监控系统[J].第四纪研究, 2005, 25(3):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200503003.htm
Zhang Q.A complete set of analytical schemes and analytical data monitoring systems for determ in nations of 54 components in multipurpose geochemical mapping[J].Quaternary Sciences, 2005, 25(3):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200503003.htm
[4] 岩石矿物分析编委会.岩石矿物分析(第四版第四分册)[M].北京:地质出版社, 2011:791-865.
The Editorial Committee of Rocks and Minerals Analysis.Rocks and Minerals Analysis (The Fourth Edition:Part Ⅳ)[M].Beijing:Geological Publishing House, 2011:791-865.
[5] 罗立强, 詹秀春, 李国会. X射线荧光光谱分析[M].北京:化学工业出版社, 2015.
Luo L Q, Zhan X C, Li G H.X-ray Fluorescence Spectro-metry[M].Beijing:Chemical Industry Press, 2015.
[6] 于波, 严志远, 杨乐山, 等.X射线荧光光谱法测定土壤和水系沉积物中碳和氮等36个主次痕量元素[J].岩矿测试, 2006, 25(1):74-78. http://www.ykcs.ac.cn/article/id/ykcs_20060123
Yu B, Yan Z Y, Yang L S, et al.Determination of 36 major, minor and trace elements in soil and stream sediment samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2006, 25(1):74-78. http://www.ykcs.ac.cn/article/id/ykcs_20060123
[7] 苏梦晓, 陆安军.电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较[J].冶金分析, 2015, 35(5):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201702212.htm
Su M X, Lu A J.Comparison of inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry and spectrographic method for the determination of copper, lead, zinc and nickel in geochemical samples[J].Metallurgical Analysis, 2015, 35(5):48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-FGGL201702212.htm
[8] 刘珠丽, 李洁, 杨永强, 等.微波消解-ICP-AES-ICP-MS测定沉积物中23种元素的方法研究及应用.[J].环境化学, 2013, 32(12):2371-2377. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201312022.htm
Liu Z L, Li J, Yang Y Q, et al.Research and application of microwave assisted digestion procedure for the determination of 23 elements in sediments by ICP-AES/ICP-MS[J].Environmental Chemistry, 2013, 32(12):2371-2377. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201312022.htm
[9] Criss J W, Birks L S.Calculation methods for fluorescent X-ray spectrometry empirical coeffcients vs.fundamental parameters[J].Analytical Chemistry, 1968, 40(7):1080-1086. doi: 10.1021/ac60263a023
[10] Klimasara A J.Mathematical modeling of XRF matrix correction algorithms with an electronic spreadsheet[J].Advances in X-ray Analysis, 1994, 37:647-656. http://dl.acm.org/citation.cfm?id=1569480
[11] Lee R F, McConchie D R.Comprehensive major and trace elements analysis of geological material by X-ray fluorescence using low dilution fusion[J].X-Ray Spectrometry, 1982, 11(2):55-63. doi: 10.1002/(ISSN)1097-4539
[12] Younis A, Ahmadi Z, Adams M G, et al.A simple method for quantitative analysis of elements by WD-XRF using variable dilution factors in fusion bead technique for geologic specimens[J].X-Ray Spectrometry, 2017, 46(1):69-76. doi: 10.1002/xrs.v46.1
[13] 包生祥.X射线荧光光谱分析检出限计算公式[J].光谱学与光谱分析, 1992, 12(4):93-96. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700K&dbname=CAPJ2015
Bao S X.Calculation formula for detection limit of X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 1992, 12(4):93-96. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700K&dbname=CAPJ2015
[14] 陈静, 高志军, 陈冲科, 等.X射线荧光光谱法分析地质样品的应用技巧[J].岩矿测试, 2015, 34(1):91-98. http://www.ykcs.ac.cn/article/id/b1b0af5c-782b-4aa1-9875-e680d0194b3c
Chen J, Gao Z J, Chen C K, et al.Application skills on determination of geological sample by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2015, 34(1):91-98. http://www.ykcs.ac.cn/article/id/b1b0af5c-782b-4aa1-9875-e680d0194b3c
-