中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征

胡雪原, 郭瑞清, 努尔喀纳提·马达依普, 郭羽, 邹明煜, 吕彪, 魏震. 塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征[J]. 岩矿测试, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035
引用本文: 胡雪原, 郭瑞清, 努尔喀纳提·马达依普, 郭羽, 邹明煜, 吕彪, 魏震. 塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征[J]. 岩矿测试, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035
Xue-yuan HU, Rui-qing GUO, NUER Kanati·Madayipu, Yu GUO, Ming-yu ZOU, Biao LÜ, Zhen WEI. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang[J]. Rock and Mineral Analysis, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035
Citation: Xue-yuan HU, Rui-qing GUO, NUER Kanati·Madayipu, Yu GUO, Ming-yu ZOU, Biao LÜ, Zhen WEI. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang[J]. Rock and Mineral Analysis, 2017, 36(5): 538-550. doi: 10.15898/j.cnki.11-2131/td.201703190035

塔里木南缘布雅花岗岩和暗色包体的锆石U-Pb年代学及地球化学特征

  • 基金项目:
    中国地质调查局地质调查项目“中国主要陆块晚前寒武纪以来裂解重组过程的再造及其对成矿作用的制约”(1212011121064)专题“新疆塔里木南缘南华纪至三叠纪聚散过程研究”(212-61717)
详细信息
    作者简介: 胡雪原, 硕士研究生, 矿物学、岩石学、矿床学专业。E-mail:1553767881@qq.com
    通讯作者: 郭瑞清, 副教授, 硕士生导师, 从事岩石学及大地构造科研和教学工作。E-mail:guoruiqing8888@163.com
  • 中图分类号: P575.5

Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang

More Information
  • 塔里木西南缘铁克里克地区广泛发育早古生代中酸性侵入岩,本文对其中布雅岩体及其暗色包体进行系统的岩石学、年代学及岩石地球化学研究,确定了岩石成因及其构造属性。LA-MC-ICP-MS锆石U-Pb年代学研究表明,寄主石英二长闪长岩结晶年龄为432.6±2.5 Ma(MSWD=1.5),暗色包体结晶年龄为432.4±6.4 Ma(MSWD=0.031),二者形成时代相同,均为志留纪早期岩浆活动的产物。地球化学特征表明,布雅暗色包体应来源于地幔的部分熔融,而寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆不均匀的混合。野外及岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,是幔源岩浆底侵下地壳形成的岩浆混合作用的产物。它们是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。
  • 加载中
  • 图 1  研究区地质图

    Figure 1. 

    图 2  布雅寄主岩及其暗色包体的野外及镜下照片

    Figure 2. 

    图 3  布雅寄主岩和暗色包体的阴极发光图像

    Figure 3. 

    图 4  布雅寄主岩(a、b)和暗色包体(c、d)的锆石LA-MC-ICP-MS U-Pb年龄谐和图和加权平均图

    Figure 4. 

    图 5  (a) 布雅岩体的TAS岩石分类图解、(b)SiO2-K2O岩石系列图解、(c)寄主岩和暗色包体的稀土元素球粒陨石标准化配分图、(d)微量元素原始地幔标准化蛛网图。布雅碱性花岗岩数据引自文献[25]

    Figure 5. 

    图 6  暗色包体及其寄主岩主量元素同分母氧化物比值协变图(a、b)和微量元素协变图(c、d)

    Figure 6. 

    表 1  布雅寄主岩与暗色包体LA-MC-ICP-MS锆石U-Pb测试结果

    Table 1.  LA-MC-ICP-MS U-Pb data and calculated ages of zircons in host rocks and mafic enclaves from the Buya pluton

    测点号含量(×10-6)Th/U同位素比值年龄(Ma)
    ThU207Pb/206U1σ207Pb/235U1σ206Pb/238U1σ207Pb/206U1σ207Pb/235U1σ206Pb/238U1σ
    石英二长闪长岩
    TKJZ-1 5812133 0.27 0.055060.00122 0.524390.01025 0.06910.00073 41551 42874314
    TKJZ-2 7131876 0.38 0.057060.00135 0.554080.01169 0.07040.00075 49453 44884395
    TKJZ-3 3931366 0.29 0.05830.00131 0.564840.00787 0.07030.00074 54114 45554384
    TKJZ-4 4261404 0.30 0.055720.00128 0.546710.00818 0.07120.00076 44116 44354435
    TKJZ-5 8541894 0.45 0.057360.00149 0.549220.0129 0.06940.00076 50658 44484335
    TKJZ-6 7222806 0.26 0.055530.00122 0.529720.01018 0.06920.00073 43450 43274314
    TKJZ-7 2941151 0.26 0.055750.00147 0.529030.01267 0.06880.00076 44260 43184295
    TKJZ-8 9332075 0.45 0.057260.00128 0.547150.00767 0.06930.00074 50214 44354324
    TKJZ-9 6771724 0.39 0.056960.00143 0.542260.01223 0.0690.00075 49057 44084305
    TKJZ-10 5281482 0.36 0.057290.00139 0.553470.00925 0.07010.00077 50319 44764375
    TKJZ-11 5331495 0.36 0.056520.00149 0.53480.01283 0.06860.00076 47360 43584285
    TKJZ-12 4421211 0.36 0.056640.00132 0.546060.00834 0.070.00076 47816 44254365
    TKJZ-13 22933947 0.58 0.055720.00181 0.522540.01595 0.0680.00077 44174 427114245
    TKJZ-14 6522113 0.31 0.055420.00132 0.530440.0112 0.06940.00076 42954 43274335
    TKJZ-15 4061244 0.33 0.055810.00145 0.530270.01246 0.06890.00077 44559 43284305
    TKJZ-16 6341612 0.39 0.05570.00156 0.525920.01349 0.06850.00077 44064 42994275
    TKJZ-17 5682188 0.26 0.056450.00125 0.529850.01027 0.06810.00074 47050 43274254
    TKJZ-18 4471361 0.33 0.058870.00137 0.580510.01189 0.07150.00079 56252 46584455
    TKJZ-19 3801321 0.29 0.055530.00141 0.54290.01244 0.07090.00078 43358 44084425
    TKJZ-20 6412094 0.31 0.054690.00146 0.50990.01241 0.06760.00076 40061 41884225
    TKJZ-21 4581293 0.35 0.055450.00173 0.527070.01528 0.06890.0008 43071 430104305
    TKJZ-22 5571651 0.34 0.05860.00139 0.563410.00897 0.06970.00078 55217 45464345
    TKJZ-23 5301971 0.27 0.056580.0013 0.543640.00813 0.06970.00077 47516 44154345
    暗色包体
    TKBT-1 5501888 0.29 0.056860.00154 0.542310.0164 0.06920.00173 48630 4401143110
    TKBT-2 24821740 1.43 0.055230.00134 0.530560.01477 0.06970.00173 42228 4321043410
    TKBT-3 3881349 0.29 0.055440.00141 0.531810.01545 0.06960.00175 43029 4331043411
    TKBT-4 4101415 0.29 0.056110.00132 0.540130.01484 0.06980.00176 45727 4391043511
    TKBT-5 8762581 0.34 0.056910.00141 0.541280.01554 0.0690.00175 48828 4391043011
    TKBT-6 4912089 0.23 0.054950.00132 0.528820.01485 0.06980.00177 41028 4311043511
    TKBT-7 7522494 0.30 0.055720.00134 0.533150.01501 0.06940.00176 44128 4341043311
    TKBT-8 6972176 0.32 0.056750.0016 0.540980.01708 0.06920.00178 48232 4391143111
    TKBT-9 4431605 0.28 0.055870.00129 0.533160.0146 0.06920.00176 44727 4341043111
    TKBT-10 6461981 0.33 0.056820.00143 0.540510.01579 0.0690.00177 48529 4391043011
    TKBT-11 25762574 1.00 0.056720.00142 0.541920.01577 0.06930.00178 48129 4401043211
    下载: 导出CSV

    表 2  布雅寄主岩与暗色包体的全岩主量(%)与微量元素(×10-6)组成

    Table 2.  Major and trace element compositions of host rock and its MMEs from the Buya pluton

    岩性石英二长闪长岩二长花岗岩暗色包体
    样品编号TK03-1TK03-2TK04-1TK04-2TK05-1TK05-2TK07-1TK07-2TK08-1TK03-10TK03-11TK03-12TK03-13TK03-14TK03-15TK03-16TK03-17TK03-18
    SiO2 64.363.368.167.967.066.5 71.070.170.570.470.970.570.470.561.760.754.454.6
    Al2O3 15.715.215.315.216.216.1 15.215.415.3514.815.615.415.315.315.113.513.914.2
    Fe2O3T 4.875.193.063.042.792.61 1.481.521.661.371.381.331.461.496.487.647.247.09
    CaO 3.403.512.462.422.342.23 1.041.081.041.481.101.071.040.974.374.898.307.90
    MgO 2.062.261.101.060.960.91 0.430.490.420.190.340.340.420.272.973.476.15.75
    Na2O 4.644.404.904.845.115.08 4.854.725.154.815.014.935.075.064.774.623.863.93
    K2O 4.214.154.013.894.474.44 4.95.214.554.725.105.004.954.862.891.503.193.33
    TiO2 0.470.530.280.280.30.28 0.180.240.190.190.180.180.180.160.640.760.860.83
    MnO 0.110.120.070.070.060.06 0.030.030.030.030.030.030.030.030.871.030.980.96
    P2O5 0.210.210.140.140.170.15 0.070.090.070.070.070.070.070.050.230.380.940.9
    LOI 0.400.450.420.430.630.79 0.610.380.531.170.380.270.560.690.361.711.030.9
    总计 100.699.6100.199.5100.399.5 99.999.599.799.4100.299.399.799.699.899.5100.299.9
    A/CNK 0.850.840.910.920.930.94 1.001.001.000.940.990.990.981.000.80.750.560.58
    Na2O+K2O 8.858.558.918.739.589.52 9.759.939.79.5310.119.95109.927.666.127.057.26
    K2O/Na2O 0.910.940.820.80.870.87 1.011.100.880.981.001.000.980.960.610.320.830.85
    Mg# 0.500.500.460.450.450.45 0.40.410.400.210.360.360.400.300.290.520.510.66
    La 79.188.857.955.368.364.8 45.257.24347.736.636.845.327.288.8134140.5142
    Ce 150169110105128122 83105818467688251178254281280
    Pr 15.817.911.210.913.312.3 8.410.78.38.66.76.78.35.11926.730.830.4
    Nd 53.761.637.736.943.841.2 26.934.726.828.321.421.226.516.565.790.2106.5106.5
    Sm 9.411.06.56.47.87.2 4.35.54.14.53.53.44.32.912.215.117.617.3
    Eu 2.122.51.531.471.741.56 0.91.090.950.960.790.760.930.612.63.263.833.76
    Gd 6.067.44.474.534.774.65 2.462.932.452.652.092.092.51.878.0810.510.5510.45
    Tb 0.70.910.50.550.560.54 0.280.310.280.30.210.220.250.220.991.231.111.1
    Dy 3.784.42.662.652.882.59 1.31.411.371.221.011.041.271.014.816.185.084.89
    Ho 0.620.790.470.480.460.47 0.190.210.220.190.160.160.170.160.831.070.830.77
    Er 1.722.11.281.151.331.3 0.560.610.580.580.490.410.490.472.32.961.951.82
    Tm 0.240.240.180.210.180.16 0.080.070.080.060.050.050.080.060.310.40.220.23
    Yb 1.411.751.131.11.141.09 0.40.450.380.490.390.30.350.382.062.591.411.43
    Lu 0.210.270.180.170.160.16 0.040.050.060.060.060.030.040.070.30.390.210.21
    Rb 180188153150168168 221244204230263265223255159117.5202204
    Ba 1440141592989416101570 1260121011751250121011801280114543123411101170
    Th 32.835.629.329.633.632.4 24.12625.129.323.523.122.728.641.454.250.350.6
    U 4.64.94.34.55.25.8 3.53.24.64.73.83.93.76.26.87.711.410.2
    K 349493445133289322933710836859 406774325037771391834233741673410924034523991124522648127643
    Nb 18.722.415.715.816.215.5 10.812.111.212.413.213.611.515.724.831.425.122.3
    Ta 1.31.61.21.21.31.2 0.91.01.01.01.01.10.91.31.72.21.41.3
    Sr 1065104596093713201315 79377978869075676979271489175613101380
    P 916916611611742654 3053933053053053053052181003165841013927
    Zr 255278214216234236 146177151162145145149137341424247247
    Hf 6.36.75.75.75.95.8 3.84.64.24.64.54.44.44.78.910.46.15.8
    Ti 281731771678167817981678 10791439113911391079107910799593836455551554975
    Y 18.822.514.514.114.413.9 6.16.86.36.35.25.35.85.424.731.922.422.2
    Cr 607040503040 30202020102010209090190180
    Ni 192120232017 131211131211121532327768
    ΣREE 324.9368.7236.3227.4274.9259.9 173.6220.7169.5180140.5141.1172.9107.4386.5548.6601.6600.9
    LREE/HREE 21.0419.6420.7419.9822.9522.72 31.7135.5430.2731.4430.5131.8232.5824.3418.6420.6727.1627.75
    (La/Yb)N 40.2436.436.7536.0642.9842.64 81.0591.1881.1769.8367.3287.9992.8451.3430.9237.1171.4871.23
    δEu 0.860.850.860.830.870.83 0.840.830.920.850.890.870.860.80.80.790.860.85
    下载: 导出CSV
  • [1]

    Elburg M A.Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6):1385-1408. doi: 10.1093/petrology/37.6.1385

    [2]

    Yang J H, Wu F Y, Chung S L, et al.Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68:4469-4483. doi: 10.1016/j.gca.2004.04.015

    [3]

    Yang J H, Wu F Y, Wilde S A, et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J].Contributions to Mineralogy and Petrology, 2007, 153:177-190. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801002031.htm

    [4]

    Cheng Y, Spandler C, Mao J, et al.Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4):659-676. doi: 10.1007/s00410-012-0766-0

    [5]

    Flood R H, Shaw S E.Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J].Lithos, 2014, 198-199(3):92-102. http://www.sciencedirect.com/science/article/pii/S002449371400098X

    [6]

    Clemens J D, Elburg M A.Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 175-176(5):351-352. http://linkinghub.elsevier.com/retrieve/pii/S0024493713001461

    [7]

    Wyborn D.Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 154(6):353-354. http://adsabs.harvard.edu/abs/2013Litho.175..353W

    [8]

    Shellnutt J G, Jahn B M, Dostal J.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2):34-46. doi: 10.1016/j.lithos.2010.07.011

    [9]

    Niu Y, Zhao Z, Zhu D C, et al.Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J].Earth-Science Reviews, 2013, 127(2):96-110. http://adsabs.harvard.edu/abs/2013ESRv..127...96N

    [10]

    Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370(4):1-18. https://rd.springer.com/content/pdf/10.1007%2Fs11434-006-2122-0.pdf

    [11]

    Chen S, Niu Y, Sun W, et al.On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5):577-596. doi: 10.1007/s00710-015-0383-5

    [12]

    Barbarin B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J].Lithos, 2005, 80(1):155-177. https://link.springer.com/article/10.1007/s00710-015-0383-5

    [13]

    Kaygusuz A, Aydinakir E.Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3):247-277. doi: 10.1016/j.chemer.2008.08.002

    [14]

    Kocak K, Zedef V, Kansun G.Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J].Mineralogy and Petrology, 2011, 103(1):149-167. https://link.springer.com/content/pdf/10.1007%2Fs00710-011-0165-7.pdf

    [15]

    Perugini D, Poli G.The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J].Lithos, 2012, 153(8):261-277. http://www.sciencedirect.com/science/article/pii/S0024493712000461

    [16]

    Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224. https://link.springer.com/article/10.1007/s00710-011-0187-1

    [17]

    Dan W, Wang Q, Wang X C, et al.Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016

    [18]

    Chen B, Chen Z C, Jahn B M.Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4):343-358. doi: 10.1016/j.lithos.2009.01.015

    [19]

    Zhao K D, Jiang S Y, Yang S Y, et al.Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1):310-324. doi: 10.1016/j.gr.2011.09.010

    [20]

    Xia R, Wang C, Min Q, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234-235(3):47-60. http://adsabs.harvard.edu/abs/2015Litho.234...47X

    [21]

    Zeng R, Lai J, Mao X, et al.Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121:20-33. doi: 10.1016/j.jseaes.2016.02.009

    [22]

    Zheng Y F, Chen Y X, Dai L Q, et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7):1045-1069. doi: 10.1007/s11430-015-5097-3

    [23]

    陈国超, 裴先治, 李瑞保, 等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm

    Chen G C, Pei X Z, Li R B, et al.Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J].Earth Science Frontiers, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm

    [24]

    李玮, 高卫, 刘淑琴, 等.塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm

    Li W, Gao W, Liu S Q, et al.Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J].Xinjiang Geology, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm

    [25]

    Ye H M, Li X H, Li Z X, et al.Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1):126-138. doi: 10.1016/j.gr.2007.08.005

    [26]

    陈博, 秦克章, 唐冬梅, 等.新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J].岩石学报, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm

    Chen B, Qin K Z, Tang D M, et al.Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J].Acta Petrologica Sinica, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm

    [27]

    崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm

    Cui J W, Guo X P, Ding X Z, et al.Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J].Earth Science Frontiers, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm

    [28]

    Zhang C L, Ye X T, Zou H B, et al.Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280:31-45. doi: 10.1016/j.precamres.2016.04.011

    [29]

    Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3

    [30]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Wu Y B, Zheng Y F.Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    [31]

    Siebe L, Blaha U, Chen F, et al.Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1):8-23. doi: 10.1007/s00531-004-0445-0

    [32]

    高晓峰, 校培喜, 康磊, 等.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J].岩石学报, 2013, 29(9):109-123. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm

    Gao X F, Xiao P X, Kang L, et al.Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J].Acta Petrologica Sinica, 2013, 29(9):3065-3079. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm

    [33]

    Liu Z, Jiang Y H, Jia R Y, et al.Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1):91-110. doi: 10.1007/s00710-013-0288-0

    [34]

    Dahlquist J A.Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6):643-655. doi: 10.1016/S0895-9811(02)00112-8

    [35]

    Baxter S, Fecly M.Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76:63-74. doi: 10.1007/s007100200032

    [36]

    Grogan S E, Reavy R J.Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6):929-939. doi: 10.1180/0026461026660068

    [37]

    邹涛, 王玉往, 王京彬, 等.内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(增刊):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm

    Zou T, Wang Y W, Wang J B, et al.Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J].Journal of Jilin University(Earth Science), 2012, 42(Supplement):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm

    [38]

    张传林, 于海锋, 沈家林, 等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm

    Zhang C L, Yu H F, Shen J L, et al.Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J].Geological Review, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm

    [39]

    李天福, 张建新.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J].岩石学报, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm

    Li T F, Zhang J X.Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J].Acta Petrologica Sinica, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm

    [40]

    魏国齐, 贾承造, 李本亮, 等.塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J].科学通报, 2002, 47(增刊):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm

    Wei G Q, Jia C Z, Li B L, et al.Silurian to Devonian foreland basin in the south edge of Tarim Basin[J].Chinese Science Bulletin, 2002, 47(Supplement):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm

    [41]

    李丕龙, 冯建辉, 樊太亮, 等.塔里木盆地构造沉积与成藏[M].北京:地质出版社, 2010:4-43.

    Li P L, Feng J H, Fan T L, et al.Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M].Beijing:Geological Publishing House, 2010:4-43.

    [42]

    李曰俊, 孙龙德, 杨海军, 等.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J].地质科学, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm

    Li Y J, Sun L D, Yang H J, et al.New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J].Chinese Journal of Geology, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm

    [43]

    杨海军, 李曰俊, 李勇, 等.塔里木盆地南部玛东早古生代褶皱-冲断带[J].岩石学报, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm

    Yang H J, Li Y J, Li Y, et al.Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J].Acta Petrologica Sinica, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2284
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2017-03-19
修回日期:  2017-06-15
录用日期:  2017-07-20

目录