Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang
-
摘要: 塔里木西南缘铁克里克地区广泛发育早古生代中酸性侵入岩,本文对其中布雅岩体及其暗色包体进行系统的岩石学、年代学及岩石地球化学研究,确定了岩石成因及其构造属性。LA-MC-ICP-MS锆石U-Pb年代学研究表明,寄主石英二长闪长岩结晶年龄为432.6±2.5 Ma(MSWD=1.5),暗色包体结晶年龄为432.4±6.4 Ma(MSWD=0.031),二者形成时代相同,均为志留纪早期岩浆活动的产物。地球化学特征表明,布雅暗色包体应来源于地幔的部分熔融,而寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆不均匀的混合。野外及岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,是幔源岩浆底侵下地壳形成的岩浆混合作用的产物。它们是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。
-
关键词:
- 铁克里克 /
- 布雅岩体 /
- LA-MC-ICP-MS锆石U-Pb年代学 /
- 岩浆混合
Abstract: Paleozoic acidic intrusive rocks are widespread in the Tiekelike tectonic belt of the southern margin of Tarim. Petrography, whole-rock major and trace elements, and zircon U-Pb dating are reported for the Buya granodiorite and its mafic microgranular enclaves (MMEs), which are used to constrain their petrogenesis and tectonic setting. High-precision LA-MC-ICP-MS zircon U-Pb dating has revealed that the quartz monzobiorite was formed at 432.6±2.5 Ma (MSWD=1.5), and its microgranular enclaves were formed at 432.4±6.4 Ma (MSWD=0.031) indicating that both of them are the products of early Silurian magma activity. Chemical composition suggests that the enclaves were derived from partial melting of the mantle, while the magma of the host rocks is mainly crustal and is mixed with minor mantle-derived magma. Both the field and petrographic characteristics show that the dark enclaves were formed by the rapid condensation of the mafic magma into the felsic magma, which is the product of the magmatic mixing by the mantle underplating of the lower crust. They are magmatic records of the late stage of early Paleozoic collision orogeny in the southern margin of Tarim.-
Key words:
- Tiekelike tectonic belt /
- Buya pluton /
- LA-MC-ICP-MS zircon U-Pb dating /
- magma mixing
-
花岗质岩石中普遍发育的暗色包体蕴含丰富的壳-幔作用信息,是了解花岗岩成因和演化的重要窗口,也是了解岩浆混合作用方式、成岩过程物化条件、深部壳幔相互作用过程等方面信息不可缺少的研究对象,众多学者对其开展了大量的研究工作[1-3]。但是暗色包体的成因机理以及与寄主岩石之间的成因联系仍存在较大争议[4-5],目前主要的成因模式有以下三种观点:① 花岗岩源区熔融残留体或围岩捕掳体[6-7];② 同源岩浆早期结晶分异堆晶体[8-11];③ 壳幔岩浆混合作用的产物[12-17]。 近些年来,对暗色包体的研究主要是应用于地球化学测试,尤其用锆石Hf同位素或全岩Sr-Nd对包体来源进行示踪[18-20]。一般来说,地幔来源物质的εHf(t)和εNd(t)为正值且明显高于地壳来源物质。然而源于年轻地壳的物质可能有较高的εNd(t)和εHf(t)值[21],来源于富集地幔或者上升过程中受到了地壳混染的地幔物质也可能会有较低的εNd(t)和εHf(t)值[22]。因此,仅通过分析包体样品中的元素或同位素组成,并对比于地幔或地壳中一些特征元素或同位素的含量,很难确定包体的物质来源。暗色包体的野外宏观特征以及显微结构携带有大量的岩浆演化信息[23],所以研究暗色包体应以野外地质和岩相学为基础,其他证据则是在此基础上开展的进一步验证。 铁克里克地区布雅岩体年代学研究数据较少,仅有的两个数据年龄值(459±23 Ma[24],430±12 Ma[25])差别较大且有效数据点较少,因此有必要用高精度的LA-MC-ICP-MS锆石U-Pb同位素定年技术对布雅岩体进行重新定年。值得关注的是,布雅岩体中广泛发育暗色包体,前人对其仅进行少量地球化学研究。因此,对岩体及其暗色包体的年代学与成因还需做进一步研究。本文在详细的野外地质调查和岩相学研究基础上,对布雅岩体和暗色包体进行高精度的LA-MC-ICP-MS U-Pb同位素定年及X射线荧光光谱技术[26]岩石化学成分测试分析,准确约束并限定了寄主岩及其暗色包体的形成时代及地球化学特征,拟为进一步探讨铁克里克地区岩浆岩源区性质、演化过程及其构造动力学背景提供新的证据。 1. 区域地质及岩体特征
1.1 区域地质
铁克里克构造带位于新疆塔里木盆地西南缘,北接塔里木板块以铁克里克北缘断裂为界,南邻西昆仑造山带以柯岗大断裂为界,是西昆仑造山带和塔里木板块结合部位(图 1a、b)。崔军文等[27]认为该构造带是出露于西昆仑北带复式背斜核部的一个穹隆状结晶推覆岩片,在平面上呈东宽西窄的条形分布,西段由长条状断片组成,东段铁克里克山呈东西向拉长的菱形块体,东、西两段呈完全不同的动力学特征,并且地层分布上差异也较为明显(图 1b)。1.2 岩体特征
布雅岩体侵位于下元古界埃连卡特岩群绢云绿泥(绢云石英)片岩中[28]。岩体沿着和田—布雅公路近南北向出露约3000米,其边缘相为二长花岗岩,中心相为石英二长闪长岩,二者呈渐变过渡接触关系。本次通过野外地质观察发现石英二长闪长岩中分布大量暗色包体(图 1c),密集的地方常成群产出并发育双包体(图 2a),包体颜色为深灰色至灰黑色,大小悬殊,一般在5~30 cm,形态大多呈浑圆状、椭球状,包体与寄主岩界限清晰,部分界限模糊,多见细粒冷凝边,并在包体周围形成一圈钾长石斑晶的富集带(图 2b),并见细小的反向脉,宽约1 cm(图 2c),包体中普遍捕获斜长石斑晶(图 2d),局部捕获寄主岩石(图 2e)。而二长花岗岩中几乎未见暗色包体出露。图 2. 布雅寄主岩及其暗色包体的野外及镜下照片a—包体群及双包体;b—细粒冷凝边;c—长英质反向脉;d—斜长石捕掳晶;e—包体中捕获寄主岩石; f—石英二长闪长岩中斜长石的韵律环带;g—石英二长闪长岩中斜长石的熔蚀结构及黑色细小环带;h—包体中斜长石的熔蚀结构及黑色细小环带;i—暗色包体中针状磷灰石(f~i均为正交偏光)。Pl—斜长石;Am—角闪石;Bi—黑云母;Q—石英;Ap—磷灰石。Figure 2. Field photos and section photographs of the host rocks and mafic enclaves from the Buya pluton2. 实验部分
2.1 LA-MC-ICP-MS锆石U-Pb同位素定年
样品的锆石分选由河北廊坊地源矿物测试分选公司完成。在双目镜下观察分选好的锆石,将晶形完整、无裂隙和包裹体的锆石挑出,用环氧树脂制靶,并打磨至锆石出露约一半后抛光,然后在场发射环境扫描电子显微镜附属的MonoCL3+系统上进行锆石矿物内部结构的阴极发光(CL)分析。锆石制靶、阴极发光图像采集由北京锆年领航科技有限公司完成。 锆石原位U-Pb测年在西北大学大陆动力学国家重点实验室完成。将193 nm的ArF准分子激光与Agilent7500a型ICP-MS仪器联接,以He为剥蚀物质载气,用人工合成硅酸盐玻璃标准参考物质NIST610进行仪器最佳化,用29Si作内标测定锆石U、Th和Pb含量,用91500标准锆石做外部校正,测试所用的激光束斑直径为32 μm。元素含量以NIST610为内标,样品的同位素比值和元素含量数据处理采用GLITTER(4.0版,Macquarie University)软件,并采用Andersen(2002) 软件对测试数据进行普通铅校正,详细实验流程见Yuan等[29]。年龄计算及谐和图采用ISOPLOT软件(3.0版,Ludwig,2003) 计算获得。2.2 X射线荧光光谱岩石地球化学分析
本次在布雅岩体采集14件寄主岩石和4件暗色包体进行全岩地球化学分析。样品磨碎至200目后,在广州澳实矿物实验室进行主量和微量元素分析测试。 用Panalytical Axios型X射线荧光光谱仪(荷兰帕纳科公司)进行全岩主量元素分析,方法代码ME-XRF06。测试相对标准偏差(RSD)根据含量不同有所差异,如高含量的SiO2(含量大于50%),RSD<0.8%,总体优于5%。实验过程如下:将试样煅烧后加入氟石助熔物,充分混和后放置在自动熔炼仪中,使之在1000℃以上熔融。熔融物倒出后形成扁平玻璃片,再用XRF分析主量元素,分析精度优于5%。 用Elan9000电感耦合等离子体质谱仪(美国PerkinElmer公司)测定微量元素含量,方法代码ME-MS81,总体分析精度优于5%。实验过程为:将试样加入偏硼酸锂熔剂中,混合均匀,在1000℃以上的熔炉中熔化,熔液冷却后用硝酸定容,再用ICP-MS分析微量元素,分析精度优于10%。3. 结果与讨论
3.1 寄主岩及暗色包体锆石U-Pb年龄
对1件寄主石英二长闪长岩和1件暗色包体锆石进行LA-MC-ICP-MS U-Pb年龄测试,分析结果见表 1。阴极发光图像显示,锆石呈自形-半自形柱状或短柱状,粒径介于50~150 μm,晶体长宽比为2:1~4:1。所有锆石均为无色透明,基本不含继承锆石,内部发育明显的岩浆生长振荡环带结构(图 3),并且锆石的Th/U值为0.23~1.43,均大于0.1,暗示这些锆石均为岩浆锆石[30-31]。表 1. 布雅寄主岩与暗色包体LA-MC-ICP-MS锆石U-Pb测试结果Table 1. LA-MC-ICP-MS U-Pb data and calculated ages of zircons in host rocks and mafic enclaves from the Buya pluton测点号 含量(×10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 石英二长闪长岩 TKJZ-1 581 2133 0.27 0.05506 0.00122 0.52439 0.01025 0.0691 0.00073 415 51 428 7 431 4 TKJZ-2 713 1876 0.38 0.05706 0.00135 0.55408 0.01169 0.0704 0.00075 494 53 448 8 439 5 TKJZ-3 393 1366 0.29 0.0583 0.00131 0.56484 0.00787 0.0703 0.00074 541 14 455 5 438 4 TKJZ-4 426 1404 0.30 0.05572 0.00128 0.54671 0.00818 0.0712 0.00076 441 16 443 5 443 5 TKJZ-5 854 1894 0.45 0.05736 0.00149 0.54922 0.0129 0.0694 0.00076 506 58 444 8 433 5 TKJZ-6 722 2806 0.26 0.05553 0.00122 0.52972 0.01018 0.0692 0.00073 434 50 432 7 431 4 TKJZ-7 294 1151 0.26 0.05575 0.00147 0.52903 0.01267 0.0688 0.00076 442 60 431 8 429 5 TKJZ-8 933 2075 0.45 0.05726 0.00128 0.54715 0.00767 0.0693 0.00074 502 14 443 5 432 4 TKJZ-9 677 1724 0.39 0.05696 0.00143 0.54226 0.01223 0.069 0.00075 490 57 440 8 430 5 TKJZ-10 528 1482 0.36 0.05729 0.00139 0.55347 0.00925 0.0701 0.00077 503 19 447 6 437 5 TKJZ-11 533 1495 0.36 0.05652 0.00149 0.5348 0.01283 0.0686 0.00076 473 60 435 8 428 5 TKJZ-12 442 1211 0.36 0.05664 0.00132 0.54606 0.00834 0.07 0.00076 478 16 442 5 436 5 TKJZ-13 2293 3947 0.58 0.05572 0.00181 0.52254 0.01595 0.068 0.00077 441 74 427 11 424 5 TKJZ-14 652 2113 0.31 0.05542 0.00132 0.53044 0.0112 0.0694 0.00076 429 54 432 7 433 5 TKJZ-15 406 1244 0.33 0.05581 0.00145 0.53027 0.01246 0.0689 0.00077 445 59 432 8 430 5 TKJZ-16 634 1612 0.39 0.0557 0.00156 0.52592 0.01349 0.0685 0.00077 440 64 429 9 427 5 TKJZ-17 568 2188 0.26 0.05645 0.00125 0.52985 0.01027 0.0681 0.00074 470 50 432 7 425 4 TKJZ-18 447 1361 0.33 0.05887 0.00137 0.58051 0.01189 0.0715 0.00079 562 52 465 8 445 5 TKJZ-19 380 1321 0.29 0.05553 0.00141 0.5429 0.01244 0.0709 0.00078 433 58 440 8 442 5 TKJZ-20 641 2094 0.31 0.05469 0.00146 0.5099 0.01241 0.0676 0.00076 400 61 418 8 422 5 TKJZ-21 458 1293 0.35 0.05545 0.00173 0.52707 0.01528 0.0689 0.0008 430 71 430 10 430 5 TKJZ-22 557 1651 0.34 0.0586 0.00139 0.56341 0.00897 0.0697 0.00078 552 17 454 6 434 5 TKJZ-23 530 1971 0.27 0.05658 0.0013 0.54364 0.00813 0.0697 0.00077 475 16 441 5 434 5 暗色包体 TKBT-1 550 1888 0.29 0.05686 0.00154 0.54231 0.0164 0.0692 0.00173 486 30 440 11 431 10 TKBT-2 2482 1740 1.43 0.05523 0.00134 0.53056 0.01477 0.0697 0.00173 422 28 432 10 434 10 TKBT-3 388 1349 0.29 0.05544 0.00141 0.53181 0.01545 0.0696 0.00175 430 29 433 10 434 11 TKBT-4 410 1415 0.29 0.05611 0.00132 0.54013 0.01484 0.0698 0.00176 457 27 439 10 435 11 TKBT-5 876 2581 0.34 0.05691 0.00141 0.54128 0.01554 0.069 0.00175 488 28 439 10 430 11 TKBT-6 491 2089 0.23 0.05495 0.00132 0.52882 0.01485 0.0698 0.00177 410 28 431 10 435 11 TKBT-7 752 2494 0.30 0.05572 0.00134 0.53315 0.01501 0.0694 0.00176 441 28 434 10 433 11 TKBT-8 697 2176 0.32 0.05675 0.0016 0.54098 0.01708 0.0692 0.00178 482 32 439 11 431 11 TKBT-9 443 1605 0.28 0.05587 0.00129 0.53316 0.0146 0.0692 0.00176 447 27 434 10 431 11 TKBT-10 646 1981 0.33 0.05682 0.00143 0.54051 0.01579 0.069 0.00177 485 29 439 10 430 11 TKBT-11 2576 2574 1.00 0.05672 0.00142 0.54192 0.01577 0.0693 0.00178 481 29 440 10 432 11 3.2 寄主岩及暗色包体岩石地球化学特征
3.2.1 主量元素特征
本文14件寄主岩和4件包体岩石地球化学样品的主量、微量元素分析结果见表 2,另外,引用Ye等[25]的11个寄主岩数据进行对比分析。布雅寄主岩和暗色包体的主量元素含量有较大的变化范围。其中,寄主石英二长闪长岩、二长花岗岩的SiO2含量(63.3%~71.0%)明显高于暗色包体的SiO2含量(54.4%~61.7%),而CaO(0.97%~3.51%)、MgO(0.19%~2.26%)、Fe2O3T(1.33%~4.87%)明显低于包体的CaO(4.37%~8.30%)、MgO(2.97%~6.10%)、Fe2O3T(6.48%~7.64%),与后者含更多角闪石、黑云母等暗色矿物相一致;寄主岩与包体均有较高的A12O3含量(14.80%~16.20%,13.05%~15.50%);寄主岩的A/CNK值为0.84~1.00,属准铝质-弱过铝质系列,包体的A/CNK值为0.56~0.80,属准铝质系列;寄主岩的全碱含量(8.55%~10.15%)相对包体的全碱含量(6.12%~7.66%)较高;在TAS岩石分类图中(图 5a),寄主岩落入Irvine分界线上方石英二长岩、花岗岩两个区域中,包体分别落入Irvine分界线上、下方二长闪长岩、二长岩、闪长岩三个区域中,二者均与岩相学不同,可能是K2O含量较高造成的;在硅钾(SiO2-K2O)图解(图 5b)上,除包体的一个数据落入钙碱性系列,其余各样品均落在钾玄岩-高钾钙碱性系列区域内。表 2. 布雅寄主岩与暗色包体的全岩主量(%)与微量元素(×10-6)组成Table 2. Major and trace element compositions of host rock and its MMEs from the Buya pluton岩性 石英二长闪长岩 二长花岗岩 暗色包体 样品编号 TK03-1 TK03-2 TK04-1 TK04-2 TK05-1 TK05-2 TK07-1 TK07-2 TK08-1 TK03-10 TK03-11 TK03-12 TK03-13 TK03-14 TK03-15 TK03-16 TK03-17 TK03-18 SiO2 64.3 63.3 68.1 67.9 67.0 66.5 71.0 70.1 70.5 70.4 70.9 70.5 70.4 70.5 61.7 60.7 54.4 54.6 Al2O3 15.7 15.2 15.3 15.2 16.2 16.1 15.2 15.4 15.35 14.8 15.6 15.4 15.3 15.3 15.1 13.5 13.9 14.2 Fe2O3T 4.87 5.19 3.06 3.04 2.79 2.61 1.48 1.52 1.66 1.37 1.38 1.33 1.46 1.49 6.48 7.64 7.24 7.09 CaO 3.40 3.51 2.46 2.42 2.34 2.23 1.04 1.08 1.04 1.48 1.10 1.07 1.04 0.97 4.37 4.89 8.30 7.90 MgO 2.06 2.26 1.10 1.06 0.96 0.91 0.43 0.49 0.42 0.19 0.34 0.34 0.42 0.27 2.97 3.47 6.1 5.75 Na2O 4.64 4.40 4.90 4.84 5.11 5.08 4.85 4.72 5.15 4.81 5.01 4.93 5.07 5.06 4.77 4.62 3.86 3.93 K2O 4.21 4.15 4.01 3.89 4.47 4.44 4.9 5.21 4.55 4.72 5.10 5.00 4.95 4.86 2.89 1.50 3.19 3.33 TiO2 0.47 0.53 0.28 0.28 0.3 0.28 0.18 0.24 0.19 0.19 0.18 0.18 0.18 0.16 0.64 0.76 0.86 0.83 MnO 0.11 0.12 0.07 0.07 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.87 1.03 0.98 0.96 P2O5 0.21 0.21 0.14 0.14 0.17 0.15 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.05 0.23 0.38 0.94 0.9 LOI 0.40 0.45 0.42 0.43 0.63 0.79 0.61 0.38 0.53 1.17 0.38 0.27 0.56 0.69 0.36 1.71 1.03 0.9 总计 100.6 99.6 100.1 99.5 100.3 99.5 99.9 99.5 99.7 99.4 100.2 99.3 99.7 99.6 99.8 99.5 100.2 99.9 A/CNK 0.85 0.84 0.91 0.92 0.93 0.94 1.00 1.00 1.00 0.94 0.99 0.99 0.98 1.00 0.8 0.75 0.56 0.58 Na2O+K2O 8.85 8.55 8.91 8.73 9.58 9.52 9.75 9.93 9.7 9.53 10.11 9.95 10 9.92 7.66 6.12 7.05 7.26 K2O/Na2O 0.91 0.94 0.82 0.8 0.87 0.87 1.01 1.10 0.88 0.98 1.00 1.00 0.98 0.96 0.61 0.32 0.83 0.85 Mg# 0.50 0.50 0.46 0.45 0.45 0.45 0.4 0.41 0.40 0.21 0.36 0.36 0.40 0.30 0.29 0.52 0.51 0.66 La 79.1 88.8 57.9 55.3 68.3 64.8 45.2 57.2 43 47.7 36.6 36.8 45.3 27.2 88.8 134 140.5 142 Ce 150 169 110 105 128 122 83 105 81 84 67 68 82 51 178 254 281 280 Pr 15.8 17.9 11.2 10.9 13.3 12.3 8.4 10.7 8.3 8.6 6.7 6.7 8.3 5.1 19 26.7 30.8 30.4 Nd 53.7 61.6 37.7 36.9 43.8 41.2 26.9 34.7 26.8 28.3 21.4 21.2 26.5 16.5 65.7 90.2 106.5 106.5 Sm 9.4 11.0 6.5 6.4 7.8 7.2 4.3 5.5 4.1 4.5 3.5 3.4 4.3 2.9 12.2 15.1 17.6 17.3 Eu 2.12 2.5 1.53 1.47 1.74 1.56 0.9 1.09 0.95 0.96 0.79 0.76 0.93 0.61 2.6 3.26 3.83 3.76 Gd 6.06 7.4 4.47 4.53 4.77 4.65 2.46 2.93 2.45 2.65 2.09 2.09 2.5 1.87 8.08 10.5 10.55 10.45 Tb 0.7 0.91 0.5 0.55 0.56 0.54 0.28 0.31 0.28 0.3 0.21 0.22 0.25 0.22 0.99 1.23 1.11 1.1 Dy 3.78 4.4 2.66 2.65 2.88 2.59 1.3 1.41 1.37 1.22 1.01 1.04 1.27 1.01 4.81 6.18 5.08 4.89 Ho 0.62 0.79 0.47 0.48 0.46 0.47 0.19 0.21 0.22 0.19 0.16 0.16 0.17 0.16 0.83 1.07 0.83 0.77 Er 1.72 2.1 1.28 1.15 1.33 1.3 0.56 0.61 0.58 0.58 0.49 0.41 0.49 0.47 2.3 2.96 1.95 1.82 Tm 0.24 0.24 0.18 0.21 0.18 0.16 0.08 0.07 0.08 0.06 0.05 0.05 0.08 0.06 0.31 0.4 0.22 0.23 Yb 1.41 1.75 1.13 1.1 1.14 1.09 0.4 0.45 0.38 0.49 0.39 0.3 0.35 0.38 2.06 2.59 1.41 1.43 Lu 0.21 0.27 0.18 0.17 0.16 0.16 0.04 0.05 0.06 0.06 0.06 0.03 0.04 0.07 0.3 0.39 0.21 0.21 Rb 180 188 153 150 168 168 221 244 204 230 263 265 223 255 159 117.5 202 204 Ba 1440 1415 929 894 1610 1570 1260 1210 1175 1250 1210 1180 1280 1145 431 234 1110 1170 Th 32.8 35.6 29.3 29.6 33.6 32.4 24.1 26 25.1 29.3 23.5 23.1 22.7 28.6 41.4 54.2 50.3 50.6 U 4.6 4.9 4.3 4.5 5.2 5.8 3.5 3.2 4.6 4.7 3.8 3.9 3.7 6.2 6.8 7.7 11.4 10.2 K 34949 34451 33289 32293 37108 36859 40677 43250 37771 39183 42337 41673 41092 40345 23991 12452 26481 27643 Nb 18.7 22.4 15.7 15.8 16.2 15.5 10.8 12.1 11.2 12.4 13.2 13.6 11.5 15.7 24.8 31.4 25.1 22.3 Ta 1.3 1.6 1.2 1.2 1.3 1.2 0.9 1.0 1.0 1.0 1.0 1.1 0.9 1.3 1.7 2.2 1.4 1.3 Sr 1065 1045 960 937 1320 1315 793 779 788 690 756 769 792 714 891 756 1310 1380 P 916 916 611 611 742 654 305 393 305 305 305 305 305 218 1003 1658 4101 3927 Zr 255 278 214 216 234 236 146 177 151 162 145 145 149 137 341 424 247 247 Hf 6.3 6.7 5.7 5.7 5.9 5.8 3.8 4.6 4.2 4.6 4.5 4.4 4.4 4.7 8.9 10.4 6.1 5.8 Ti 2817 3177 1678 1678 1798 1678 1079 1439 1139 1139 1079 1079 1079 959 3836 4555 5155 4975 Y 18.8 22.5 14.5 14.1 14.4 13.9 6.1 6.8 6.3 6.3 5.2 5.3 5.8 5.4 24.7 31.9 22.4 22.2 Cr 60 70 40 50 30 40 30 20 20 20 10 20 10 20 90 90 190 180 Ni 19 21 20 23 20 17 13 12 11 13 12 11 12 15 32 32 77 68 ΣREE 324.9 368.7 236.3 227.4 274.9 259.9 173.6 220.7 169.5 180 140.5 141.1 172.9 107.4 386.5 548.6 601.6 600.9 LREE/HREE 21.04 19.64 20.74 19.98 22.95 22.72 31.71 35.54 30.27 31.44 30.51 31.82 32.58 24.34 18.64 20.67 27.16 27.75 (La/Yb)N 40.24 36.4 36.75 36.06 42.98 42.64 81.05 91.18 81.17 69.83 67.32 87.99 92.84 51.34 30.92 37.11 71.48 71.23 δEu 0.86 0.85 0.86 0.83 0.87 0.83 0.84 0.83 0.92 0.85 0.89 0.87 0.86 0.8 0.8 0.79 0.86 0.85 图 5. (a) 布雅岩体的TAS岩石分类图解、(b)SiO2-K2O岩石系列图解、(c)寄主岩和暗色包体的稀土元素球粒陨石标准化配分图、(d)微量元素原始地幔标准化蛛网图。布雅碱性花岗岩数据引自文献[25]Figure 5. TAS (a) and SiO2-K2O diagram (b) of the Buya pluton and Chondrite-normalized REE patterns (c) and Primitive mantle-normalized spidergrams (d) of host rocks and their mafic enclaves3.2.2 微量元素特征
暗色包体稀土元素以及大多数微量元素含量明显高于寄主岩二长花岗岩,而寄主石英二长闪长岩介于二者之间(表 2)。各类岩石在球粒陨石标准化分配图上均呈LREE强烈富集的右倾模式,但包体分布于寄主岩上方(图 5c),具有较高的(La/Yb)N值(29.24~92.84),轻、重稀土元素之间分馏较明显(LREE/HREE为18.64~35.54),具有弱的铕负异常或铕异常不明显(δEu=0.80~0.92)。在原始地幔标准化蛛网图上(图 5d),所有样品均富集K、Rb、Sr、Th、U等大离子亲石元素,明显亏损Nb、Ta、P、Ti等高场强元素,但包体分布于寄主岩上方。同时,除暗色细粒包体具有较高的相容元素Ni(32×10-6~77×10-6)和Cr(90×10-6~190×10-6)外,寄主岩的Ni(11×10-6~23×10-6)和Cr(10×10-6~70×10-6)含量也普遍较高且具有较大的变化范围,暗示幔源物质不均匀加入迹象。4. 岩石成因及构造属性讨论
4.1 锆石LA-MC-ICP-MS年龄对寄主岩和暗色包体形成时代的制约
前人对布雅岩体进行锆石SHRIMP U-Pb定年:李玮等[24]测得7个有效数据点206Pb/238U年龄的加权平均值为459±23 Ma,Ye等[25]测得7个有效数据点206Pb/238U年龄的加权平均值为430±12 Ma。两个数据年龄值差别较大且有效数据点较少,因此不能准确判断岩体年龄信息。本文运用精确的LA-MC-ICP-MS锆石U-Pb同位素技术对布雅岩体进行重新定年,对寄主岩23颗锆石中23个测试点(TKJZ-1~TKJZ-23) 获得的206Pb/238U加权平均年龄为432.6±2.5 Ma,首次获得暗色包体的206Pb/238U加权平均年龄432.4±6.4 Ma,表明布雅岩体和暗色包体形成时代一致,均为早志留世岩浆活动的产物。布雅岩体形成年龄晚于区域上库地蛇绿岩年龄、岛弧火山岩年龄,而与后碰撞伸展环境中形成的A型花岗岩的形成年龄相近[32-33],证明原特提斯洋可能在早志留世已经闭合,而塔里木南缘在该时期已转入碰撞造山的后期阶段。4.2 暗色包体成因
大量研究表明,暗色包体是铁镁质岩浆注入长英质岩浆经过复杂的岩浆混合作用的产物[12-17]。布雅暗色包体具岩浆结构,颜色较暗,呈浑圆状、椭球状,与寄主岩石呈过渡接触关系,反向脉,细粒冷凝边,斜长石捕掳晶,捕获寄主岩石(图 2),表明包体很可能是处于熔融或半熔融状态下的基性岩浆团注入酸性岩浆的混合产物,包体岩浆团的边缘曾与寄主花岗岩浆发生淬冷结晶作用[34],并且在矿物上呈现出不均衡现象,例如针状磷灰石、斜长石的熔蚀结构及黑色细小环带(图 3)。以上均指示包体岩浆经历一个快速冷却的过程,晶体冷却结晶的同时发生了化学组分和热的变化,暗示了岩浆混合作用的存在[35-36]。 在主量元素Harker图解(图略)及Al2O3/K2O-CaO/K2O、SiO2/CaO-K2O/CaO的共分母协变图(图 6a、b)上,暗色包体与寄主花岗岩呈良好的线性关系,暗示两种不同岩浆的混合作用[37]。寄主石英二长闪长岩与包体近乎一致的稀土配分型式很可能是2种来自不同源区的岩浆经过混合后的结果。另外,在微量元素相关图和共分母比值图(图 6c、d)上,寄主岩和包体呈线性分布,同样说明二者曾经历了岩浆混合作用。综上所述,布雅暗色包体为岩浆混合成因。4.3 寄主岩和暗色包体的物质来源特征
布雅花岗岩中普遍出现了Ⅰ型花岗岩的典型矿物学标志角闪石,副矿物组合中普遍出现榍石、磁铁矿,而未见富铝矿物,CIPW标准矿物中大多未出现刚玉分子,区别于S型花岗岩。Rb/Sr比值能够有效地提供源区性质的信息,Rb/Sr<0.9为Ⅰ型花岗岩,Rb/Sr>0.9为S型花岗岩。布雅寄主花岗岩为准铝质-弱过铝质岩石(A/CNK=0.84~1.00),Rb/Sr值介于0.1~0.4,P2O5随SiO2的增加而呈现明显的降低趋势(表 2),与S型花岗岩演化趋势具有明显差异,与Ⅰ型花岗岩演化趋势一致。这种趋势也可以得到SiO2-Ce、SiO2-Y岩石成因判别图(图略)的支持。因此,布雅花岗岩为Ⅰ型花岗岩。 一般认为,Ⅰ型花岗岩是由地壳中变玄武质岩石部分熔融或壳幔混合形成的,野外观察发现布雅石英二长闪长岩中含有大量的暗色包体(图 2),暗示着可能发生了岩浆混合作用[12]。包体具有贫硅(54.4%~61.7%)和富钙、镁、铁的地球化学特征,其Mg#值较高(0.51~0.66),且具有较高的Ni(32×10-6~77×10-6)、Cr(90×10-6~190×10-6)含量,实验岩石学显示下地壳变质玄武岩无论其熔融程度如何,熔体一般具有较低Mg#值(Mg#<0.44),以上特征暗示包体的岩浆源区应来源于地幔的部分熔融。然而,包体富集大离子亲石元素(Th、U、Rb、K)和亏损高场强元素(Nb、Ta、P、Ti),暗示岩浆演化过程中受到部分地壳物质的混染。相对于暗色包体,布雅寄主二长花岗岩具高硅、低Mg#值(0.24~0.42)、Nb/Ta值(11.2~13.2),接近地壳的平均值,而寄主石英二长闪长岩的Mg#值(0.44~0.50)、Nb/Ta值(12.5~14.3) 介于地幔和地壳平均值之间,同时石英二长闪长岩的REE和其他微量元素含量均接近暗色包体,明显区别于二长花岗岩(图 5c、d)。因此,二长花岗岩的成分应更接近于混合的酸性端元。寄主碱性花岗岩(本文中的二长花岗岩)εNd(t)值(-10.4~-8.4)、143Nd/144Nd(0.511834~0.511954) 和包体εNd(t)值(-6.7~-5.7)、143Nd/144Nd(0.512005~0.512075) 的不一致性[25],同样表明二者非同源产物。综合分析认为,寄主岩岩浆可能起源于大陆下地壳的长英质岩浆并经历了幔源岩浆不均匀的混合。4.4 布雅花岗岩形成的构造动力学背景
Rodina超大陆于新元古代裂解后,塔里木以南为浩瀚的原特提斯洋,塔里木南缘演化为原特提斯洋的北部大陆边缘[38]。从该地区目前已发表的成果来看[38-39],西昆仑造山带北侧的库地蛇绿岩年龄集中在490~525 Ma,可以推测原特提斯洋闭合的时间应为早古生代。早古生代晚期—晚古生代早期塔里木地块及其周缘地质历史发生一次重要的构造转换,即中昆仑地块与塔里木地块发生碰撞造山作用[40-41]。此次碰撞造山作用使塔里木地块由原先的区域性伸展构造应力状态,转变为区域性挤压构造应力状态,盆地的性质也从克拉通盆地转变为周缘前陆盆地[40]。新的地震和钻井资料表明,昆仑早古生代碰撞造山作用起始于晚奥陶世早期,持续至早志留世,然后进入造山后构造演化阶段[42-43]。锆石U-Pb定年显示布雅岩体成岩年龄为432.6±2.5 Ma,形成于早志留世,其成岩年龄晚于区域上库地蛇绿岩、岛弧火山岩年龄,而与后碰撞伸展环境中形成的A型花岗岩的形成年龄相近[32-33]。 结合区域地质资料,本文认为布雅岩体形成于碰撞造山作用晚期阶段。由于岩石圈伸展作用,引起岩石圈地幔发生部分熔融,并形成大量的玄武质岩浆,这些玄武质岩浆随后底侵到下地壳,其高温促使下地壳物质发生部分熔融而形成酸性壳源岩浆,部分幔源岩浆由于岩浆对流或强力注入而进入上覆酸性岩浆房,发生不同程度壳幔混合,其中暗色包体就是基性岩浆和酸性岩浆不同程度混合的产物。5. 结论
通过对布雅岩体及其暗色包体野外地质、岩相学、LA-MC-ICP-MS锆石U-Pb同位素定年和岩石地球化学系统研究,得出以下结论。 (1) 塔里木西南缘铁克里克地区布雅花岗岩及其暗色包体分别形成于432.6±2.5 Ma和432.4±6.4 Ma,它们均为志留纪早期岩浆活动的产物。 (2) 结合前人和新的地球化学数据分析表明,布雅暗色包体岩浆应来源于地幔的部分熔融,而寄主Ⅰ型花岗岩岩浆来源于大陆下地壳的长英质岩浆并经历了幔源岩浆不均匀的混合。 (3) 野外和岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,为幔源岩浆底侵下地壳形成的岩浆混合作用的产物,是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。Highlights
- · The Buya quartz monzobiorite was formed at 432.6±2.5 Ma, and its mafic microgranular enclaves (MMEs) were formed at 432.4±6.4 Ma.
- · Mafic microgranular enclaves (MMEs) are globules of a more mafic magma that was injected into and mingled with the host felsic magma.
- · They are the Early Paleozoic collision orogenesis of the late magmatic activity records from the southern margin of Tarim.
-
图 5 (a) 布雅岩体的TAS岩石分类图解、(b)SiO2-K2O岩石系列图解、(c)寄主岩和暗色包体的稀土元素球粒陨石标准化配分图、(d)微量元素原始地幔标准化蛛网图。布雅碱性花岗岩数据引自文献[25]
Figure 5.
表 1 布雅寄主岩与暗色包体LA-MC-ICP-MS锆石U-Pb测试结果
Table 1. LA-MC-ICP-MS U-Pb data and calculated ages of zircons in host rocks and mafic enclaves from the Buya pluton
测点号 含量(×10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 石英二长闪长岩 TKJZ-1 581 2133 0.27 0.05506 0.00122 0.52439 0.01025 0.0691 0.00073 415 51 428 7 431 4 TKJZ-2 713 1876 0.38 0.05706 0.00135 0.55408 0.01169 0.0704 0.00075 494 53 448 8 439 5 TKJZ-3 393 1366 0.29 0.0583 0.00131 0.56484 0.00787 0.0703 0.00074 541 14 455 5 438 4 TKJZ-4 426 1404 0.30 0.05572 0.00128 0.54671 0.00818 0.0712 0.00076 441 16 443 5 443 5 TKJZ-5 854 1894 0.45 0.05736 0.00149 0.54922 0.0129 0.0694 0.00076 506 58 444 8 433 5 TKJZ-6 722 2806 0.26 0.05553 0.00122 0.52972 0.01018 0.0692 0.00073 434 50 432 7 431 4 TKJZ-7 294 1151 0.26 0.05575 0.00147 0.52903 0.01267 0.0688 0.00076 442 60 431 8 429 5 TKJZ-8 933 2075 0.45 0.05726 0.00128 0.54715 0.00767 0.0693 0.00074 502 14 443 5 432 4 TKJZ-9 677 1724 0.39 0.05696 0.00143 0.54226 0.01223 0.069 0.00075 490 57 440 8 430 5 TKJZ-10 528 1482 0.36 0.05729 0.00139 0.55347 0.00925 0.0701 0.00077 503 19 447 6 437 5 TKJZ-11 533 1495 0.36 0.05652 0.00149 0.5348 0.01283 0.0686 0.00076 473 60 435 8 428 5 TKJZ-12 442 1211 0.36 0.05664 0.00132 0.54606 0.00834 0.07 0.00076 478 16 442 5 436 5 TKJZ-13 2293 3947 0.58 0.05572 0.00181 0.52254 0.01595 0.068 0.00077 441 74 427 11 424 5 TKJZ-14 652 2113 0.31 0.05542 0.00132 0.53044 0.0112 0.0694 0.00076 429 54 432 7 433 5 TKJZ-15 406 1244 0.33 0.05581 0.00145 0.53027 0.01246 0.0689 0.00077 445 59 432 8 430 5 TKJZ-16 634 1612 0.39 0.0557 0.00156 0.52592 0.01349 0.0685 0.00077 440 64 429 9 427 5 TKJZ-17 568 2188 0.26 0.05645 0.00125 0.52985 0.01027 0.0681 0.00074 470 50 432 7 425 4 TKJZ-18 447 1361 0.33 0.05887 0.00137 0.58051 0.01189 0.0715 0.00079 562 52 465 8 445 5 TKJZ-19 380 1321 0.29 0.05553 0.00141 0.5429 0.01244 0.0709 0.00078 433 58 440 8 442 5 TKJZ-20 641 2094 0.31 0.05469 0.00146 0.5099 0.01241 0.0676 0.00076 400 61 418 8 422 5 TKJZ-21 458 1293 0.35 0.05545 0.00173 0.52707 0.01528 0.0689 0.0008 430 71 430 10 430 5 TKJZ-22 557 1651 0.34 0.0586 0.00139 0.56341 0.00897 0.0697 0.00078 552 17 454 6 434 5 TKJZ-23 530 1971 0.27 0.05658 0.0013 0.54364 0.00813 0.0697 0.00077 475 16 441 5 434 5 暗色包体 TKBT-1 550 1888 0.29 0.05686 0.00154 0.54231 0.0164 0.0692 0.00173 486 30 440 11 431 10 TKBT-2 2482 1740 1.43 0.05523 0.00134 0.53056 0.01477 0.0697 0.00173 422 28 432 10 434 10 TKBT-3 388 1349 0.29 0.05544 0.00141 0.53181 0.01545 0.0696 0.00175 430 29 433 10 434 11 TKBT-4 410 1415 0.29 0.05611 0.00132 0.54013 0.01484 0.0698 0.00176 457 27 439 10 435 11 TKBT-5 876 2581 0.34 0.05691 0.00141 0.54128 0.01554 0.069 0.00175 488 28 439 10 430 11 TKBT-6 491 2089 0.23 0.05495 0.00132 0.52882 0.01485 0.0698 0.00177 410 28 431 10 435 11 TKBT-7 752 2494 0.30 0.05572 0.00134 0.53315 0.01501 0.0694 0.00176 441 28 434 10 433 11 TKBT-8 697 2176 0.32 0.05675 0.0016 0.54098 0.01708 0.0692 0.00178 482 32 439 11 431 11 TKBT-9 443 1605 0.28 0.05587 0.00129 0.53316 0.0146 0.0692 0.00176 447 27 434 10 431 11 TKBT-10 646 1981 0.33 0.05682 0.00143 0.54051 0.01579 0.069 0.00177 485 29 439 10 430 11 TKBT-11 2576 2574 1.00 0.05672 0.00142 0.54192 0.01577 0.0693 0.00178 481 29 440 10 432 11 表 2 布雅寄主岩与暗色包体的全岩主量(%)与微量元素(×10-6)组成
Table 2. Major and trace element compositions of host rock and its MMEs from the Buya pluton
岩性 石英二长闪长岩 二长花岗岩 暗色包体 样品编号 TK03-1 TK03-2 TK04-1 TK04-2 TK05-1 TK05-2 TK07-1 TK07-2 TK08-1 TK03-10 TK03-11 TK03-12 TK03-13 TK03-14 TK03-15 TK03-16 TK03-17 TK03-18 SiO2 64.3 63.3 68.1 67.9 67.0 66.5 71.0 70.1 70.5 70.4 70.9 70.5 70.4 70.5 61.7 60.7 54.4 54.6 Al2O3 15.7 15.2 15.3 15.2 16.2 16.1 15.2 15.4 15.35 14.8 15.6 15.4 15.3 15.3 15.1 13.5 13.9 14.2 Fe2O3T 4.87 5.19 3.06 3.04 2.79 2.61 1.48 1.52 1.66 1.37 1.38 1.33 1.46 1.49 6.48 7.64 7.24 7.09 CaO 3.40 3.51 2.46 2.42 2.34 2.23 1.04 1.08 1.04 1.48 1.10 1.07 1.04 0.97 4.37 4.89 8.30 7.90 MgO 2.06 2.26 1.10 1.06 0.96 0.91 0.43 0.49 0.42 0.19 0.34 0.34 0.42 0.27 2.97 3.47 6.1 5.75 Na2O 4.64 4.40 4.90 4.84 5.11 5.08 4.85 4.72 5.15 4.81 5.01 4.93 5.07 5.06 4.77 4.62 3.86 3.93 K2O 4.21 4.15 4.01 3.89 4.47 4.44 4.9 5.21 4.55 4.72 5.10 5.00 4.95 4.86 2.89 1.50 3.19 3.33 TiO2 0.47 0.53 0.28 0.28 0.3 0.28 0.18 0.24 0.19 0.19 0.18 0.18 0.18 0.16 0.64 0.76 0.86 0.83 MnO 0.11 0.12 0.07 0.07 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.87 1.03 0.98 0.96 P2O5 0.21 0.21 0.14 0.14 0.17 0.15 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.05 0.23 0.38 0.94 0.9 LOI 0.40 0.45 0.42 0.43 0.63 0.79 0.61 0.38 0.53 1.17 0.38 0.27 0.56 0.69 0.36 1.71 1.03 0.9 总计 100.6 99.6 100.1 99.5 100.3 99.5 99.9 99.5 99.7 99.4 100.2 99.3 99.7 99.6 99.8 99.5 100.2 99.9 A/CNK 0.85 0.84 0.91 0.92 0.93 0.94 1.00 1.00 1.00 0.94 0.99 0.99 0.98 1.00 0.8 0.75 0.56 0.58 Na2O+K2O 8.85 8.55 8.91 8.73 9.58 9.52 9.75 9.93 9.7 9.53 10.11 9.95 10 9.92 7.66 6.12 7.05 7.26 K2O/Na2O 0.91 0.94 0.82 0.8 0.87 0.87 1.01 1.10 0.88 0.98 1.00 1.00 0.98 0.96 0.61 0.32 0.83 0.85 Mg# 0.50 0.50 0.46 0.45 0.45 0.45 0.4 0.41 0.40 0.21 0.36 0.36 0.40 0.30 0.29 0.52 0.51 0.66 La 79.1 88.8 57.9 55.3 68.3 64.8 45.2 57.2 43 47.7 36.6 36.8 45.3 27.2 88.8 134 140.5 142 Ce 150 169 110 105 128 122 83 105 81 84 67 68 82 51 178 254 281 280 Pr 15.8 17.9 11.2 10.9 13.3 12.3 8.4 10.7 8.3 8.6 6.7 6.7 8.3 5.1 19 26.7 30.8 30.4 Nd 53.7 61.6 37.7 36.9 43.8 41.2 26.9 34.7 26.8 28.3 21.4 21.2 26.5 16.5 65.7 90.2 106.5 106.5 Sm 9.4 11.0 6.5 6.4 7.8 7.2 4.3 5.5 4.1 4.5 3.5 3.4 4.3 2.9 12.2 15.1 17.6 17.3 Eu 2.12 2.5 1.53 1.47 1.74 1.56 0.9 1.09 0.95 0.96 0.79 0.76 0.93 0.61 2.6 3.26 3.83 3.76 Gd 6.06 7.4 4.47 4.53 4.77 4.65 2.46 2.93 2.45 2.65 2.09 2.09 2.5 1.87 8.08 10.5 10.55 10.45 Tb 0.7 0.91 0.5 0.55 0.56 0.54 0.28 0.31 0.28 0.3 0.21 0.22 0.25 0.22 0.99 1.23 1.11 1.1 Dy 3.78 4.4 2.66 2.65 2.88 2.59 1.3 1.41 1.37 1.22 1.01 1.04 1.27 1.01 4.81 6.18 5.08 4.89 Ho 0.62 0.79 0.47 0.48 0.46 0.47 0.19 0.21 0.22 0.19 0.16 0.16 0.17 0.16 0.83 1.07 0.83 0.77 Er 1.72 2.1 1.28 1.15 1.33 1.3 0.56 0.61 0.58 0.58 0.49 0.41 0.49 0.47 2.3 2.96 1.95 1.82 Tm 0.24 0.24 0.18 0.21 0.18 0.16 0.08 0.07 0.08 0.06 0.05 0.05 0.08 0.06 0.31 0.4 0.22 0.23 Yb 1.41 1.75 1.13 1.1 1.14 1.09 0.4 0.45 0.38 0.49 0.39 0.3 0.35 0.38 2.06 2.59 1.41 1.43 Lu 0.21 0.27 0.18 0.17 0.16 0.16 0.04 0.05 0.06 0.06 0.06 0.03 0.04 0.07 0.3 0.39 0.21 0.21 Rb 180 188 153 150 168 168 221 244 204 230 263 265 223 255 159 117.5 202 204 Ba 1440 1415 929 894 1610 1570 1260 1210 1175 1250 1210 1180 1280 1145 431 234 1110 1170 Th 32.8 35.6 29.3 29.6 33.6 32.4 24.1 26 25.1 29.3 23.5 23.1 22.7 28.6 41.4 54.2 50.3 50.6 U 4.6 4.9 4.3 4.5 5.2 5.8 3.5 3.2 4.6 4.7 3.8 3.9 3.7 6.2 6.8 7.7 11.4 10.2 K 34949 34451 33289 32293 37108 36859 40677 43250 37771 39183 42337 41673 41092 40345 23991 12452 26481 27643 Nb 18.7 22.4 15.7 15.8 16.2 15.5 10.8 12.1 11.2 12.4 13.2 13.6 11.5 15.7 24.8 31.4 25.1 22.3 Ta 1.3 1.6 1.2 1.2 1.3 1.2 0.9 1.0 1.0 1.0 1.0 1.1 0.9 1.3 1.7 2.2 1.4 1.3 Sr 1065 1045 960 937 1320 1315 793 779 788 690 756 769 792 714 891 756 1310 1380 P 916 916 611 611 742 654 305 393 305 305 305 305 305 218 1003 1658 4101 3927 Zr 255 278 214 216 234 236 146 177 151 162 145 145 149 137 341 424 247 247 Hf 6.3 6.7 5.7 5.7 5.9 5.8 3.8 4.6 4.2 4.6 4.5 4.4 4.4 4.7 8.9 10.4 6.1 5.8 Ti 2817 3177 1678 1678 1798 1678 1079 1439 1139 1139 1079 1079 1079 959 3836 4555 5155 4975 Y 18.8 22.5 14.5 14.1 14.4 13.9 6.1 6.8 6.3 6.3 5.2 5.3 5.8 5.4 24.7 31.9 22.4 22.2 Cr 60 70 40 50 30 40 30 20 20 20 10 20 10 20 90 90 190 180 Ni 19 21 20 23 20 17 13 12 11 13 12 11 12 15 32 32 77 68 ΣREE 324.9 368.7 236.3 227.4 274.9 259.9 173.6 220.7 169.5 180 140.5 141.1 172.9 107.4 386.5 548.6 601.6 600.9 LREE/HREE 21.04 19.64 20.74 19.98 22.95 22.72 31.71 35.54 30.27 31.44 30.51 31.82 32.58 24.34 18.64 20.67 27.16 27.75 (La/Yb)N 40.24 36.4 36.75 36.06 42.98 42.64 81.05 91.18 81.17 69.83 67.32 87.99 92.84 51.34 30.92 37.11 71.48 71.23 δEu 0.86 0.85 0.86 0.83 0.87 0.83 0.84 0.83 0.92 0.85 0.89 0.87 0.86 0.8 0.8 0.79 0.86 0.85 -
[1] Elburg M A.Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6):1385-1408. doi: 10.1093/petrology/37.6.1385
[2] Yang J H, Wu F Y, Chung S L, et al.Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68:4469-4483. doi: 10.1016/j.gca.2004.04.015
[3] Yang J H, Wu F Y, Wilde S A, et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J].Contributions to Mineralogy and Petrology, 2007, 153:177-190. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801002031.htm
[4] Cheng Y, Spandler C, Mao J, et al.Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4):659-676. doi: 10.1007/s00410-012-0766-0
[5] Flood R H, Shaw S E.Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J].Lithos, 2014, 198-199(3):92-102. http://www.sciencedirect.com/science/article/pii/S002449371400098X
[6] Clemens J D, Elburg M A.Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 175-176(5):351-352. http://linkinghub.elsevier.com/retrieve/pii/S0024493713001461
[7] Wyborn D.Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 154(6):353-354. http://adsabs.harvard.edu/abs/2013Litho.175..353W
[8] Shellnutt J G, Jahn B M, Dostal J.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2):34-46. doi: 10.1016/j.lithos.2010.07.011
[9] Niu Y, Zhao Z, Zhu D C, et al.Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J].Earth-Science Reviews, 2013, 127(2):96-110. http://adsabs.harvard.edu/abs/2013ESRv..127...96N
[10] Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370(4):1-18. https://rd.springer.com/content/pdf/10.1007%2Fs11434-006-2122-0.pdf
[11] Chen S, Niu Y, Sun W, et al.On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5):577-596. doi: 10.1007/s00710-015-0383-5
[12] Barbarin B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J].Lithos, 2005, 80(1):155-177. https://link.springer.com/article/10.1007/s00710-015-0383-5
[13] Kaygusuz A, Aydinakir E.Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3):247-277. doi: 10.1016/j.chemer.2008.08.002
[14] Kocak K, Zedef V, Kansun G.Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J].Mineralogy and Petrology, 2011, 103(1):149-167. https://link.springer.com/content/pdf/10.1007%2Fs00710-011-0165-7.pdf
[15] Perugini D, Poli G.The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J].Lithos, 2012, 153(8):261-277. http://www.sciencedirect.com/science/article/pii/S0024493712000461
[16] Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224. https://link.springer.com/article/10.1007/s00710-011-0187-1
[17] Dan W, Wang Q, Wang X C, et al.Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016
[18] Chen B, Chen Z C, Jahn B M.Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4):343-358. doi: 10.1016/j.lithos.2009.01.015
[19] Zhao K D, Jiang S Y, Yang S Y, et al.Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1):310-324. doi: 10.1016/j.gr.2011.09.010
[20] Xia R, Wang C, Min Q, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234-235(3):47-60. http://adsabs.harvard.edu/abs/2015Litho.234...47X
[21] Zeng R, Lai J, Mao X, et al.Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121:20-33. doi: 10.1016/j.jseaes.2016.02.009
[22] Zheng Y F, Chen Y X, Dai L Q, et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7):1045-1069. doi: 10.1007/s11430-015-5097-3
[23] 陈国超, 裴先治, 李瑞保, 等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm
Chen G C, Pei X Z, Li R B, et al.Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J].Earth Science Frontiers, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm
[24] 李玮, 高卫, 刘淑琴, 等.塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm
Li W, Gao W, Liu S Q, et al.Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J].Xinjiang Geology, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm
[25] Ye H M, Li X H, Li Z X, et al.Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1):126-138. doi: 10.1016/j.gr.2007.08.005
[26] 陈博, 秦克章, 唐冬梅, 等.新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J].岩石学报, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm
Chen B, Qin K Z, Tang D M, et al.Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J].Acta Petrologica Sinica, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm
[27] 崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm
Cui J W, Guo X P, Ding X Z, et al.Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J].Earth Science Frontiers, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm
[28] Zhang C L, Ye X T, Zou H B, et al.Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280:31-45. doi: 10.1016/j.precamres.2016.04.011
[29] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
[30] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
Wu Y B, Zheng Y F.Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[31] Siebe L, Blaha U, Chen F, et al.Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1):8-23. doi: 10.1007/s00531-004-0445-0
[32] 高晓峰, 校培喜, 康磊, 等.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J].岩石学报, 2013, 29(9):109-123. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm
Gao X F, Xiao P X, Kang L, et al.Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J].Acta Petrologica Sinica, 2013, 29(9):3065-3079. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm
[33] Liu Z, Jiang Y H, Jia R Y, et al.Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1):91-110. doi: 10.1007/s00710-013-0288-0
[34] Dahlquist J A.Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6):643-655. doi: 10.1016/S0895-9811(02)00112-8
[35] Baxter S, Fecly M.Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76:63-74. doi: 10.1007/s007100200032
[36] Grogan S E, Reavy R J.Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6):929-939. doi: 10.1180/0026461026660068
[37] 邹涛, 王玉往, 王京彬, 等.内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(增刊):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm
Zou T, Wang Y W, Wang J B, et al.Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J].Journal of Jilin University(Earth Science), 2012, 42(Supplement):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm
[38] 张传林, 于海锋, 沈家林, 等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm
Zhang C L, Yu H F, Shen J L, et al.Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J].Geological Review, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm
[39] 李天福, 张建新.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J].岩石学报, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm
Li T F, Zhang J X.Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J].Acta Petrologica Sinica, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm
[40] 魏国齐, 贾承造, 李本亮, 等.塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J].科学通报, 2002, 47(增刊):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm
Wei G Q, Jia C Z, Li B L, et al.Silurian to Devonian foreland basin in the south edge of Tarim Basin[J].Chinese Science Bulletin, 2002, 47(Supplement):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm
[41] 李丕龙, 冯建辉, 樊太亮, 等.塔里木盆地构造沉积与成藏[M].北京:地质出版社, 2010:4-43.
Li P L, Feng J H, Fan T L, et al.Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M].Beijing:Geological Publishing House, 2010:4-43.
[42] 李曰俊, 孙龙德, 杨海军, 等.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J].地质科学, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm
Li Y J, Sun L D, Yang H J, et al.New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J].Chinese Journal of Geology, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm
[43] 杨海军, 李曰俊, 李勇, 等.塔里木盆地南部玛东早古生代褶皱-冲断带[J].岩石学报, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm
Yang H J, Li Y J, Li Y, et al.Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J].Acta Petrologica Sinica, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm
期刊类型引用(1)
1. 郭瑞清,刘桂萍,胡雪原,梁文博,崔涛. 新疆塔里木南缘铁克里克东段晚奥陶世埃达克质岩的成因及地质意义. 地质科技情报. 2018(06): 1-10 . 百度学术
其他类型引用(2)
-