Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang
-
摘要: 塔里木西南缘铁克里克地区广泛发育早古生代中酸性侵入岩,本文对其中布雅岩体及其暗色包体进行系统的岩石学、年代学及岩石地球化学研究,确定了岩石成因及其构造属性。LA-MC-ICP-MS锆石U-Pb年代学研究表明,寄主石英二长闪长岩结晶年龄为432.6±2.5 Ma(MSWD=1.5),暗色包体结晶年龄为432.4±6.4 Ma(MSWD=0.031),二者形成时代相同,均为志留纪早期岩浆活动的产物。地球化学特征表明,布雅暗色包体应来源于地幔的部分熔融,而寄主岩石岩浆具有壳源岩浆的性质并经历了幔源岩浆不均匀的混合。野外及岩相学特征均显示暗色包体为铁镁质岩浆注入长英质岩浆快速冷凝形成的,是幔源岩浆底侵下地壳形成的岩浆混合作用的产物。它们是塔里木南缘早古生代碰撞造山作用晚期的岩浆记录。
-
关键词:
- 铁克里克 /
- 布雅岩体 /
- LA-MC-ICP-MS锆石U-Pb年代学 /
- 岩浆混合
Abstract: Paleozoic acidic intrusive rocks are widespread in the Tiekelike tectonic belt of the southern margin of Tarim. Petrography, whole-rock major and trace elements, and zircon U-Pb dating are reported for the Buya granodiorite and its mafic microgranular enclaves (MMEs), which are used to constrain their petrogenesis and tectonic setting. High-precision LA-MC-ICP-MS zircon U-Pb dating has revealed that the quartz monzobiorite was formed at 432.6±2.5 Ma (MSWD=1.5), and its microgranular enclaves were formed at 432.4±6.4 Ma (MSWD=0.031) indicating that both of them are the products of early Silurian magma activity. Chemical composition suggests that the enclaves were derived from partial melting of the mantle, while the magma of the host rocks is mainly crustal and is mixed with minor mantle-derived magma. Both the field and petrographic characteristics show that the dark enclaves were formed by the rapid condensation of the mafic magma into the felsic magma, which is the product of the magmatic mixing by the mantle underplating of the lower crust. They are magmatic records of the late stage of early Paleozoic collision orogeny in the southern margin of Tarim.-
Key words:
- Tiekelike tectonic belt /
- Buya pluton /
- LA-MC-ICP-MS zircon U-Pb dating /
- magma mixing
-
-
图 5 (a) 布雅岩体的TAS岩石分类图解、(b)SiO2-K2O岩石系列图解、(c)寄主岩和暗色包体的稀土元素球粒陨石标准化配分图、(d)微量元素原始地幔标准化蛛网图。布雅碱性花岗岩数据引自文献[25]
Figure 5.
表 1 布雅寄主岩与暗色包体LA-MC-ICP-MS锆石U-Pb测试结果
Table 1. LA-MC-ICP-MS U-Pb data and calculated ages of zircons in host rocks and mafic enclaves from the Buya pluton
测点号 含量(×10-6) Th/U 同位素比值 年龄(Ma) Th U 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 石英二长闪长岩 TKJZ-1 581 2133 0.27 0.05506 0.00122 0.52439 0.01025 0.0691 0.00073 415 51 428 7 431 4 TKJZ-2 713 1876 0.38 0.05706 0.00135 0.55408 0.01169 0.0704 0.00075 494 53 448 8 439 5 TKJZ-3 393 1366 0.29 0.0583 0.00131 0.56484 0.00787 0.0703 0.00074 541 14 455 5 438 4 TKJZ-4 426 1404 0.30 0.05572 0.00128 0.54671 0.00818 0.0712 0.00076 441 16 443 5 443 5 TKJZ-5 854 1894 0.45 0.05736 0.00149 0.54922 0.0129 0.0694 0.00076 506 58 444 8 433 5 TKJZ-6 722 2806 0.26 0.05553 0.00122 0.52972 0.01018 0.0692 0.00073 434 50 432 7 431 4 TKJZ-7 294 1151 0.26 0.05575 0.00147 0.52903 0.01267 0.0688 0.00076 442 60 431 8 429 5 TKJZ-8 933 2075 0.45 0.05726 0.00128 0.54715 0.00767 0.0693 0.00074 502 14 443 5 432 4 TKJZ-9 677 1724 0.39 0.05696 0.00143 0.54226 0.01223 0.069 0.00075 490 57 440 8 430 5 TKJZ-10 528 1482 0.36 0.05729 0.00139 0.55347 0.00925 0.0701 0.00077 503 19 447 6 437 5 TKJZ-11 533 1495 0.36 0.05652 0.00149 0.5348 0.01283 0.0686 0.00076 473 60 435 8 428 5 TKJZ-12 442 1211 0.36 0.05664 0.00132 0.54606 0.00834 0.07 0.00076 478 16 442 5 436 5 TKJZ-13 2293 3947 0.58 0.05572 0.00181 0.52254 0.01595 0.068 0.00077 441 74 427 11 424 5 TKJZ-14 652 2113 0.31 0.05542 0.00132 0.53044 0.0112 0.0694 0.00076 429 54 432 7 433 5 TKJZ-15 406 1244 0.33 0.05581 0.00145 0.53027 0.01246 0.0689 0.00077 445 59 432 8 430 5 TKJZ-16 634 1612 0.39 0.0557 0.00156 0.52592 0.01349 0.0685 0.00077 440 64 429 9 427 5 TKJZ-17 568 2188 0.26 0.05645 0.00125 0.52985 0.01027 0.0681 0.00074 470 50 432 7 425 4 TKJZ-18 447 1361 0.33 0.05887 0.00137 0.58051 0.01189 0.0715 0.00079 562 52 465 8 445 5 TKJZ-19 380 1321 0.29 0.05553 0.00141 0.5429 0.01244 0.0709 0.00078 433 58 440 8 442 5 TKJZ-20 641 2094 0.31 0.05469 0.00146 0.5099 0.01241 0.0676 0.00076 400 61 418 8 422 5 TKJZ-21 458 1293 0.35 0.05545 0.00173 0.52707 0.01528 0.0689 0.0008 430 71 430 10 430 5 TKJZ-22 557 1651 0.34 0.0586 0.00139 0.56341 0.00897 0.0697 0.00078 552 17 454 6 434 5 TKJZ-23 530 1971 0.27 0.05658 0.0013 0.54364 0.00813 0.0697 0.00077 475 16 441 5 434 5 暗色包体 TKBT-1 550 1888 0.29 0.05686 0.00154 0.54231 0.0164 0.0692 0.00173 486 30 440 11 431 10 TKBT-2 2482 1740 1.43 0.05523 0.00134 0.53056 0.01477 0.0697 0.00173 422 28 432 10 434 10 TKBT-3 388 1349 0.29 0.05544 0.00141 0.53181 0.01545 0.0696 0.00175 430 29 433 10 434 11 TKBT-4 410 1415 0.29 0.05611 0.00132 0.54013 0.01484 0.0698 0.00176 457 27 439 10 435 11 TKBT-5 876 2581 0.34 0.05691 0.00141 0.54128 0.01554 0.069 0.00175 488 28 439 10 430 11 TKBT-6 491 2089 0.23 0.05495 0.00132 0.52882 0.01485 0.0698 0.00177 410 28 431 10 435 11 TKBT-7 752 2494 0.30 0.05572 0.00134 0.53315 0.01501 0.0694 0.00176 441 28 434 10 433 11 TKBT-8 697 2176 0.32 0.05675 0.0016 0.54098 0.01708 0.0692 0.00178 482 32 439 11 431 11 TKBT-9 443 1605 0.28 0.05587 0.00129 0.53316 0.0146 0.0692 0.00176 447 27 434 10 431 11 TKBT-10 646 1981 0.33 0.05682 0.00143 0.54051 0.01579 0.069 0.00177 485 29 439 10 430 11 TKBT-11 2576 2574 1.00 0.05672 0.00142 0.54192 0.01577 0.0693 0.00178 481 29 440 10 432 11 表 2 布雅寄主岩与暗色包体的全岩主量(%)与微量元素(×10-6)组成
Table 2. Major and trace element compositions of host rock and its MMEs from the Buya pluton
岩性 石英二长闪长岩 二长花岗岩 暗色包体 样品编号 TK03-1 TK03-2 TK04-1 TK04-2 TK05-1 TK05-2 TK07-1 TK07-2 TK08-1 TK03-10 TK03-11 TK03-12 TK03-13 TK03-14 TK03-15 TK03-16 TK03-17 TK03-18 SiO2 64.3 63.3 68.1 67.9 67.0 66.5 71.0 70.1 70.5 70.4 70.9 70.5 70.4 70.5 61.7 60.7 54.4 54.6 Al2O3 15.7 15.2 15.3 15.2 16.2 16.1 15.2 15.4 15.35 14.8 15.6 15.4 15.3 15.3 15.1 13.5 13.9 14.2 Fe2O3T 4.87 5.19 3.06 3.04 2.79 2.61 1.48 1.52 1.66 1.37 1.38 1.33 1.46 1.49 6.48 7.64 7.24 7.09 CaO 3.40 3.51 2.46 2.42 2.34 2.23 1.04 1.08 1.04 1.48 1.10 1.07 1.04 0.97 4.37 4.89 8.30 7.90 MgO 2.06 2.26 1.10 1.06 0.96 0.91 0.43 0.49 0.42 0.19 0.34 0.34 0.42 0.27 2.97 3.47 6.1 5.75 Na2O 4.64 4.40 4.90 4.84 5.11 5.08 4.85 4.72 5.15 4.81 5.01 4.93 5.07 5.06 4.77 4.62 3.86 3.93 K2O 4.21 4.15 4.01 3.89 4.47 4.44 4.9 5.21 4.55 4.72 5.10 5.00 4.95 4.86 2.89 1.50 3.19 3.33 TiO2 0.47 0.53 0.28 0.28 0.3 0.28 0.18 0.24 0.19 0.19 0.18 0.18 0.18 0.16 0.64 0.76 0.86 0.83 MnO 0.11 0.12 0.07 0.07 0.06 0.06 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.87 1.03 0.98 0.96 P2O5 0.21 0.21 0.14 0.14 0.17 0.15 0.07 0.09 0.07 0.07 0.07 0.07 0.07 0.05 0.23 0.38 0.94 0.9 LOI 0.40 0.45 0.42 0.43 0.63 0.79 0.61 0.38 0.53 1.17 0.38 0.27 0.56 0.69 0.36 1.71 1.03 0.9 总计 100.6 99.6 100.1 99.5 100.3 99.5 99.9 99.5 99.7 99.4 100.2 99.3 99.7 99.6 99.8 99.5 100.2 99.9 A/CNK 0.85 0.84 0.91 0.92 0.93 0.94 1.00 1.00 1.00 0.94 0.99 0.99 0.98 1.00 0.8 0.75 0.56 0.58 Na2O+K2O 8.85 8.55 8.91 8.73 9.58 9.52 9.75 9.93 9.7 9.53 10.11 9.95 10 9.92 7.66 6.12 7.05 7.26 K2O/Na2O 0.91 0.94 0.82 0.8 0.87 0.87 1.01 1.10 0.88 0.98 1.00 1.00 0.98 0.96 0.61 0.32 0.83 0.85 Mg# 0.50 0.50 0.46 0.45 0.45 0.45 0.4 0.41 0.40 0.21 0.36 0.36 0.40 0.30 0.29 0.52 0.51 0.66 La 79.1 88.8 57.9 55.3 68.3 64.8 45.2 57.2 43 47.7 36.6 36.8 45.3 27.2 88.8 134 140.5 142 Ce 150 169 110 105 128 122 83 105 81 84 67 68 82 51 178 254 281 280 Pr 15.8 17.9 11.2 10.9 13.3 12.3 8.4 10.7 8.3 8.6 6.7 6.7 8.3 5.1 19 26.7 30.8 30.4 Nd 53.7 61.6 37.7 36.9 43.8 41.2 26.9 34.7 26.8 28.3 21.4 21.2 26.5 16.5 65.7 90.2 106.5 106.5 Sm 9.4 11.0 6.5 6.4 7.8 7.2 4.3 5.5 4.1 4.5 3.5 3.4 4.3 2.9 12.2 15.1 17.6 17.3 Eu 2.12 2.5 1.53 1.47 1.74 1.56 0.9 1.09 0.95 0.96 0.79 0.76 0.93 0.61 2.6 3.26 3.83 3.76 Gd 6.06 7.4 4.47 4.53 4.77 4.65 2.46 2.93 2.45 2.65 2.09 2.09 2.5 1.87 8.08 10.5 10.55 10.45 Tb 0.7 0.91 0.5 0.55 0.56 0.54 0.28 0.31 0.28 0.3 0.21 0.22 0.25 0.22 0.99 1.23 1.11 1.1 Dy 3.78 4.4 2.66 2.65 2.88 2.59 1.3 1.41 1.37 1.22 1.01 1.04 1.27 1.01 4.81 6.18 5.08 4.89 Ho 0.62 0.79 0.47 0.48 0.46 0.47 0.19 0.21 0.22 0.19 0.16 0.16 0.17 0.16 0.83 1.07 0.83 0.77 Er 1.72 2.1 1.28 1.15 1.33 1.3 0.56 0.61 0.58 0.58 0.49 0.41 0.49 0.47 2.3 2.96 1.95 1.82 Tm 0.24 0.24 0.18 0.21 0.18 0.16 0.08 0.07 0.08 0.06 0.05 0.05 0.08 0.06 0.31 0.4 0.22 0.23 Yb 1.41 1.75 1.13 1.1 1.14 1.09 0.4 0.45 0.38 0.49 0.39 0.3 0.35 0.38 2.06 2.59 1.41 1.43 Lu 0.21 0.27 0.18 0.17 0.16 0.16 0.04 0.05 0.06 0.06 0.06 0.03 0.04 0.07 0.3 0.39 0.21 0.21 Rb 180 188 153 150 168 168 221 244 204 230 263 265 223 255 159 117.5 202 204 Ba 1440 1415 929 894 1610 1570 1260 1210 1175 1250 1210 1180 1280 1145 431 234 1110 1170 Th 32.8 35.6 29.3 29.6 33.6 32.4 24.1 26 25.1 29.3 23.5 23.1 22.7 28.6 41.4 54.2 50.3 50.6 U 4.6 4.9 4.3 4.5 5.2 5.8 3.5 3.2 4.6 4.7 3.8 3.9 3.7 6.2 6.8 7.7 11.4 10.2 K 34949 34451 33289 32293 37108 36859 40677 43250 37771 39183 42337 41673 41092 40345 23991 12452 26481 27643 Nb 18.7 22.4 15.7 15.8 16.2 15.5 10.8 12.1 11.2 12.4 13.2 13.6 11.5 15.7 24.8 31.4 25.1 22.3 Ta 1.3 1.6 1.2 1.2 1.3 1.2 0.9 1.0 1.0 1.0 1.0 1.1 0.9 1.3 1.7 2.2 1.4 1.3 Sr 1065 1045 960 937 1320 1315 793 779 788 690 756 769 792 714 891 756 1310 1380 P 916 916 611 611 742 654 305 393 305 305 305 305 305 218 1003 1658 4101 3927 Zr 255 278 214 216 234 236 146 177 151 162 145 145 149 137 341 424 247 247 Hf 6.3 6.7 5.7 5.7 5.9 5.8 3.8 4.6 4.2 4.6 4.5 4.4 4.4 4.7 8.9 10.4 6.1 5.8 Ti 2817 3177 1678 1678 1798 1678 1079 1439 1139 1139 1079 1079 1079 959 3836 4555 5155 4975 Y 18.8 22.5 14.5 14.1 14.4 13.9 6.1 6.8 6.3 6.3 5.2 5.3 5.8 5.4 24.7 31.9 22.4 22.2 Cr 60 70 40 50 30 40 30 20 20 20 10 20 10 20 90 90 190 180 Ni 19 21 20 23 20 17 13 12 11 13 12 11 12 15 32 32 77 68 ΣREE 324.9 368.7 236.3 227.4 274.9 259.9 173.6 220.7 169.5 180 140.5 141.1 172.9 107.4 386.5 548.6 601.6 600.9 LREE/HREE 21.04 19.64 20.74 19.98 22.95 22.72 31.71 35.54 30.27 31.44 30.51 31.82 32.58 24.34 18.64 20.67 27.16 27.75 (La/Yb)N 40.24 36.4 36.75 36.06 42.98 42.64 81.05 91.18 81.17 69.83 67.32 87.99 92.84 51.34 30.92 37.11 71.48 71.23 δEu 0.86 0.85 0.86 0.83 0.87 0.83 0.84 0.83 0.92 0.85 0.89 0.87 0.86 0.8 0.8 0.79 0.86 0.85 -
[1] Elburg M A.Genetic significance of multiple enclave types in a peraluminous ignimbrite suite, Lachlan fold belt, Australia[J].Journal of Petrology, 1996, 37(6):1385-1408. doi: 10.1093/petrology/37.6.1385
[2] Yang J H, Wu F Y, Chung S L, et al.Multiple sources for the origin of granites:Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves Northeast China[J].Geochimica et Cosmochimica Acta, 2004, 68:4469-4483. doi: 10.1016/j.gca.2004.04.015
[3] Yang J H, Wu F Y, Wilde S A, et al.Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons[J].Contributions to Mineralogy and Petrology, 2007, 153:177-190. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801002031.htm
[4] Cheng Y, Spandler C, Mao J, et al.Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China:A case of two-stage mixing of crust-and mantle-derived magmas[J].Contributions to Mineralogy and Petrology, 2012, 164(4):659-676. doi: 10.1007/s00410-012-0766-0
[5] Flood R H, Shaw S E.Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia:Pressure quench cumulates[J].Lithos, 2014, 198-199(3):92-102. http://www.sciencedirect.com/science/article/pii/S002449371400098X
[6] Clemens J D, Elburg M A.Comment-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 175-176(5):351-352. http://linkinghub.elsevier.com/retrieve/pii/S0024493713001461
[7] Wyborn D.Reply-origin of enclaves in S-type granites of the Lachlan fold belt[J].Lithos, 2013, 154(6):353-354. http://adsabs.harvard.edu/abs/2013Litho.175..353W
[8] Shellnutt J G, Jahn B M, Dostal J.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J].Lithos, 2010, 119(1-2):34-46. doi: 10.1016/j.lithos.2010.07.011
[9] Niu Y, Zhao Z, Zhu D C, et al.Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J].Earth-Science Reviews, 2013, 127(2):96-110. http://adsabs.harvard.edu/abs/2013ESRv..127...96N
[10] Huang H, Niu Y, Nowell G, et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, Northern Tibetan Plateau:Implications for continental crust growth through syn-collisional felsic magmatism[J].Chemical Geology, 2014, 370(4):1-18. https://rd.springer.com/content/pdf/10.1007%2Fs11434-006-2122-0.pdf
[11] Chen S, Niu Y, Sun W, et al.On the origin of mafic magmatic enclaves (MMEs) in syn-collisional granitoids:Evidence from the Baojishan pluton in the North Qilian Orogen, China[J].Mineralogy and Petrology, 2015, 109(5):577-596. doi: 10.1007/s00710-015-0383-5
[12] Barbarin B.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California:Nature, origin and relations with the hosts[J].Lithos, 2005, 80(1):155-177. https://link.springer.com/article/10.1007/s00710-015-0383-5
[13] Kaygusuz A, Aydinakir E.Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration[J].Chemie Der Erde-Geochemistry, 2009, 69(3):247-277. doi: 10.1016/j.chemer.2008.08.002
[14] Kocak K, Zedef V, Kansun G.Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central Southern Turkey:Evidence from mafic microgranular enclaves[J].Mineralogy and Petrology, 2011, 103(1):149-167. https://link.springer.com/content/pdf/10.1007%2Fs00710-011-0165-7.pdf
[15] Perugini D, Poli G.The mixing of magmas in plutonic and volcanic environments:Analogies and differences[J].Lithos, 2012, 153(8):261-277. http://www.sciencedirect.com/science/article/pii/S0024493712000461
[16] Xiong F H, Ma C Q, Zhang J Y, et al.The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology, 2012, 104(3):211-224. https://link.springer.com/article/10.1007/s00710-011-0187-1
[17] Dan W, Wang Q, Wang X C, et al.Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China:Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces[J].Lithos, 2015, 230:133-145. doi: 10.1016/j.lithos.2015.05.016
[18] Chen B, Chen Z C, Jahn B M.Origin of mafic enclaves from the Taihang Mesozoic orogen, North China craton[J].Lithos, 2009, 110(1-4):343-358. doi: 10.1016/j.lithos.2009.01.015
[19] Zhao K D, Jiang S Y, Yang S Y, et al.Mineral chemistry, Trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholiths in the Shi-Hang zone, South China[J].Gondwana Research, 2012, 22(1):310-324. doi: 10.1016/j.gr.2011.09.010
[20] Xia R, Wang C, Min Q, et al.Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf-O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen:Record of closure of the Paleo-Tethys[J].Lithos, 2015, 234-235(3):47-60. http://adsabs.harvard.edu/abs/2015Litho.234...47X
[21] Zeng R, Lai J, Mao X, et al.Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China:Constraints on their petrogenesis, source characteristics and tectonic implication[J].Journal of Asian Earth Sciences, 2016, 121:20-33. doi: 10.1016/j.jseaes.2016.02.009
[22] Zheng Y F, Chen Y X, Dai L Q, et al.Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J].Science China Earth Sciences, 2015, 58(7):1045-1069. doi: 10.1007/s11430-015-5097-3
[23] 陈国超, 裴先治, 李瑞保, 等.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据[J].地学前缘, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm
Chen G C, Pei X Z, Li R B, et al.Genesis of magma mixing and mingling of Xiangjiananshan granite batholith in the eastern section of East Kunlun Orogen:Evidence from mafic microgranular enclaves (MMEs)[J].Earth Science Frontiers, 2016, 23(4):226-240. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604023.htm
[24] 李玮, 高卫, 刘淑琴, 等.塔里木西南缘和田布雅花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm
Li W, Gao W, Liu S Q, et al.Zircon SHRIMP U-Pb dating of Buya granite and its geological significance discuss from the Southwest Tarim Basin, Xinjiang[J].Xinjiang Geology, 2007, 25(3):237-242. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200703003.htm
[25] Ye H M, Li X H, Li Z X, et al.Age and origin of high Ba-Sr appinite-granites at the northwestern margin of the Tibet Plateau:Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt[J].Gondwana Research, 2008, 13(1):126-138. doi: 10.1016/j.gr.2007.08.005
[26] 陈博, 秦克章, 唐冬梅, 等.新疆磁海铁矿区镁铁质岩及正长岩锆石U-Pb年代学、岩石地球化学特征:对成岩、成矿作用的制约[J].岩石学报, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm
Chen B, Qin K Z, Tang D M, et al.Lithological, chronological and geochemical characteristics of Cihai iron deposit, Eastern Xinjiang:Constraints on genesis of mafic-ultramafic and syenite intrusions and mineralization[J].Acta Petrologica Sinica, 2015, 31(8):2156-2174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201508004.htm
[27] 崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中、新生代变形构造及其动力学[J].地学前缘, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm
Cui J W, Guo X P, Ding X Z, et al.Mesozoic-cenozoic deformation structures and their dynamics in the basin-range junction belt of the West Kunlun-Tarim basin[J].Earth Science Frontiers, 2006, 13(4):103-118. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604008.htm
[28] Zhang C L, Ye X T, Zou H B, et al.Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China:New evidence from field observations, detrital zircon U-Pb ages and Hf isotope compositions[J].Precambrian Research, 2016, 280:31-45. doi: 10.1016/j.precamres.2016.04.011
[29] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/ggr.2004.28.issue-3
[30] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
Wu Y B, Zheng Y F.Study on the origin mineralogy of zircon and its restriction to U-Pb age[J].Chinese Science Bulletin, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[31] Siebe L, Blaha U, Chen F, et al.Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J].International Journal of Earth Sciences, 2005, 94(1):8-23. doi: 10.1007/s00531-004-0445-0
[32] 高晓峰, 校培喜, 康磊, 等.西昆仑大同西岩体成因:矿物学、地球化学和锆石U-Pb年代学制约[J].岩石学报, 2013, 29(9):109-123. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm
Gao X F, Xiao P X, Kang L, et al.Origin of Datongxi plutonin the West Kunlun orogen:Constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J].Acta Petrologica Sinica, 2013, 29(9):3065-3079. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309009.htm
[33] Liu Z, Jiang Y H, Jia R Y, et al.Origin of Middle Cambrian and Late Silurian potassic granitoids from the Western Kunlun orogen, Northwest China:A magmatic response to the Proto-Tethys evolution[J].Mineralogy and Petrology, 2014, 108(1):91-110. doi: 10.1007/s00710-013-0288-0
[34] Dahlquist J A.Mafic microgranular enclaves:Early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina[J].Journal of South American Earth Sciences, 2002, 15(6):643-655. doi: 10.1016/S0895-9811(02)00112-8
[35] Baxter S, Fecly M.Magma mixing mingling textures in granitoids:Examples from the Galway granite, Conncmara, Ircland[J].Mineralogy and Petrology, 2002, 76:63-74. doi: 10.1007/s007100200032
[36] Grogan S E, Reavy R J.Disequilibrium textures in the Leinster granite complex.SE Ireland:Evidence for acid-acid magma mixing[J].Mineralogical Magazine, 2002, 66(6):929-939. doi: 10.1180/0026461026660068
[37] 邹涛, 王玉往, 王京彬, 等.内蒙古敖仑花斑岩钼铜矿含矿斑岩的岩浆混合特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(增刊):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm
Zou T, Wang Y W, Wang J B, et al.Magma mixing characteristics and geological significance of host porphyry from the Aolunhua Mo-Cu deposit, Inner Mongolia[J].Journal of Jilin University(Earth Science), 2012, 42(Supplement):171-187. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2021.htm
[38] 张传林, 于海锋, 沈家林, 等.西昆仑库地伟晶辉长岩和玄武岩锆石SHRIMP年龄:库地蛇绿岩的解体[J].地质论评, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm
Zhang C L, Yu H F, Shen J L, et al.Zircon SHRIMP age determination of the Giant-crystal gabbro and Basaltin Kǘ da, West Kunlun:Dismembering of the Kǘ da Ophiolite[J].Geological Review, 2004, 50(6):639-643. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406012.htm
[39] 李天福, 张建新.西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J].岩石学报, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm
Li T F, Zhang J X.Zircon LA-ICP-MS U-Pb ages of websterite and basalt in Kudi ophiolite and the implication, West Kunlun[J].Acta Petrologica Sinica, 2014, 30(8):2393-2401. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408020.htm
[40] 魏国齐, 贾承造, 李本亮, 等.塔里木盆地南缘志留-泥盆纪周缘前陆盆地[J].科学通报, 2002, 47(增刊):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm
Wei G Q, Jia C Z, Li B L, et al.Silurian to Devonian foreland basin in the south edge of Tarim Basin[J].Chinese Science Bulletin, 2002, 47(Supplement):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1006.htm
[41] 李丕龙, 冯建辉, 樊太亮, 等.塔里木盆地构造沉积与成藏[M].北京:地质出版社, 2010:4-43.
Li P L, Feng J H, Fan T L, et al.Tectonics, deposits and hydrocarbon accumulation in Tarim Basin[M].Beijing:Geological Publishing House, 2010:4-43.
[42] 李曰俊, 孙龙德, 杨海军, 等.塔里木盆地晚志留世-石炭纪伸展构造的发现及其地质意义[J].地质科学, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm
Li Y J, Sun L D, Yang H J, et al.New discovery of Late Silurian-Carboniferous extensional structure in Tarim Basin and its geological significance[J].Chinese Journal of Geology, 2014, 49(1):30-48. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401003.htm
[43] 杨海军, 李曰俊, 李勇, 等.塔里木盆地南部玛东早古生代褶皱-冲断带[J].岩石学报, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm
Yang H J, Li Y J, Li Y, et al.Madong Early Paleozoic fold-thrust belt in the Southern Tarim Basin[J].Acta Petrologica Sinica, 2016, 32(3):815-824. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201603013.htm
-