Study on the Types, and Metallogenic and Diagenetic Environment of Tourmaline from the Zhongzuo Pegmatite Veins in Quyang County, Hebei Province
-
摘要: 电气石在成岩、成矿作用中具有重要的示踪意义,利用电气石化学组成特征可有效指示其形成的成岩、成矿环境,也是一种有用的找矿标志。我国华南、西部等地区伟晶岩型稀有金属矿床找矿已取得较大进展,但华北地台区伟晶岩型稀有金属矿床尚未取得找矿突破,亟待开展系统而深入的地质找矿工作。河北曲阳县中佐伟晶岩脉中分布有大量的灰黑色自形电气石,适合开展系统的矿物学研究。本文在详细野外地质调查的基础上,系统采集研究样品,结合镜下鉴定,采用粉晶X射线衍射和电子探针相结合的研究方法,对河北曲阳县中佐伟晶岩脉中电气石的化学成分进行测试,以查明电气石的类型及其成岩、成矿环境。粉晶X射线衍射和电子探针分析结果均显示中佐伟晶岩脉中电气石属镁电气石(但接近于铁电气石),而电气石化学成分Ca-Fe-Mg三角图解显示电气石成岩环境为贫Ca变质泥质岩、变质砂屑岩和石英-电气石岩。电气石化学成分常与围岩岩石类型存在明显关联,认为中佐伟晶岩脉中的镁电气石是在较高温度(700~600℃,早期结晶的伟晶岩)条件下,岩浆熔体与高温流体和围岩发生同化混染的过程中形成的,围岩中Mg、Fe等物质成分为电气石的形成提供了必要的物质来源。中佐伟晶岩脉中电气石化学成分的系统研究,为我国地台区伟晶岩矿床的找矿提供了基础地质资料和找矿方向。Abstract: Tourmaline is an efficient tracer during diagenesis and metallogenesis. Chemical composition of tourmaline can not only be used to give information about environment of diagenesis and metallogenesis, but can also be useful in prospecting. Prospecting work of pegmatite-type rare metal deposits in Southern and Western China has seen a big breakthrough, however, there has been no obvious advance in prospecting in Northern China. Therefore, it is necessary to carry out systematical and detailed prospecting work. There are a lot of grey black idiomorphic tourmalines in pegmatite veins in Quyang County, Hebei Province, which makes it suitable for carrying out systematical mineralogy research. Samples based on detailed field work were systematically collected and are described in this paper. Microscopic identification, Powder X-ray Diffraction and Electron Microprobe were used to determine the chemical composition of tourmaline, in order to investigate the types, and diagenetic and metallogenic environment of tourmaline. Electronic Probe and Powder X-ray Diffraction show that tourmaline in Zhongzuo pegmatite belongs to dravite but is close to that of schorl. The Ca-Fe-Mg ternary diagram indicates that the diagenetic environment is poor Ca metamorphic pelite, metamorphic arenite and quartz-tourmaline rock. The chemical composition of tourmaline is closely related to the types of surrounding rock. The dravite in pegmatite veins was formed by assimilation blending between magmatic melt and surrounding rock at a temperature of 700-600℃ where Mg and Fe in surrounding rock provide the necessary sources for the formation of tourmaline. The systematical study of chemical composition of tourmaline in Zhongzuo pegmatite veins provides fundamental geological data and a prospecting direction for pegmatite-type deposits.
-
Key words:
- microscopic identification /
- Powder X-ray Diffraction /
- Electron Microprobe /
- Zhongzuo /
- pegmatite viens /
- dravite
-
-
表 1 中佐伟晶岩脉中电气石电子探针成分分析及相关计算数据
Table 1. Electron microprobe analyses of composition and relevant calculating data of tourmaline in Zhongzuo pegmatite veins
测量
项目16BZZ-11-1 16BZZ-11-2 16BZZ-11-3 16BZZ-12-1 16BZZ-12-1a 16BZZ-12-1b 16BZZ-12-2 16BZZ-12-3 16BZZ-12-4 16BZZ-12-5 16BZZ-12-5a 16BZZ-12-5b 16BZZ-12-6 16BZZ-12-7 16BZZ-12-8 16BZZ-13-1-1 16BZZ-13-1-2 16BZZ-13-1-3 16BZZ-13-1-4 16BZZ-13-1-5 16BZZ-13-2-1 16BZZ-13-2-2 16BZZ-13-2-3 SiO2 35.832 35.808 35.392 35.875 36.471 36.165 35.526 35.312 35.797 35.501 35.980 36.154 35.710 35.842 35.628 36.492 36.257 36.802 36.421 37.079 35.947 36.204 35.722 TiO2 0.462 0.335 0.323 0.203 0.254 0.264 0.374 0.414 0.415 0.364 0.393 0.192 0.283 0.364 0.333 0.383 0.464 0.303 0.363 0.373 0.201 0.312 0.494 Al2O3 31.587 31.169 30.992 31.910 32.189 32.256 31.318 31.333 31.657 31.497 31.764 32.077 31.997 31.383 31.233 31.577 31.477 31.826 31.703 31.028 31.833 31.715 31.400 FeO 8.417 9.020 9.128 7.650 7.467 6.416 7.975 8.381 8.156 8.276 9.000 7.749 7.123 7.846 8.476 8.564 7.896 8.615 8.567 8.631 8.877 8.477 8.385 MnO 0.017 0.104 0.083 0.046 0.028 0.004 0.025 0.039 0.004 0.046 0.032 0.039 0.004 0.007 0.088 0.067 0.060 0.000 0.025 0.039 0.028 0.116 0.056 MgO 6.749 6.465 6.627 7.199 7.190 7.256 7.248 7.011 7.076 6.944 6.780 7.123 7.139 7.015 7.062 7.061 7.471 7.063 7.055 7.002 6.764 6.676 6.876 CaO 0.445 0.524 0.600 0.511 0.473 0.393 0.707 0.574 0.752 0.631 0.610 0.488 0.440 0.604 0.583 0.625 0.771 0.663 0.532 0.734 0.503 0.572 0.581 Na2O 2.214 2.292 2.233 2.253 2.306 2.094 2.372 2.317 2.251 2.432 2.451 2.322 2.200 2.416 2.379 2.312 2.299 2.406 2.402 2.278 2.322 2.345 2.421 K2O 0.076 0.079 0.074 0.051 0.074 0.055 0.061 0.071 0.083 0.062 0.076 0.071 0.073 0.080 0.050 0.086 0.068 0.094 0.068 0.096 0.086 0.073 0.076 B2O3 10.560 10.517 10.459 10.596 10.710 10.598 10.536 10.498 10.609 10.539 10.670 10.657 10.543 10.551 10.540 10.716 10.692 10.792 10.715 10.732 10.627 10.639 10.569 总和 96.359 96.313 95.911 96.294 97.162 95.501 96.142 95.950 96.800 96.292 97.756 96.872 95.512 96.108 96.372 97.883 97.455 98.564 97.851 97.992 97.188 97.129 96.580 B 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 Si 5.936 5.958 5.922 5.925 5.959 5.972 5.900 5.887 5.905 5.895 5.901 5.937 5.927 5.945 5.915 5.959 5.934 5.967 5.948 6.046 5.919 5.955 5.915 Aly 0.064 0.042 0.078 0.075 0.041 0.028 0.100 0.113 0.095 0.105 0.099 0.063 0.073 0.055 0.085 0.041 0.061 0.033 0.052 0.000 0.081 0.045 0.085 Alz 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 5.953 6.000 6.000 6.000 Aly 0.092 0.059 0.023 0.126 0.147 0.239 0.019 0.033 0.048 0.048 0.030 0.134 0.175 0.069 0.016 0.025 0.000 0.039 0.039 0.000 0.086 0.092 0.032 Ti 0.057 0.042 0.041 0.025 0.031 0.033 0.047 0.052 0.051 0.045 0.048 0.024 0.035 0.045 0.041 0.047 0.057 0.037 0.044 0.046 0.025 0.038 0.061 Fe 1.162 1.251 1.273 1.053 1.017 0.883 1.104 1.164 1.121 1.145 1.230 1.060 0.985 1.084 1.173 1.165 1.077 1.164 1.166 1.173 1.218 1.162 1.157 Mn 0.002 0.015 0.012 0.006 0.004 0.001 0.004 0.005 0.001 0.006 0.004 0.005 0.001 0.001 0.012 0.009 0.008 0.000 0.003 0.005 0.004 0.016 0.008 Mg 1.677 1.614 1.663 1.784 1.762 1.797 1.806 1.753 1.751 1.730 1.668 1.755 1.777 1.745 1.759 1.730 1.834 1.718 1.728 1.713 1.671 1.647 1.708 Y位和 2.991 2.980 3.011 2.994 2.961 2.952 2.979 3.008 2.972 2.975 2.981 2.978 2.973 2.945 3.001 2.976 2.976 2.958 2.981 2.937 3.004 2.956 2.966 Ca 0.079 0.093 0.108 0.090 0.083 0.070 0.126 0.103 0.133 0.112 0.107 0.086 0.078 0.107 0.104 0.109 0.135 0.115 0.093 0.128 0.089 0.101 0.103 Na 0.710 0.738 0.723 0.720 0.729 0.669 0.762 0.748 0.719 0.782 0.778 0.738 0.707 0.776 0.765 0.731 0.728 0.755 0.759 0.719 0.740 0.747 0.776 K 0.016 0.017 0.016 0.011 0.015 0.012 0.013 0.015 0.017 0.013 0.016 0.015 0.015 0.017 0.011 0.018 0.014 0.019 0.014 0.020 0.018 0.015 0.016 X位和 0.805 0.848 0.846 0.821 0.828 0.750 0.901 0.865 0.869 0.907 0.901 0.839 0.800 0.900 0.879 0.858 0.878 0.890 0.867 0.867 0.847 0.863 0.895 注:电气石电子探针数据处理及参数计算方法参考Henry等[11]。 表 2 不同产地电气石的Fe#参数对比
Table 2. The w(FeO)/w(FeO+MgO) values of tourmaline in various regions
顺序号 寄主岩类型和产地 Fe# 1 美国西南部贫Li花岗岩 0.91 2 葡萄牙北部贫Li花岗岩 0.86 3 哥伦比亚元古代石英岩和泥质岩 0.45~0.67 4 乌克兰沉积变质片岩和片麻岩 0.42~0.50 5 美国缅因地区变泥质岩 0.41~0.55 6 块状硫化物矿床 0.21 7 铜矿峪花岗闪长岩 0.79 8 柿沟条纹状电气石岩 0.73 9 北峪花岗闪长岩和花岗斑岩 0.55 10 地层中电气石石英岩脉 0.42 11 篦子沟富矿黑云片岩和大理岩 0.45 12 胡加峪赋矿金云母石英白云石大理岩 0.20 13 河北省曲阳县中佐伟晶岩脉 0.54 注:中佐数据为本文成果,其余据文献[4]。 ${\rm{F}}{{\rm{e}}^{\rm{\# }}}{\rm{ = }}\frac{{w\left( {{\rm{FeO}}} \right)}}{{w\left( {{\rm{FeO}} + {\rm{MgO}}} \right)}}$ 。 -
[1] Van Hinsberg V J, Henry D J, Dutrow B L.Tourmaline as a petrologic forensic mineral:A unique recorder of its geologic past[J].Elements, 2011, 7(5):327-332. doi: 10.2113/gselements.7.5.327
[2] 毛景文, 王平安, 王登红, 等.电气石对成岩成矿环境的示踪性及应用条件[J].地质论评, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm
Mao J W, Wang P A, Wang D H, et al.The tracer of tourmaline for rock-forming and metallogenic environments and its applied conditions[J].Geological Review, 1993, 39(6):498-507. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199306003.htm
[3] 蒋少涌, 于际民, 倪培, 等.电气石——成岩成矿作用的灵敏示踪剂[J].地质论评, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm
Jiang S Y, Yu J M, Ni P, et al.Tourmaline-A sensitive tracer for petrogenesis and minerogenesis[J].Geological Review, 2000, 16(6):595-604. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200006006.htm
[4] 王进军, 赵枫.电气石的化学特征与相关矿床的关系[J].地质找矿论丛, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
Wang J J, Zhao F.Relation between tourmaline chemical feature and related deposit[J].Geologic Prospecting Analects, 2002, 17(3):162-163. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
[5] 黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm
Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201203018.htm
[6] Roda E, Pesquera A, Velasco F.Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain[J].The Canadian Mineralogist, 1999, 33:835-848. https://link.springer.com/article/10.1007/s12517-015-1900-x
[7] 卢宗柳.我国电气石矿床类型及其地质特征[J].矿产与地质, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
Lu Z L.Chinese tourmaline deposits type with their geological characteristics[J].Mineral Resources and Geology, 2008, 22(2):174-177. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
[8] 熊欣, 徐文艺, 吕庆田, 等.安徽庐枞盆地砖桥深部钻孔内电气石对铀钍成矿流体在高温阶段的指示意义[J].岩石矿物学杂志, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm
Xiong X, Xu W Y, Lü Q T, et al.Tourmaline as an early stage indicator of uranium mineralization in the deep drilling, Luzong Basin, Anhui Province[J].Acta Petrologica et Mineralogica, 2014, 33(2):263-272. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201402005.htm
[9] 伍守荣, 赵景宇, 张新, 等.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液过程:来自电气石化学组成演化的证据[J].矿物学报, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm
Wu S R, Zhao J Y, Zhang X, et al.Magmatic-hydrothermal evolution of the Koktokay No.3 pegmatite, Altay, NW China:Evidence from compositional variation of tourmaline[J].Acta Mineralogica Sinica, 2015, 35(3):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503004.htm
[10] 张洁, 李林庆.岩矿鉴定实用手册[M].北京:地质出版社, 2016:1-69.
Zhang J, Li L Q.Mineral and Rock Identification Guide[M].Beijing:Geological Publishing House, 2016:1-69.
[11] Henry D J, Guidotti C V.Tourmaline as a petrogenetic indicator mineral-An example from the staurolite-grade metapelites of NW Maine[J].American Mineralogist, 1985, 70(1-2):1-15. https://core.ac.uk/display/10385204
[12] Hawthorne F C, Henry D J.Classification of the minerals of the tourmaline group[J].European Journal of Mineralogy, 1999, 11(2):201-215. doi: 10.1127/ejm/11/2/0201
[13] Henry D J, Nov M, Hawthorne F C, et al.Nomenclature of the tourmaline-supergroup minerals[J].American Mineralogist, 2011, 96(5-6):895-913. doi: 10.2138/am.2011.3636
[14] 杨岳清, 王勇, 吕庆田, 等.福建南平花岗伟晶岩中的电气石研究[J].岩石矿物学杂志, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
Yang Y Q, Wang Y, Lü Q T, et al.Characteristics of tourmalines from Nanping granitic pegmatites in Fujian Province[J].Acta Petrologica et Mineralogica, 2010, 29(3):235-242. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YKCS2017092700O&dbname=CAPJ2015
[15] 邹天人, 杨岳清.中国电气石(碧玺)的颜色与成分[J].矿床地质, 1996, 15(增刊):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm
Zou T R, Yang Y Q.The color and composition of tourmaline of China[J].Mineral Deposits, 1996, 15(Supplement):65-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ1996S1025.htm
[16] Slack J F, Trumbull R B.Tourmaline as a recorder of ore-forming processes[J].Elements, 2011, 7(5):321-326. doi: 10.2113/gselements.7.5.321
[17] 于淼, 丰成友, 刘洪川, 等.青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J].矿床地质, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm
Yu M, Feng C Y, Liu H C, et al.Mineralogy, element geochemistry and genesis of tourmaline from Galingge skarn deposit, Qinghai Province[J].Mineral Deposits, 2016, 35(1):69-84. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201601005.htm
[18] Yu M, Feng C Y, Mao J W, et al.Multistage skarn-related tourmaline from the Galinge deposit, Qiman Tagh, Western China:A fluid evolution perspective[J].The Canadian Mineralogist, 2017, 55:3-19. doi: 10.3749/canmin.1600043
[19] Henry D J, Brodtkorb M K D.Mineral chemistry and chemical zoning in tourmalines, Pampadel Tamboreo, San Luis, Argentina[J].Journal of South American Earth Sciences, 2009, 28(2):132-141. doi: 10.1016/j.jsames.2009.03.001
[20] Henry D J, Dutrow B L.Metammorphic tourmaline and its petrologic applications[J].Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557. http://rimg.geoscienceworld.org/content/33/1/503.abstract
[21] 冀志江, 梁金生, 金宗哲, 等.热处理电气石的物相转变[J].矿物学报, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm
Ji Z J, Liang J S, Jin Z Z, et al.Structure change of dravite-schorl after heat treatment[J].Acta Mineralogica Sinica, 2002, 22(3):281-284. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200203015.htm
[22] 汤云晖, 马喆生, 吴瑞华, 等.Mg-Fe电气石的热膨胀与相变[J].矿物学报, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm
Tang Y H, Ma Z S, Wu R H, et al.Research on thermal deformation and phase transformation of Mg-Fe tourmaline[J].Acta Mineralogica Sinica, 2002, 22(4):384-386. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200204016.htm
[23] 王敏, 张尚坤, 张增奇, 等.鲁西柳家电气石矿物学特征及成矿机理探讨[J].山东地质, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm
Wang M, Zhang S K, Zhang Z Q, et al.Study on mineralogical characteristics and ore-forming mechanism of tourmalinite in Liujia of West Shangdong[J].Shandong Geology, 2001, 17(1):36-39. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200101006.htm
-