Study on Microstructure and Elements in the Sandstone of the Shendong Coal Field, Inner Mongolia by SEM-EDX
-
摘要: 神东矿区砂岩地层中存在大量的结构面,这种结构面的存在会对岩层的力学性能、超声波传播、破坏形式以及力的传递等都有显著的影响,但是结构面的微观结构及元素特征是其主要原因之一。本文以布尔台煤矿、大柳塔煤矿和补连塔煤矿地层砂岩中的结构面为研究对象,采用FEI-SEM扫描电镜和能谱仪对不同类型结构面的微观结构和元素特征进行了研究。结果表明:神东矿区砂岩中的结构面可以分为两大类(Ⅰ和Ⅱ),其中Ⅰ类又可以分为三个亚类(Ⅰ1、Ⅰ2、Ⅰ3);Ⅰ类主要含有煤,Ⅱ类主要含有白云母。Ⅰ1和Ⅱ类结构面颗粒感不明显,颗粒边界不清晰,Ⅰ2和Ⅰ3类结构面颗粒感比较明显,颗粒边界比较清晰。Ⅰ1、Ⅰ2、Ⅰ3和Ⅱ类型结构面的孔隙直径和裂隙长度(μm)分别为2.1、81.8、8.9、38.8、4.5、143.7和3.8、13.8。Ⅰ1类结构面主要组成元素是C、O、Si、Al、K、Ti和Fe;Ⅰ2类结构面主要为C;Ⅰ3类结构面主要为C、O、Si、Al、K和Mg;Ⅱ类结构面的主要元素有C、O、Si、Al、K和Ti。神东矿区地层中结构面主要元素为C和O,两种类型的微观结构存在差异。研究结果有助于进一步揭示神东矿区顶板动力灾害及台阶下沉等现象。Abstract: The sandstone strata in the Shendong coal field have lots of structural planes, which has a significant influence on the mechanical properties, ultrasonic wave propagation, failure mode and force transfer of the strata. The structural plane in the sandstone strata of the Buertai, Daliuta, Bulianta mine was chosen as the research object, and their microstructure and element characteristics were studied by using FEI-SEM and Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF). Results show that the structural planes in sandstone of the Shendong coal field can be divided into two types (Ⅰ and Ⅱ), with Ⅰ being further divided into three subgroups (Ⅰ1, Ⅰ2, Ⅰ3). TypeⅠ mainly contains coal, whereas typeⅡ mainly contains muscovite. TypesⅠ1 and Ⅱ structural plane particles are not obvious and the particle boundaries are not clear. But the particles of typeⅠ2 and Ⅰ3 structure planes are more obvious with much clearer particle boundaries. The pore diameter and fracture length of typeⅠ1 structure plane are 2.1 μm and 81.8 μm, respectively, whereas those for typeⅠ2 structure plane are 8.9 μm and 38.8 μm, respectively. The pore diameter and fracture length of typeⅠ3 structure plane are 4.5 μm and 143.7 μm, whereas those for typeⅡ structure plane were 3.8 μm and 13.8 μm, respectively. The main elements of typeⅠ1 structure plane are C, O, Si, Al, K, Ti and Fe, whereas the main elements of Ⅰ2 structure plane is C. The main elements of Ⅰ3 structural plane are C, O, Si, Al, K and Mg. The main elements of typeⅡ structural plane are C, O, Si, Al, K and Ti. Therefore, C and O are the main elements of the structural planes in the strata of the Shendong coal field. The microstructures of the two types of structural planes are different. The results are helpful to further reveal the roof dynamic disaster and step subsidence in the Shendong coal field.
-
Key words:
- structural plane /
- microstructure /
- pore /
- element characteristics /
- Shendong coal field
-
-
表 1 不同类型结构面孔裂隙特征
Table 1. Pore and fracture characteristics of different type of structural planes
类型 裂隙长度(μm) 孔隙直径(μm) 孔裂隙面积百分比(%) 平均值 标准偏差 平均值 标准偏差 500倍 2000倍 Ⅰ1类 81.8 59.8 2.1 1.3 7.0 8.3 Ⅰ2类 38.8 34.1 8.9 8.8 29.7 19.8 Ⅰ3类 143.7 95.6 3.3 4.5 7.7 7.3 Ⅱ类 13.8 6.5 6.4 3.8 8.0 7.8 表 2 不同类型结构面元素质量和原子半定量分析
Table 2. Qualitative and semi-quantitative analysis of elements with different type of structural planes
元素 Ⅰ1类 Ⅰ2类 Ⅰ3类 Ⅱ类 质量百分比(%) 原子百分比(%) 质量百分比(%) 原子百分比(%) 质量百分比(%) 原子百分比(%) 质量百分比(%) 原子百分比(%) C 48.32 60.99 86.19 89.26 9.87 18.19 12.40 20.08 O 29.46 27.91 13.81 10.74 18.22 25.19 39.36 47.84 Si 11.98 6.46 - - 51.03 40.20 26.53 18.37 Al 5.76 3.24 - - 16.91 13.87 14.98 10.80 K 1.37 0.53 - - 3.05 1.72 1.87 0.93 Mg - - - - 0.92 0.84 - - Ti 0.54 0.17 - - - - 4.87 1.98 Fe 2.58 0.70 - - - - - - 表 3 不同类型结构面X射线能谱特征分析结果
Table 3. Analytical results of X-ray energy spectrum characteristics of different type of structural planes
结构面类型 矿物 原子百分比(%) 元素含量(%) 分析点位 Ⅰ1类 碳 C:87.21
O:12.79C:83.65
O:16.35Ⅰ1类 碳高岭石 C:71.57
O:21.63
Si:4.17
Al:2.63C:61.68
O:24.83
Si:8.41
Al:5.08Ⅰ2类 碳 C:92.57
O:7.43C:90.34
O:9.66Ⅰ2类 碳 C:92.76
O:7.24C:90.58
O:9.42Ⅰ3类 碳高岭石 C:67.52
O:23.90
Si:5.06
Al:3.51C:56.69
O:26.74
Si:9.94
Al:6.63Ⅰ3类 碳 C:82.58
O:17.42C:78.07
O:21.93Ⅱ类 长石 Si:36.08
O:45.83
K:7.68
Al:10.41Si:43.53
O:31.50
K:12.90
Al:12.07Ⅱ类 石英 Si:63.08
O:36.92Si:63.08
O:36.92 -
[1] Behrestaghi M H N, Rao K S, Ramamurthy T.Engi-neering geological and geotechnical responses of schistose rocks from dam project areas in India[J].Engineering Geology, 1996, 44(1):183-201. https://www.sciencedirect.com/science/article/pii/S0013795296000695
[2] Exadaktylos G E, Kaklis K N.Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically[J].International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2):227-243. doi: 10.1016/S1365-1609(00)00072-1
[3] Gatelier N, Pellet F, Loret B.Mechanical damage of an anisotropic porous rock in cyclic triaxial tests[J].International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3):335-354. doi: 10.1016/S1365-1609(02)00029-1
[4] 周尚文, 薛华庆, 郭伟, 等.基于扫描电镜和X射线能谱的页岩矿物分析方法[J].中国石油勘探, 2017, 22(6):27-33. http://d.wanfangdata.com.cn/Periodical_ykcs201405004.aspx
Zhou S W, Xue H Q, Guo W, et al.A mineral analysis method for shale based on SEM and X-ray EDS[J].China Petroleum Exploration, 2017, 22(6):27-33. http://d.wanfangdata.com.cn/Periodical_ykcs201405004.aspx
[5] 王满, 王英伟.平顶山矿区煤体微观结构的扫描电镜分析[J].煤矿安全, 2014, 45(7):169-171. http://d.wanfangdata.com.cn/Periodical_mkaq201407051.aspx
Wang M, Wang Y W.SEM analysis of coal microstructure in Pingdianshan mining area[J].Safety in Coal Mines, 2014, 45(7):169-171. http://d.wanfangdata.com.cn/Periodical_mkaq201407051.aspx
[6] 李长明, 宋丽莎, 王立久, 等.砒砂岩的矿物成分及其抗蚀性[J].中国水土保持科学, 2015, 13(2):11-16. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stbc201502003&dbname=CJFD&dbcode=CJFQ
Li C M, Song L S, Wang L J, et al.Mineral composition and anti-erodibility of Pisha sandstone[J].Science of Soil and Water Conservation, 2015, 13(2):11-16. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stbc201502003&dbname=CJFD&dbcode=CJFQ
[7] 王建其, 柳小明.X射线荧光光谱法分析不同类型岩石中10种主量元素的测试能力验证[J].岩矿测试, 2016, 35(2):145-151. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.02.006
Wang J Q, Liu X M.Proficiency testing of the XRF method for measuring 10 major elements in different rock types[J].Rock and Mineral Analysis, 2016, 35(2):145-151. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.02.006
[8] 赵康, 赵红宇, 贾群燕.岩爆岩石断裂的微观结构形貌分析及岩爆机理[J].爆炸与冲击, 2015, 35(6):913-918. doi: 10.11883/1001-1455(2015)06-0913-06
Zhao K, Zhao H Y, Jia Q Y.An analysis of rockburst fracture micromorphology and study of its mechanism[J].Explosion and Shock Waves, 2015, 35(6):913-918. doi: 10.11883/1001-1455(2015)06-0913-06
[9] 杨春和, 冒海军, 王学潮, 等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学, 2006, 27(12):2090-2098. doi: 10.3969/j.issn.1000-7598.2006.12.002
Yang C H, Mao H J, Wang X C, et al.Study on variation of microstructure and mechanical properties of water-weakening slates[J].Rock and Soil Mechanics, 2006, 27(12):2090-2098. doi: 10.3969/j.issn.1000-7598.2006.12.002
[10] 石秉忠, 夏柏如.硬脆性泥页岩水化过程的微观结构变化[J].大庆石油学院学报, 2011, 35(6):28-34. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqsy201106008&dbname=CJFD&dbcode=CJFQ
Shi B Z, Xia B R.The variation of microstructures in the hard brittle shale hydration process[J].Journal of Daqing Petroleum Institute, 2011, 35(6):28-34. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqsy201106008&dbname=CJFD&dbcode=CJFQ
[11] 时贤, 程远方, 蒋恕, 等.页岩微观结构及岩石力学特征实验研究[J].岩石力学与工程学报, 2014, 33(增刊2):3439-3445. http://lib.cqvip.com/qk/96026X/2014A02/663076519.html
Shi X, Cheng Y F, Jiang S, et al.Experimental study of microstructure and rock properties of shale samples[J].Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Supplement 2):3439-3445. http://lib.cqvip.com/qk/96026X/2014A02/663076519.html
[12] 薛华庆, 胥蕊娜, 姜培学, 等.岩石微观结构CT扫描表征技术研究[J].力学学报, 2015, 47(6):1073-1078. doi: 10.6052/0459-1879-15-102
Xue H Q, Xu R N, Jiang P X, et al.Characterization of rock microstructure using 3D X-ray computed tomography[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1073-1078. doi: 10.6052/0459-1879-15-102
[13] 曹平, 宁果果, 范祥, 等.不同温度的水岩作用对岩石节理表面形貌特征的影响[J].中南大学学报(自然科学版), 2013, 44(4):1510-1516. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201304032&dbname=CJFD&dbcode=CJFQ
Cao P, Ning G G, Fan X, et al.Influence of water-rock interaction on morphological characteristic of rock joint surface at different temperatures[J].Journal of Central South University (Science and Technology), 2013, 44(4):1510-1516. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201304032&dbname=CJFD&dbcode=CJFQ
[14] 曹平, 贾洪强, 刘涛影, 等.岩石节理表面三维形貌特征的分形分析[J].岩石力学与工程学报, 2011, 30(增刊2):3839-3843. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2011S2062.htm
Cao P, Jia H Q, Liu T Y, et al.Fractal analysis of three-dimensional topography characteristics of rock joint surface[J].Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Supplement 2):3839-3843. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2011S2062.htm
[15] 陈世江, 朱万成, 张敏思, 等.基于数字图像处理技术的岩石节理分形描述[J].岩土工程学报, 2012, 34(11):2087-2092. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytgc201211019&dbname=CJFD&dbcode=CJFQ
Chen S J, Zhu W C, Zhang M S, et al.Fractal description of rock joints based on digital image processing technique[J].Chinese Journal of Geotechnical Engineering, 2012, 34(11):2087-2092. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytgc201211019&dbname=CJFD&dbcode=CJFQ
[16] 焦淑静, 韩辉, 翁庆萍, 等.页岩孔隙结构扫描电镜分析方法研究[J].电子显微镜学报, 2012, 31(5):432-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxwxb201205011
Jiao S J, Han H, Weng Q P, et al.Scanning electron microscope analysis of porosity in shale[J].Journal of Chinese Electron Microscopy Society, 2012, 31(5):432-436. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxwxb201205011
[17] Li H G, Li H M, Gao B, et al.Study on pore charac-teristics and microstructure of sandstones with different grain sizes[J].Journal of Applied Geophysics, 2017, 136:364-371. doi: 10.1016/j.jappgeo.2016.11.015
[18] 王坤阳, 杜谷, 杨玉杰, 等.应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J].岩矿测试, 2014, 33(5):634-639. http://www.ykcs.ac.cn/article/id/b80c341c-6297-43b0-a61b-daaaddfa9611
Wang K Y, Du G, Yang Y J, et al.Characteristics study of reservoirs pores and mineral compositions for black Shale, Northern Guizhou, by using SEM and X-ray EDS[J].Rock and Mineral Analysis, 2014, 33(5):634-639. http://www.ykcs.ac.cn/article/id/b80c341c-6297-43b0-a61b-daaaddfa9611
-