-
摘要: 铌钽精矿标准物质在监控选冶样品分析的过程起到重要作用,在选厂及冶金系统有很大的需求,国内外的文献检索均未发现铌钽精矿标准物质的报道;而铌钽矿物的性质决定了铌钽精矿的粉碎粒度及均匀性对铌钽精矿标准物质的研制提出了更高的要求。本文阐述了4个铌钽精矿标准物质的研制过程,铌钽精矿采集于宜春及尼日利亚铌钽选厂,样品经气流粉碎和高铝球磨两次细碎及机械混匀后,随机抽取包装好的样品进行均匀性和稳定性检验及定值。采用电感耦合等离子体发射光谱法与质谱法(ICP-OES/MS)进行均匀性和稳定性检验,结果表明样品的均匀性和稳定性良好。采用多个实验室协同测试的定值方式,利用不同原理的分析方法对此样品的铌钽等12个元素进行定值,给出了各定值元素的认定值和不确定度。4个铌钽精矿标准物质Ta(Nb)2O5的含量为9.89%、20.55%、40.79%、53.69%,形成一个从粗精矿到精矿较为完整的含量体系,可以满足选冶试验各阶段流程样品分析对标准物质的需求。Abstract:
BACKGROUNDNiobium-tantalum concentrate reference materials play an important role in monitoring mineral smelting and sample analysis. There is a great demand of niobium-tantalum concentrate reference materials in the dressing plant and metallurgical system, but no domestic and foreign literature has reported these materials. The nature of niobium-tantalum mineral determines the crushed grain size and homogeneity of the niobium-tantalum concentrate and puts forward higher requirements for the development of a niobium-tantalum concentrate standard substance. OBJECTIVESTo develop the four standard materials of niobium-tantalum concentrate with different contents. METHODSThe preparation process of niobium-tantalum concentrate reference materials is introduced. Niobium-tantalum concentrate samples collected from the Yichun and Nigeria selection plant were finely milled and mechanically mixed by air milling and high-alumina ball milling. The packaged samples were randomly selected for homogeneity and stability testing and determined values. The homogeneity and stability of the samples were tested by Inductively Coupled Plasma-Optical Emission Spectrometry/Mass Spectrometry (ICP-OES/MS). RESULTSTwelve elements of different samples are detected by the different analytical methods, with a calibration method for collaborative testing in multiple laboratories, the certified value and uncertainty of each element are given. The samples have good uniformity and stability. CONCLUSIONSThe contents of Ta(Nb)2O5 in the four antimony concentrates are 9.89%, 20.55%, 40.79% and 53.69%, respectively, forming a complete system from crude concentrates to concentrates, which meets the sample requirements for reference materials in the stages of metallurgical tests. -
Key words:
- niobium-tantalum concentrate /
- reference materials /
- standard values /
- uncertainty /
- uniformity /
- stability /
- certified values
-
表 1 采集铌钽精矿候选物的基本特征
Table 1. Basic characteristics of niobium-tantalum concentrate candidates
样品编号 Ta2O5含量(×10-2) Nb2O5含量(×10-2) 采样地及采样量 主要矿物组成 NTJK-1 5.72 4.17 江西宜春,80 kg 长石30%,黄玉35%,钽铌锰矿15%,石英10%,锡石3%,萤石2% NTJK-2 12.07 8.48 江西宜春,80 kg 黄玉20%,钽铌锰矿30%~35%,锡石5%,细晶石6%~8%,磁铁矿1%,长石10%,石英2% NTJK-3 21.02 19.77 江西宜春,80 kg (钽铌+铌钽+锡钽)锰矿60%,黄玉10%,细晶石15%,锡石10%,磁铁矿1% NTJK-4 5.81 47.88 尼日利亚,80 kg 铌钽铁矿75%,钛铁矿+铁金红石15%,赤铁矿5%,锡石3%,角闪石3%,钍石2% 表 2 候选物均匀性检验结果
Table 2. Homogeneity tests of niobium-tantalum concentrate candidates
元素 NTJK-1 NTJK-2 NTJK-3 NTJK-4 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F Nb2O5 4.07 1.15 1.43 8.54 1.85 1.41 20.94 3.74 1.58 49.01 1.60 1.46 Ta2O5 5.39 1.52 1.41 10.80 1.51 0.79 19.58 2.92 1.46 5.45 1.37 1.51 SiO2 26.75 1.37 1.49 20.61 0.41 0.48 10.81 0.93 0.99 2.03 3.67 1.12 Fe2O3 3.47 1.73 1.32 4.47 1.39 1.00 5.81 1.18 1.23 23.89 1.60 1.36 TiO2 0.068 6.12 1.49 0.12 4.01 0.85 1.43 1.17 0.92 10.41 0.97 1.24 MnO 1.94 1.15 0.83 3.55 3.08 0.91 5.63 2.12 1.03 2.46 3.27 0.87 P2O5 0.37 1.51 1.50 0.26 5.05 0.26 0.26 4.61 1.27 0.090 1.56 0.98 Zr* 897.75 3.55 1.47 1549.44 1.52 1.14 1812.26 1.46 0.77 2733.70 1.75 0.32 Hf* 159.72 3.16 0.43 303.87 5.11 1.50 294.38 2.62 1.52 238.87 4.06 1.41 U* 957.05 3.42 1.52 2168.39 4.76 1.54 2955.06 2.95 1.51 340.01 4.19 1.59 Th* 98.94 0.69 1.55 192.83 2.91 0.94 377.83 3.50 1.18 1357.67 2.33 0.78 W* 532.68 4.20 1.59 1127.25 4.91 1.49 2283.44 2.89 1.39 2445.83 3.30 0.66 注:表中带“*”成分的测定平均值单位为10-6,其他成分的测定平均值单位为10-2。 表 3 ICP-OES法测定Nb2O5和Ta2O5短期稳定性的结果
Table 3. Short-term stability test results of Nb2O5 and Ta2O5 by ICP-OES
样品编号 检验方式 取样部位 Nb2O5 Ta2O5 T临界值 平均测定值(×10-2) T检测值 平均测定值(×10-2) T检测值 NTJK-1 机器振荡 上部 4.11 0.9 5.47 0.7 2.3 下部 4.13 5.46 正常存放 上部 4.22 1.0 5.40 0.8 下部 4.21 5.36 NTJK-2 机器振荡 上部 8.52 2.0 11.28 1.1 2.3 下部 8.62 11.41 正常存放 上部 8.82 1.9 11.37 1.3 下部 8.83 11.36 NTJK-3 机器振荡 上部 21.04 1.2 19.26 1.2 2.3 下部 20.98 19.56 正常存放 上部 21.38 1.5 20.30 1.3 下部 21.33 20.31 NTJK-4 机器振荡 上部 48.92 1.3 5.45 1.0 2.3 下部 49.15 5.47 正常存放 上部 54.14 1.2 5.71 0.7 下部 54.12 5.72 表 4 样品各定值元素的分析方法
Table 4. Analytical methods of certified value elements in samples
定值元素 分析方法 Nb2O5和Ta2O5 碱熔-纸上层析重量法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定 Fe2O3 磺基水杨酸比色法;混合酸溶ICP-OES测定 TiO2 二氨替比林甲烷比色法;混合酸溶ICP-OES测定 WO3 硫氰酸盐比色法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定 SiO2 动物胶凝聚重量法;硅钼蓝比色法;混合碱熔ICP-OES测定 U3O8 钒酸铵容量法;混合酸溶ICP-OES测定 表 5 铌钽精矿标准物质的认定值及不确定度
Table 5. Certified values and expanded uncertainty of niobium-tantalum concentrates reference materials
定值元素 认定值与扩展不确定度 NTJK-1 NTJK-2 NTJK-3 NTJK-4 MnO(×10-2) 1.84±0.065 3.59±0.094 5.82±0.158 2.47±0.124 P2O5(×10-6) 3785±414.33 2839±455.71 2189±183.94 1002±114.49 SiO2(×10-2) 27.88±0.542 21.60±0.586 10.99±0.7 2.12±0.282 Fe2O3(×10-2) 3.67±0.307 4.75±0.254 6.34±0.473 24.51±0.343 TiO2(×10-2) 0.075±0.013 0.13±0.016 1.45±0.041 11.28±0.485 Ta2O5(×10-2) 5.72±0.05 12.07±0.10 21.02±0.16 5.81±0.08 Nb2O5(×10-2) 4.17±0.225 8.48±0.267 19.77±0.550 47.88±0.968 W(×10-6) 742±19.62 1540±101.34 2899±107.37 2997±97.46 Th(×10-6) 103±16.10 170±12.11 383±26.91 1520±129.01 U(×10-6) 984±42.50 2084±118.444 3322±290.60 334±12.48 Zr(×10-6) 971±64.30 1624±88.53 1900±110.73 2898±189.44 Hf(×10-6) 171±17.28 283±14.26 295±25.38 166±19.03 表 6 实际样品应用分析结果对照
Table 6. Comparison of analytical results of actual samples
样品编号 Nb2O5分析结果(×10-2) Ta2O5分析结果(×10-2) 宜春选厂 洛阳钼业 参考值 宜春选厂 洛阳钼业 参考值 NTJK-1 4.23 4.19 4.17 5.64 5.74 5.72 NTJK-2 8.49 8.36 8.48 12.25 12.04 12.07 NTJK-3 20.06 19.96 19.77 20.87 20.93 21.02 NTJK-4 48.09 47.97 47.88 5.72 5.87 5.81 注:参考值为8家实验室测定数据统计分析后的算术平均值。 -
[1] 常学东.测定稀有金属矿中锂、铍、铌、钽的方法选择[J].新疆有色金属, 2016(3):64-66. http://d.old.wanfangdata.com.cn/Periodical/xjysjs201603026
Chang X D.Method for determination of lithium, beryllium, niobium and tantalum in rare metal ores[J].Xinjiang Nonferrous Metals, 2016(3):64-66. http://d.old.wanfangdata.com.cn/Periodical/xjysjs201603026
[2] 王汾连, 赵太平, 陈伟.铌钽矿研究进展和攀西地区铌钽矿成因初探[J].矿床地质, 2012, 31(2):293-308. doi: 10.3969/j.issn.0258-7106.2012.02.010
Wang F L, Zhao T P, Chen W.Advances in study of Nb-Ta ore deposits in Panxi area and tentative discussion on genesis of these ore deposits[J].Mineral Deposits, 2012, 31(2):293-308. doi: 10.3969/j.issn.0258-7106.2012.02.010
[3] 何季麟, 张宗国.中国钽铌工业的现状与发展[J].中国金属通报, 2006(48):2-8. http://d.old.wanfangdata.com.cn/Conference/6361270
He J L, Zhang Z G.Present situation and development of tantalum and niobium industry in China[J].China Metal Bulletin, 2006(48):2-8. http://d.old.wanfangdata.com.cn/Conference/6361270
[4] 宋翔宇, 唐志中, 徐靖, 等.某钾长石英岩型铌钽矿的综合利用研究[J].稀有金属, 2014, 38(3):502-508. http://d.old.wanfangdata.com.cn/Periodical/xyjs201403023
Song X Y, Tang Z Z, Xu J, et al.Comprehensive utilization of a potassium feldspar and quartzite type of niobium-tantalum ore[J].Chinese Journal of Rare Metals, 2014, 38(3):502-508. http://d.old.wanfangdata.com.cn/Periodical/xyjs201403023
[5] 田敏, 王盘喜, 郭俊刚, 等.河南某含电气石、长石铌钽矿综合回收试验研究[J].矿产保护与利用, 2016(2):28-34. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201602006
Tian M, Wang P X, Guo J G, et al.Comprehensive recovery research on a niobium-tantalum polymetallic ore containing tourmaline and feldspar in Henan[J].Conservation and Utilization of Mineral Resources, 2016(2):28-34. http://d.old.wanfangdata.com.cn/Periodical/kcbhyly201602006
[6] 余生根.某大型铌钽矿综合利用试验研究[J].有色金属(选矿部分), 2005(5):13-18. doi: 10.3969/j.issn.1671-9492.2005.05.004
Yu S G.Comprehensive utilization tests and studies on a large-sieve Nb-Ta deposit[J].Nonferrous Metals (Mineral Processing Section), 2005(5):13-18. doi: 10.3969/j.issn.1671-9492.2005.05.004
[7] 李志伟, 赵晓亮, 李珍, 等.敞口酸熔ICP-OES法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J].岩矿测试, 2017, 36(6):611-617. http://www.cqvip.com/QK/95716X/201706/673974037.html
Li Z W, Zhao X L, Li Z, et al.Determination of niobium, tantalum and associated elements in niobium tantalum ore by inductively coupled plasma optical emission spectrometry with open acid dissolution[J].Rock and Mineral Analysis, 2017, 36(6):611-617. http://www.cqvip.com/QK/95716X/201706/673974037.html
[8] 王毅民, 王晓红, 高玉淑, 等.中国地质标准物质制备技术与方法研究进展[J].地质通报, 2010, 29(7):1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
Wang Y M, Wang X H, Gao Y S, et al.Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7):1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
[9] 金秉慧.地质标准物质十年回顾[J].岩矿测试, 2003, 22(3):188-200. doi: 10.3969/j.issn.0254-5357.2003.03.007 http://www.ykcs.ac.cn/article/id/ykcs_20030348
Jin B H.Geological certified reference materials:A review since 1992[J].Rock and Mineral Analysis, 2003, 22(3):188-200. doi: 10.3969/j.issn.0254-5357.2003.03.007 http://www.ykcs.ac.cn/article/id/ykcs_20030348
[10] 周敏娟, 李婷, 张磊.宜春钽铌矿地质特征及找矿标志[J].四川有色金属, 2017(2):32-34. doi: 10.3969/j.issn.1006-4079.2017.02.013
Zhou M J, Li T, Zhang L.The geological characteristics and ore prospecting marks of Yichun tantalum-niobium mine[J].Sichuan Nonferrous Metals, 2017(2):32-34. doi: 10.3969/j.issn.1006-4079.2017.02.013
[11] 邓斌, 雷德正, 刘海风, 等.尼日利亚乔斯宾盖地区铌钽锡砂矿成矿地质特征及物质来源[J].四川地质学报, 2017, 37(2):253-256. doi: 10.3969/j.issn.1006-0995.2017.02.018
Deng B, Lei D Z, Liu H F, et al.Ore material origin of Nb-Ta-Sn placer in Pingell, Jos Plateau, Nigeria[J].Acta Geologica Sichuan, 2017, 37(2):253-256. doi: 10.3969/j.issn.1006-0995.2017.02.018
[12] 王毅民, 顾铁新, 高玉淑, 等.富钴结壳铂族元素超细标准物质研制[J].分析测试学报, 2009, 28(10):1105-1110. doi: 10.3969/j.issn.1004-4957.2009.10.001
Wang Y M, Gu T X, Gao Y S, et al.Preparation and study of two seamount Co-rich crust PGEs ultra-fine reference materials:MCPt-l and MCPt-2[J].Journal of Instrumental Analysis, 2009, 28(10):1105-1110. doi: 10.3969/j.issn.1004-4957.2009.10.001
[13] 王晓红, 高玉淑, 王毅民.超细地质标准物质及其应用[J].自然科学进展, 2006, 16(3):309-315. doi: 10.3321/j.issn:1002-008X.2006.03.009
Wang X H, Gao Y S, Wang Y M.Superfine geological standard material and its application[J].Progress in Natural Science, 2006, 16(3):309-315. doi: 10.3321/j.issn:1002-008X.2006.03.009
[14] 宋丽华, 郝原芳, 杨柳, 等.地质标准物质的研制方法[J].地质与资源, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013
Song L H, Hao Y F, Yang L, et al.Preparation method of geochemical reference materials[J].Geology and Resources, 2013, 22(5):419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013
[15] 袁建, 王亚平, 许春雪.湖泊沉积物中磷形态标准质研制[J].岩矿测试, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34
Yuan J, Wang Y P, Xu C X.Preparation of phosphorus speciation reference materials from lake sediments[J].Rock and Mineral Analysis, 2014, 33(6):857-862. http://www.ykcs.ac.cn/article/id/a784bf12-0c30-4de9-aae0-25d7ec262f34
[16] 杨理勤.常量金标准物质标准值的不确定度评定方法[J].黄金, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019
Yang L Q.Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J].Gold, 2015, 36(9):80-82. http://d.old.wanfangdata.com.cn/Periodical/huangj201509019
[17] 郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试, 2005, 24(4):284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20050495
Zheng C J.Primary investigation for evaluation of uncertainty of geological reference materials[J].Rock and Mineral Analysis, 2005, 24(4):284-286. doi: 10.3969/j.issn.0254-5357.2005.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20050495
[18] 丁仕兵, 岳春雷, 曲晓霞.化学分析法测量结果不确定度的计算[J].分析测试技术与仪器, 2005, 11(3):206-210. doi: 10.3969/j.issn.1006-3757.2005.03.013
Ding S B, Yue C L, Qu X X.Uncertainties calculation of chemical analysis methods[J].Analysis and Testing Technology and Instruments, 2005, 11(3):206-210. doi: 10.3969/j.issn.1006-3757.2005.03.013
[19] 鄢明才.地球化学标准物质标准值的不确定度估算探讨[J].岩矿测试, 2001, 20(4):289-293. http://www.ykcs.ac.cn/article/id/ykcs_20010481
Yan M C.Discussion on estimation of uncertainty of certified values from geochemical standard reference materials[J].Rock and Mineral Analysis, 2001, 20(4):289-293. http://www.ykcs.ac.cn/article/id/ykcs_20010481
[20] 刘瑱, 马玲, 时晓露, 等.石英岩化学成分分析标准物质研制[J].岩矿测试, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75
Liu Z, Ma L, Shi X L, et al.Preparation of quartzite reference materials for chemical composition analysis[J].Rock and Mineral Analysis, 2014, 33(6):849-856. http://www.ykcs.ac.cn/article/id/74ac358c-aa50-4a0a-8458-a048d0116e75
[21] 曾美云, 刘金, 邵鑫, 等.磷矿石化学成分分析标准物质研制[J].岩矿测试, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082
Zeng M Y, Liu J, Shao X, et al.Preparation of phosphate ore reference materials for chemical composition analysis[J].Rock and Mineral Analysis, 2017, 36(6):633-640. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705170082