Determination of Antimony Content in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry
-
摘要: 锑矿石化学物相分析涉及三个矿物相:锑华、辉锑矿和难溶锑酸盐,不同锑矿物相提取的溶剂不同、共存离子复杂、浓度梯度差别大,这些因素影响了电感耦合等离子体发射光谱法(ICP-OES)对锑化学物相的准确测定。本文以锑华、辉锑矿和锑酸盐的选择分离溶剂为研究对象,测试了盐酸、硝酸和硫酸钾-硝酸-硫酸不同介质对ICP-OES测定锑的影响。结果表明:同浓度的盐酸和硝酸介质对锑的测定没有影响,锑华和辉锑矿中锑含量的测定可使用同一标准溶液系列,盐酸或硝酸的浓度控制在15%~20%可避免锑的水解;混合酸介质(4g/L硫酸钾-15%硝酸-3%硫酸)对锑的测定有影响,可采用基体匹配方法解决,在测定锑酸盐相锑含量时,锑校准溶液的配制加入锑酸盐浸出剂相同量的混合酸。选择206.833nm谱线作为分析线,在优化的分析方法流程和测定参数条件下,锑华、辉锑矿和锑酸盐中锑的检出限分别为0.0006%、0.0012%和0.0021%;对不同浓度原生矿和氧化矿12次分析,测定值的相对标准偏差(n=12)为0.16%~5.76%,相态加和与全量的相对偏差绝对值为0.07%~7.38%。本方法精密度和准确度满足锑矿石化学物相分析的质量控制要求,解决了锑矿石化学物相快速准确的测量问题。
-
关键词:
- 电感耦合等离子体发射光谱法 /
- 锑矿石 /
- 锑华 /
- 辉锑矿 /
- 锑酸盐
Abstract:BACKGROUNDChemical phase analysis of antimony ores involves three mineral phases:valentinite, stibnite and insoluble antimonate. Solvents used for extracting various antimony mineral phases are different. In addition, coexisting ions are complex and concentration gradients vary greatly. These factors affect the accurate determination of antimony chemical phases by inductively coupled plasma-optical emission spectrometry (ICP-OES). OBJECTIVESTo solve the problem during rapid and accurate measurement of chemical phases of antimony ore. METHODSThe effects of hydrochloric acid, nitric acid and potassium sulfate-nitric acid-sulfuric acid on the determination of antimony by ICP-OES were studied with valentinite, stibnite and antimonate as selective separation solvents. RESULTSThe same concentration of hydrochloric acid and nitric acid medium had no effect on the determination of antimony. The same standard solution series can be used to determine antimony in valentinite and stibnite. Hydrolysis of antimony can be avoided by using 15%-20% hydrochloric acid or nitric acid of. Mixed acid medium (4g/L potassium sulfate-15% nitric acid-3% sulfuric acid) had an effect on the determination of antimony. The matrix matching method can be used to solve the problem. In determining the amount of antimony in antimonate, the calibrated solution was formulated to add the same amount of mixed acid as the antimonate leaching agent. The detection limits of antimony in valentinite, stibnite and antimonate mineral phases by ICP-OES were 0.0006%, 0.0012% and 0.0021%, respectively, by choosing the 206.833nm line as the analytical line, under optimized analytical method flow and measurement parameters. The relative standard deviations (n=12) of the method were 0.16%-5.76%, and the absolute relative deviations of phase addition and total amount were 0.07%-7.38%. CONCLUSIONSThe precision and accuracy of the method meet the quality control requirements of antimony ore chemical phase analysis, and provide fast and accurate measurement of antimony ore chemical phase. -
-
表 1 混合酸与盐酸介质锑校准溶液发射强度的比对
Table 1. Comparison of emission intensity of the calibration solution with mixed acid and hydrochloric acid
Sb浓度
(μg/mL)波长206.833下的发射强度(cts/s) 2mol/L盐酸 硫酸钾-硝酸-硫酸 0 0.96 3.98 0.50 40.67 40.17 1.00 80.73 76.81 2.00 163.3 151.1 4.00 323.2 314.5 8.00 638.6 615.0 10.00 791.58 773.46 线性回归系数 ≥0.9999 ≥0.9999 表 2 不同锑谱线的发射强度和信背比
Table 2. Emission intensity and ratio of signal to background for different antimony spectrum lines
Sb的波长
(nm)发射强度
(cts/s)背景强度
(cts/s)信背比 206.833 175.01 48.10 3.64 217.581 173.84 65.33 2.66 231.147 107.76 90.76 1.19 252.852 29.73 28.98 1.03 259.805 57.46 60.89 0.94 表 3 锑矿石化学物相分析方法各相态检出限
Table 3. Detection limit of antimony phases in chemical phase analysis
相态名称 分析方法 12次空白溶液测定值的标准偏差(%) 检出限(%) 锑华相 ICP-OES 0.0002 0.0006 AAS 0.0014 0.0042 辉锑矿相 ICP-OES 0.0004 0.0012 AAS 0.0030 0.0090 锑酸盐相 ICP-OES 0.0007 0.0021 AAS 0.0007 0.0021 表 4 锑矿石化学物相分析方法精密度
Table 4. Precision tests of chemical phase analysis for antimony ore
样品编号 锑华相中的Sb量 辉锑矿相中的Sb量 锑酸盐相中的Sb量 12次测定值(%) RSD(%) 12次测定值(%) RSD(%) 12次测定值(%) RSD(%) LT4 0.12 0.12 0.12
0.11 0.11 0.13
0.12 0.12 0.12
0.13 0.12 0.135.51 0.82 0.82 0.84
0.84 0.79 0.80
0.80 0.82 0.83
0.81 0.82 0.811.21 0.43 0.41 0.40
0.42 0.43 0.45
0.45 0.45 0.41
0.44 0.43 0.453.54 LT5 0.41 0.43 0.44
0.44 0.43 0.44
0.44 0.44 0.42
0.43 0.41 0445.34 5.58 5.57 5.62
5.59 5.46 5.54
5.60 5.44 5.50
5.53 5.54 5.485.76 1.03 1.00 0.96
0.99 1.06 1.01
1.02 1.01 0.98
1.03 1.01 0.992.80 LT6 0.76 0.78 0.77
0.75 0.79 0.79
0.77 0.77 0.77
0.75 0.78 0.792.92 11.82 11.78 11.78
11.87 11.84 11.88
11.88 11.84 11.66
11.88 11.76 11.780.24 1.69 1.67 1.70
1.59 1.70 1.72
1.70 1.75 1.68
1.72 1.64 1.661.27 LT11 0.27 0.27 0.26
0.27 0.29 0.28
0.28 0.28 0.27
0.26 0.28 0.282.83 0.36 0.35 0.34
0.34 0.35 0.33
0.32 0.33 0.35
0.34 0.34 0.353.25 4.55 4.61 4.69
4.49 4.54 4.60
4.64 4.65 4.52
4.60 4.64 4.540.16 表 5 锑矿石化学物相分析方法准确度
Table 5. Accuracy tests of chemical phase analysis for antimony ore
样品编号 Sb全量(%) Sb相态加和与全量之差(%) Sb相态加和与全量的相对偏差(%) LT4 1.49 1.38-1.49=-0.11 -7.38 LT5 6.98 6.96-6.98=-0.02 -0.29 LT6 14.24 14.25-14.24=0.01 0.07 LT11 5.19 5.17-5.19=-0.02 -0.38 -
[1] 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:147.
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:147.
[2] 周淑君.锑矿物相分析方法探讨[J].云南冶金, 1989(4):43-45.
Zhou S J.Discussion on antimony mineral phase analysis method[J].Yunnan Metallurgy, 1989(4):43-45.
[3] 马玲, 查立新.电感耦合等离子体原子发射光谱法测定锑矿选冶中的砷锑[J].安徽地质, 2010, 20(3):219-221. doi: 10.3969/j.issn.1005-6157.2010.03.014
Ma L, Zha L X.Determination of As and Sb in antimony ores by ICP-AES[J].Geology of Anhui, 2010, 20(3):219-221. doi: 10.3969/j.issn.1005-6157.2010.03.014
[4] 魏轶, 窦向丽, 巨力佩, 等.四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J]岩矿测试, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007 http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
Wei Y, Dou X L, Ju L P, et al.Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J].Rock and Mineral Analysis, 2013, 32(5):715-718. doi: 10.3969/j.issn.0254-5357.2013.05.007 http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
[5] 温良, 黄北川.ICP-AES同时测定锑矿石样品中的5种伴生元素[J].广东化工, 2014, 41(14):224-226. doi: 10.3969/j.issn.1007-1865.2014.14.114
Wen L, Huang B C.Determination of five kinds of associated elements in stadium ore by inductively coupled plasma atomic emission spectrometry[J].Guangdong Chemical Industry, 2014, 41(14):224-226. doi: 10.3969/j.issn.1007-1865.2014.14.114
[6] 李皓, 张尼, 马熠罡.碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑[J].化学分析计量, 2016, 25(2):69-71. doi: 10.3969/j.issn.1008-6145.2016.02.020
Li H, Zhang N, Ma Y G.Determination of antimony in antimony ore by inductively coupled plasma emission spectrometry combined with alkali fusion pretreatment[J].Chemical Analysis and Meterage, 2016, 25(2):69-71. doi: 10.3969/j.issn.1008-6145.2016.02.020
[7] 杨旭东.王水提取-ICP-AES直接测定多金属矿石中砷、锑、铋[J].福建分析测试, 2018, 27(1):39-41. doi: 10.3969/j.issn.1009-8143.2018.01.08
Yang X D.The aqua regia extraction ICP-AES direct determination of arsenic, antimony and bismuth in ores[J].Fujian Analysis & Testing, 2018, 27(1):39-41. doi: 10.3969/j.issn.1009-8143.2018.01.08
[8] 熊英, 董亚妮, 裴若会, 等.锑矿石化学物相分析方法选择性分离条件验证及准确度评估[J].岩矿测试, 2017, 36(2):169-175. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.009
Xiong Y, Dong Y N, Pei R H, et al.Antimony ore chemical phase analysis method for selective separation condition verification and accuracy evaluation[J].Rock and Mineral Analysis, 2017, 36(2):169-175. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.009
[9] 裴原平, 许祖银, 李明礼.西藏锑矿中金和锑的测定方法研究[J].西藏地质, 2001(1):100-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101854636
Pei Y P, Xu Z Y, Li M L.Determination of Au and Sb in Sb ore[J].Tibet Geology, 2001(1):100-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200101854636
[10] 任志海, 牟思名, 程功, 等.王水密闭溶矿-电感耦合等离子体原子发射光谱法测定锑矿石中的锑[J].中国无机分析化学, 2014, 4(1):53-55. doi: 10.3969/j.issn.2095-1035.2014.01.014
Ren Z H, Mu S M, Cheng G, et al.Determination of Sb in stadium ore by inductively coupled plasma-atomic emission spectrometry with closed digestion using agua regia[J].Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):53-55. doi: 10.3969/j.issn.2095-1035.2014.01.014
[11] 魏灵巧, 付胜波, 罗磊, 等.电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌[J].岩矿测试, 2012, 31(6):967-970. doi: 10.3969/j.issn.0254-5357.2012.06.009 http://www.ykcs.ac.cn/article/id/ykcs_20120610
Wei L Q, Fu S B, Luo L, et al.Simultaneous determination of Sb, As, Cu, Pb and Zn in antimony ores by inductively coupled plasma atomic emission spectrometry with a multi directional observation mode[J].Rock and Mineral Analysis, 2012, 31(6):967-970. doi: 10.3969/j.issn.0254-5357.2012.06.009 http://www.ykcs.ac.cn/article/id/ykcs_20120610
[12] 夏辉, 王小强, 杜天军, 等.五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多元素的对比研究[J].岩矿测试, 2015, 34(3):297-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.006
Xia H, Wang X Q, Du T J, et al.Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J].Rock and Mineral Analysis, 2015, 34(3):297-301. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.006
[13] 严慧, 王干珍, 汤行, 等.电感耦合等离子体原子发射光谱法同时测定锑矿石中14种元素的含量[J].理化检验(化学分册), 2017, 53(1):34-38. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201701007
Yan H, Wang G Z, Tang X, et al.Simultaneous determination of 14 elements in antimony ores by inductively coupled plasma-atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1):34-38. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201701007
[14] 施小英.电感耦合等离子体原子发射光谱法应用于钼矿石物相分析[J].理化检验(化学分册), 2010, 46(1):79-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001082657
Shi X Y.Use of ICP-AES in phase analysis of molybdenum ores[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(1):79-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001082657
-