中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征

蔡敬怡, 谭科艳, 路国慧, 殷效彩, 郑宇, 邵鹏威, 王竞, 杨永亮. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
引用本文: 蔡敬怡, 谭科艳, 路国慧, 殷效彩, 郑宇, 邵鹏威, 王竞, 杨永亮. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
Jing-yi CAI, Ke-yan TAN, Guo-hui LU, Xiao-cai YIN, Yu ZHENG, Peng-wei SHAO, Jing WANG, Yong-liang YANG. The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123
Citation: Jing-yi CAI, Ke-yan TAN, Guo-hui LU, Xiao-cai YIN, Yu ZHENG, Peng-wei SHAO, Jing WANG, Yong-liang YANG. The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123

贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征

  • 基金项目:
    国家自然科学基金项目“石漠化地区土壤侵蚀作用的大气成因10Be同位素地球化学示踪研究”(41673022)
详细信息
    作者简介: 蔡敬怡, 硕士研究生, 研究方向为环境地球化学
    通讯作者: 谭科艳, 博士, 副研究员, 主要从事环境地球化学研究。E-mail:tankeyan2017@163.com
  • 中图分类号: O657.63;X502

The Spatial Distribution Characteristics of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of the Abandoned Wanshan Mercury Mines, Guizhou Province

More Information
  • 废弃矿山虽已不再开采,但废弃矿坑、旧冶炼场地、埋填的尾矿坝受雨水淋滤仍可通过地表径流对下游地区造成污染。研究废弃矿山水系沉积物及悬浮物中重金属的沿河道分布及相互关系具有重要的现实意义。本文以贵州万山汞矿区下溪河小流域系统作为研究区域,对沉积物及悬浮物中重金属元素进行初步调查,为监测和污染耕地进行修复提供基础资料。通过湿法消解的前处理方法,利用电感耦合等离子体质谱和原子荧光光谱法测定了沉积物及悬浮物样品中Cr、Ni、Cu、Cd、Pb、As、Hg、Zn、Co含量,查明污染现状及空间分布特征,以获取矿区污染物向下游迁移、扩散的信息。结果表明:沉积物中Hg含量范围为0.10~16.0μg/g(干重),平均值为5.79μg/g,是《国家土壤环境质量标准》二级土壤Hg限值的几十倍;Cd在部分站点超标;Ni、Cu、Co含量平均值均不超标;Hg和Cd的变异系数较大,显示空间分布不均的特征。沉积物中Hg为高潜在生态风险级别。研究区沉积物及悬浮物中的Hg浓度与河段的水动力条件有关,最大值出现在河道宽阔、水流平缓的站点。由于万山汞矿早已停止开采和冶炼,本研究提出,自然条件下废弃矿区的风化淋滤引起颗粒物输送是造成河流下游Hg和Cd污染的原因。
  • 加载中
  • 图 1  铜仁地区水系沉积物和悬浮物采样点位及沉积物中Hg浓度分布

    Figure 1. 

    图 2  沉积物和悬浮物中Hg及Cd浓度沿河流的空间分布

    Figure 2. 

    图 3  (a) 沉积物和(b)悬浮物中Co、Ni、Cu、Pb、As、Zn、Cr的浓度沿河流的空间分布

    Figure 3. 

    表 1  方法检出限、准确度和加标回收率

    Table 1.  Detection limits, accuracy and recoveries of the method

    检测项目 样品浓度范围
    (μg/g)
    检出限
    (μg/g)
    室内相对偏差
    (%)
    加标回收率
    (%)
    Cr 0.1~200 0.02 ±25 85~110
    Ni 0.05~200 0.3 ±30 80~110
    Cu 0.05~1000 0.3 ±20 85~105
    Cd 0.005~200 0.02 ±35 75~110
    Pb 0.1~200 0.1 ±30 80~110
    As 0.05~100 0.02 ±20 85~105
    Hg 0.001~2 0.001 ±35 75~110
    Zn 0.1~200 0.5 ±25 85~110
    Co 0.05~200 0.3 ±10 85~110
    下载: 导出CSV

    表 2  研究区水系沉积物中重金属含量及标准限值

    Table 2.  Heavy metal concentrations in the research areas and their standard limits

    沉积物样品 干重(μg/g)
    Cr Ni Cu Cd Pb As Hg Zn Co
    TRW-1-CJ 74.2 39.1 37.6 0.81 31.3 12.5 5.61 117 15.0
    TRW-2-CJ 48.0 15.5 18.9 0.41 20.7 6.11 6.21 70.2 9.69
    TRW-3-CJ 56.8 22.3 23.8 0.48 19.2 8.28 9.78 79.9 11.1
    TRW-7-CJ 62.2 27.1 31.3 0.45 28.7 12.0 4.62 85.9 11.9
    TRW-8-CJ 38.0 14.8 17.1 0.23 17.4 8.49 0.45 76.4 10.1
    TRW-8B-CJ 50.1 21.4 26.7 0.76 20.7 7.19 0.10 85.4 9.08
    TRW-9-CJ 49.5 19.2 22.9 0.28 19.4 9.34 16.0 71.5 10.0
    TRW-10-CJ 57.1 19.3 21.8 0.28 16.0 11.2 3.15 65.7 9.17
    TRW-11-CJ 85.2 37.1 33.1 0.79 26.5 17.1 2.20 104 13.6
    TRW-12-CJ 89.0 37.2 32.5 0.85 37.4 12.0 9.82 113 15.3
    平均值 61.0 25.3 26.6 0.53 23.7 10.4 5.79 86.9 11.5
    标准偏差 16.8 9.3 6.8 0.24 6.9 3.2 4.9 18.3 2.4
    变异系数 0.21 0.21 0.37 0.46 0.26 0.29 0.31 0.85 0.27
    中值 57.0 21.9 25.3 0.47 20.7 10.3 5.1 82.7 10.6
    最大值 89.0 39.1 37.6 0.85 37.4 17.1 16.0 117.0 15.3
    最小值 38.0 14.8 17.1 0.23 16.0 6.1 0.10 65.7 9.1
    地壳丰度 100 80 50 0.11 14 1.5 0.05 75 20
    一级土壤* 90 90 35 0.2 35 15.0 0.15 100 -
    二级土壤* 250 250 50 0.3 250 30.0 0.50 200 -
    三级土壤* 400 - 400 1.0 500 60.0 1.50 500 -
    注:“*”代表《国家土壤环境质量标准》限值(中性土壤)。
    “-”代表没有限值。
    下载: 导出CSV

    表 3  研究区河水中悬浮物中重金属含量

    Table 3.  Heavy metal concentrations in suspended materials from the rivers in the research areas

    悬浮物样品野外编号 金属含量(μg/L)
    Cr Ni Cu Cd Pb As Hg Zn Co
    TRW-1-XF 6.04 3.05 4.60 0.036 2.31 0.491 0.105 14.76 0.982
    TRW-2-XF 0.71 1.20 6.49 0.021 0.71 0.060 0.012 19.3 0.096
    TRW-3-XF 2.29 1.60 3.95 0.015 0.95 0.236 0.060 7.5 0.400
    TRW-4-XF 0.35 0.73 2.84 0.003 0.10 0.080 0.004 2.7 0.029
    TRW-5-XF 0.36 0.29 1.04 0.003 0.35 0.042 0.005 5.2 0.035
    TRW-6-XF 0.98 0.60 4.85 0.003 0.22 0.025 0.009 2.9 0.053
    TRW-7-XF 0.71 0.45 2.07 0.003 0.35 0.047 0.012 2.1 0.087
    TRW-8-XF 0.27 0.17 0.78 0.003 0.11 0.005 0.002 1.3 0.025
    TRW-8B-XF 1.11 0.71 1.98 0.030 0.65 0.089 0.005 3.7 0.218
    TRW-9-XF 0.47 0.38 2.36 0.005 0.33 0.029 0.006 2.8 0.062
    TRW-10-XF 1.02 0.62 2.93 0.003 0.16 0.013 0.003 1.7 0.049
    TRW-11-XF 1.69 0.45 2.51 0.005 0.27 0.051 0.003 2.7 0.095
    TRW-12-XF 0.31 0.27 3.13 0.002 0.12 0.027 0.001 1.7 0.045
    平均值 1.25 0.81 3.04 0.010 0.51 0.092 0.017 5.3 0.167
    标准偏差 1.55 0.78 1.59 0.012 0.60 0.133 0.031 5.6 0.266
    中值 0.71 0.60 2.84 0.003 0.33 0.047 0.005 2.8 0.062
    最大值 6.04 3.05 6.49 0.036 2.31 0.491 0.105 19.3 0.982
    最小值 0.27 0.17 0.78 0.002 0.10 0.005 0.001 1.3 0.025
    下载: 导出CSV

    表 4  研究区水系沉积物的重金属污染潜在生态危害系数分级

    Table 4.  Classification of potential ecological risk of heavy metal pollution in the sediments in the study area

    水系沉积物样品编号 单个重金属潜在生态危害系数(Eri) RI值 潜在生态风险
    Cr Ni Cu Cd Pb As Hg Zn
    TRW-1 0.6 0.8 3.8 81 0.6 4.2 748.0 0.6 840
    TRW-2 0.4 0.3 1.9 41 0.4 2.0 828.0 0.4 874
    TRW-3 0.5 0.4 2.4 48 0.4 2.8 1304.0 0.4 1359
    TRW-7 0.5 0.5 3.1 45 0.6 4.0 616.0 0.4 670
    TRW-8 0.3 0.3 1.7 23 0.3 2.8 60.0 0.4 89
    TRW-8B 0.4 0.4 2.7 76 0.4 2.4 13.3 0.4 96
    TRW-9 0.4 0.4 2.3 28 0.4 3.1 2133.3 0.4 2168
    TRW-10 0.5 0.4 2.2 28 0.3 3.7 420.0 0.3 455 较高
    TRW-11 0.7 0.7 3.3 79 0.5 5.7 293.3 0.5 384 较高
    TRW-12 0.7 0.7 3.3 85 0.7 4.0 1309.3 0.6 1404
    平均值 0.5 0.5 2.7 53.4 0.5 3.5 772.5 0.4 834
    毒性响应系数(Tri) 2 5 5 30 5 10 40 1 - -
    下载: 导出CSV
  • [1]

    Dave J, Hugh P, Ceri J, et al.Abandoned Mines and the Water Environment[R].Science Project SC030136-41, UK Environment Agency, 2008.

    [2]

    Ciszewski D, Aleksander-Kwaterczak U, Pociecha A, et al.Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine[J]. Environmental Monitoring and Assessment, 2013, 185(12):9825-9842. doi: 10.1007/s10661-013-3295-z

    [3]

    Lecce S A, Pavlowsky R T.Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA[J].Geomorphology, 2014, 206:122-132. doi: 10.1016/j.geomorph.2013.10.004

    [4]

    DeGraff J V.Addressing the Toxic Legacy of Abandoned Mines on Public Land in the Western United States[M]//Reviews in Engineering Geology (Volume XⅦ).DOI: 10.1130/2007.4017(01).

    [5]

    Unger C, Lechner A M, Glenn V, et al.Mapping Impacts and Prioritising Rehabilitation of Abandoned Mines at a National Level in Australia[R].Brisbane: Life of Mine Conference, 2012.

    [6]

    贵州省铜仁市万山特区政府.贵州铜仁典型区域土壤污染综合治理项目实施方案[R].2014.

    Government of Wanshan Special Zone, Tongren City, Guizhou Province.Implementation Plan of Comprehensive Soil Pollution Control Project in Typical Area of Tongren City, Guizhou Province[R].2014.

    [7]

    尹德良, 何天容, 安艳玲, 等.万山汞矿区居民食用大米的汞暴露风险评估[J].安全与环境学报, 2016, 16(3):330-337. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201603066

    Yin D L, He T R, An Y L, et al.Mercury exposure and its health assessment for the residents in Wanshan mercury-mining areas via the rice consumption[J].Journal of Safety and Environment, 2016, 16(3):330-337. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb201603066

    [8]

    胡国成, 张丽娟, 齐剑英, 等.贵州万山汞矿周边土壤重金属污染特征及风险评价[J].生态环境学报, 2015, 24(5):879-885. http://d.old.wanfangdata.com.cn/Periodical/tryhj201505024

    Hu G C, Zhang L J, Qi J Y, et al.Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province[J].Ecology and Environmental Sciences, 2015, 24(5):879-885. http://d.old.wanfangdata.com.cn/Periodical/tryhj201505024

    [9]

    湛天丽, 黄阳, 滕应, 等.贵州万山汞矿区某农田土壤重金属[J].土壤通报, 2017, 48(2):474-480. http://d.old.wanfangdata.com.cn/Periodical/trtb201702032

    Zhan T L, Huang Y, Teng Y, et al.Pollution characteristics and sources of heavy metals in farmland soils in Wanshan mining areas, Guizhou Province[J].Chineae Journal of Soil Science, 2017, 48(2):474-480. http://d.old.wanfangdata.com.cn/Periodical/trtb201702032

    [10]

    吴兰艳, 姚元勇, 唐帮成, 等.万山汞矿区周边土壤重金属污染调查及其风险评价[J].铜仁学院学报, 2017, 19(6):85-90. doi: 10.3969/j.issn.1673-9639.2017.06.021

    Wu L Y, Yao Y Y, Tang B C, et al.Pollution investigation and risk assessment of heavy metals in soils from the sourounding areas of Wanshan mining areas[J].Journal of Tongren University, 2017, 19(6):85-90. doi: 10.3969/j.issn.1673-9639.2017.06.021

    [11]

    Zhang H, Feng X, Larssen T.Fractionation, distribution and transport of mercury in rivers and tributaries around Wanshan Hg mining district, Guizhou Province, Southwestern China:Part 1-Total mercury[J].Applied Geochemistry, 2010, 25:633-641. doi: 10.1016/j.apgeochem.2010.01.006

    [12]

    赵西强, 庞绪贵, 王增辉, 等.利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征[J].岩矿测试, 2015, 34(2):245-251. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.016

    Zhao X Q, Pang X G, Wang Z H, et al.Study on the characteristics of heavy metal contents and annual fluxes of atmospheric dry and wet deposition in Jinan City using AFS and ICP-MS[J].Rock and Mineral Analysis, 2015, 34(2):245-251. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.016

    [13]

    李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    [14]

    田衎, 杨珺, 孙自杰, 等.矿区污染场地土壤重金属元素分析标准样品的研制[J].岩矿测试, 2017, 36(1):82-88. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.012

    Tian K, Yang J, Sun Z J, et al.Preparation of soil certified reference materials for heavy metals in contaminated sites[J].Rock and Mineral Analysis, 2017, 36(1):82-88. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.012

    [15]

    黎彤.化学元素的地球丰度[J].地球化学, 1976(3):167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    Li T.Chemical element abundances in the Earth and its major shells[J].Geochimica, 1976(3):167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004

    [16]

    陈若思, 刘定富, 武晓阳.红枫湖沉积物中汞污染评价[J].贵州化工, 2012, 37(4):40-42. doi: 10.3969/j.issn.1008-9411.2012.04.020

    Chen R S, Liu D F, Wu X Y.An assessment of mercury pollution in sediments of Hongfeng Lake[J].Guizhou Chemical Industry, 2012, 37(4):40-42. doi: 10.3969/j.issn.1008-9411.2012.04.020

    [17]

    Wu B B, Wang G Q, Wu J, et al.Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs[J].PLoS ONE, 2014, 9(7).DOI:10.1371/journal.pone.0102101.

    [18]

    Chen C X, Zheng B H, Jiang X, et al.Spatial distribution and pollution assessment of mercury in sediments of Lake Taihu, China[J].Journal of Environmental Sciences, 2013, 25(2):316-325. doi: 10.1016/S1001-0742(12)60033-3

    [19]

    Garcia-Ordiales E, Loredo J, Covelli S, et al.Trace metal pollution in freshwater sediments of the world's largest mercury mining district:Sources, spatial distribution and environmental implications[J].Journal of Soils and Sediments, 2017, 17(7):1893-1904. doi: 10.1007/s11368-016-1503-5

    [20]

    仇广乐, 冯新斌, 王少锋.贵州省万山汞矿区地表水中不同形态汞的空间分布特点[J].地球与环境, 2004, 32(3-4):77-82. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200403015

    Qiu G L, Feng X B, Wang S F.Mercury speciations and their distribution in surface water from Wanshanmercury mining district, Guizhou Province[J].Earth and Environment, 2004, 32(3-4):77-82. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200403015

    [21]

    USEPA.National Recommended Water Quality Criteria-Correction[R].US Environmental Protection Agency.1999822-Z-99-001.1999.

    [22]

    Håkanson L.An ecological risk index for aquatic pollution control-Sedimentological approach[J].Water Research, 1980, 14:975-1001. doi: 10.1016/0043-1354(80)90143-8

    [23]

    赵志鹏.重金属镉的土壤空间分布机制及迁移转化过程研究[D].贵州: 贵州大学, 2015: 1-51.

    Zhao Z P.Cadmium Distribution and Transformation in Soil Profile and Effection Factor[D].Guizhou: Guizhou University, 2015: 1-51.

    [24]

    何天容, 冯新斌, 郭艳娜, 等.红枫湖沉积物中汞的环境地球化学循环[J].环境科学, 2008, 29(7):1768-1774. doi: 10.3321/j.issn:0250-3301.2008.07.002

    He T R, Feng X B, Guo Y N, et al.Geochemical cycling of mercury in the sediment of Hongfeng Reservior[J].Environmental Science, 2008, 29(7):1768-1774. doi: 10.3321/j.issn:0250-3301.2008.07.002

    [25]

    Rügner H, Schwientek M, Milačič R, et al.Particle bound pollutants in rivers:Results from suspended sediment sampling in Globaqua River Basins[J].Science of the Total Environment, 2019, 647:645-652. doi: 10.1016/j.scitotenv.2018.08.027

    [26]

    王珊珊, 潘存鸿, 李宏, 等.杭州湾泥沙中重金属元素的分布及影响因[J].中国环境科学, 2017, 37(12):4701-4709. doi: 10.3969/j.issn.1000-6923.2017.12.036

    Wang S S, Pan C H, Li H, et al.Distribution and influence factor of Cu, Pb, Hg in surficial sediments and suspended sediments of Hangzhou Bay[J].China Environmental Science, 2017, 37(12):4701-4709. doi: 10.3969/j.issn.1000-6923.2017.12.036

    [27]

    Pont D, Day J W, Ibáñez C.The impact of two large floods (1993-1994) on sediment deposition in the Rhône delta:Implications for sustainable management[J].Science of the Total Environment, 2017, 609:251-262. doi: 10.1016/j.scitotenv.2017.07.155

    [28]

    Rimondi V, Costagliola P, Gray J E, et al.Mass loads of dissolved and particulate mercury and other trace elements in the Mt.Amiata mining district, Southern Tuscany (Italy)[J].Environmental Science and Pollution Research, 2014, 21(8):5575-5585. doi: 10.1007/s11356-013-2476-1

    [29]

    Balogh S J, Meyer M L, Johnson D K.Mercury and suspended sediment loadings in the Lower Minnesota River[J].Environmental Science & Technology, 1997, 31(1):198-202. http://d.old.wanfangdata.com.cn/NSTLQK/10.1021-es960327t/

    [30]

    Zhang J B, Zhou F X, Chen C L, et al.Spatial distri-bution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay, China[J].PLoS ONE, 2018, 13(8).DOI:10.1371/journal.pone.0201414.

    [31]

    Zhu W, Song Y, Adediran G A, et al.Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter[J].Geochimica et Cosmochimica Acta, 2018, 220:158-179. doi: 10.1016/j.gca.2017.09.045

    [32]

    Lučić M, Jurina I, Ščančar J, et al.Sedimentological and geochemical characterization of river suspended particulate matter (SPM) sampled by time-integrated mass flux sampler (TIMS) in the Sava River (Croatia)[J]. Journal of Soils and Sediments, 2019, 19(2):989-1004. doi: 10.1007/s11368-018-2104-2

    [33]

    Annan S T, Sanful P O, Lartey-Young G, et al.Spatial and temporal patterns of variation in environmental quality of water and sediments of streams in mined and unmined areas with emphasis on mercury (Hg) and arsenic (As)[J].Journal of Geoscience and Environment Protection, 2018, 6(9):125-140. doi: 10.4236/gep.2018.69010

  • 加载中

(3)

(4)

计量
  • 文章访问数:  2369
  • PDF下载数:  92
  • 施引文献:  0
出版历程
收稿日期:  2018-11-15
修回日期:  2019-03-13
录用日期:  2019-04-09

目录