中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

川西甲基卡锂资源富集区根系土壤重金属含量水平及时空分布特征

高娟琴, 于扬, 王登红, 刘丽君, 王伟, 郝雪峰, 代鸿章. 川西甲基卡锂资源富集区根系土壤重金属含量水平及时空分布特征[J]. 岩矿测试, 2019, 38(6): 681-692. doi: 10.15898/j.cnki.11-2131/td.201812190137
引用本文: 高娟琴, 于扬, 王登红, 刘丽君, 王伟, 郝雪峰, 代鸿章. 川西甲基卡锂资源富集区根系土壤重金属含量水平及时空分布特征[J]. 岩矿测试, 2019, 38(6): 681-692. doi: 10.15898/j.cnki.11-2131/td.201812190137
Juan-qin GAO, Yang YU, Deng-hong WANG, Li-jun LIU, Wei WANG, Xue-feng HAO, Hong-zhang DAI. The Content and Distribution Characteristics of Heavy Metals in Root Soils in the Jiajika Lithium Resource Area, Western Sichuan Province[J]. Rock and Mineral Analysis, 2019, 38(6): 681-692. doi: 10.15898/j.cnki.11-2131/td.201812190137
Citation: Juan-qin GAO, Yang YU, Deng-hong WANG, Li-jun LIU, Wei WANG, Xue-feng HAO, Hong-zhang DAI. The Content and Distribution Characteristics of Heavy Metals in Root Soils in the Jiajika Lithium Resource Area, Western Sichuan Province[J]. Rock and Mineral Analysis, 2019, 38(6): 681-692. doi: 10.15898/j.cnki.11-2131/td.201812190137

川西甲基卡锂资源富集区根系土壤重金属含量水平及时空分布特征

  • 基金项目:
    中国地质调查局地质调查项目(DD20190173)
详细信息
    作者简介: 高娟琴, 博士研究生, 地球化学专业。E-mail:gaojuanqinmail@sina.com
    通讯作者: 于扬, 副研究员, 主要从事地球化学研究。E-mail:yuyang_cags@sina.com
  • 中图分类号: S151.93;O657.93

The Content and Distribution Characteristics of Heavy Metals in Root Soils in the Jiajika Lithium Resource Area, Western Sichuan Province

More Information
  • 锂能源金属的战略地位不断提高,与锂矿床及锂金属相关的研究也在不断跟进,锂矿区土壤重金属污染近年来持续受到关注,其含量分布情况值得深入研究。本文对亚洲最大的锂矿区——川西甲基卡根系土壤环境进行重金属含量监测,调查和评价锂矿区土壤重金属含量水平及其安全性。2016-2018年于川西甲基卡锂资源富集区采集根系土壤样品68件,采用电感耦合等离子体质谱法(ICP-MS)测定根系土壤Cd、As、Pb、Cr、Cu、Ni、Zn含量。测试结果表明,甲基卡矿区根系土壤Cd、As、Pb、Cr、Cu、Ni、Zn含量平均值分别为0.13、15.31、25.47、60.57、16.12、23.59、66.83mg/kg,与2018年8月最新颁布的农用地土壤标准对比,无一超标,均低于风险筛选值及管制值。常见矿床的尾矿库区土壤一般存在严重的重金属污染,而甲基卡尾矿库土壤重金属含量均低于环境标准限值,且矿业活动停止的三年期间尾矿库区根系土壤中Cd、As、Cr含量明显呈逐年下降趋势。本研究认为,选矿厂房及尾矿库周边根系土壤重金属由于人为源的存在有一定的富集现象,但不构成危害,废弃物对环境污染小。
  • 加载中
  • 图 1  甲基卡矿区根系土壤采样点位置

    Figure 1. 

    图 2  2016—2018年甲基卡矿区根系土壤重金属含量对比

    Figure 2. 

    图 3  甲基卡矿区根系土壤样品重金属含量与风险筛选值对比

    Figure 3. 

    图 4  甲基卡矿区根系土壤重金属元素地球化学图

    Figure 4. 

    表 1  甲基卡矿区2016—2018年根系土壤重金属元素含量测试结果

    Table 1.  Heavy metal content in root soils in Jiajika mining area from 2016 to 2018

    采样时间
    (年份)
    采样点位置 样品编号 重金属元素含量(mg/kg)
    Cd As Pb Cr Cu Ni Zn
    2016 融达厂房海子北侧 16JJKS01 0.18 14.75 25.67 66.97 20.49 27.35 89.29
    绝情谷海子东侧 16JJKS02 0.13 11.61 29.42 64.59 20.59 24.74 35.84
    绝情谷海子东侧 16JJKS04 0.21 8.74 26.50 66.41 17.49 29.32 55.05
    石英采矿址裂隙水旁 16JJKS05 0.07 19.42 29.34 62.24 17.45 17.65 45.70
    绝情谷海子东侧 16JJKS07 0.24 8.58 25.34 65.06 17.38 28.79 58.94
    508脉北侧干流旁 16JJKS09 0.12 14.83 30.14 75.89 18.98 25.37 49.29
    36号点上游支流旁 16JJKS10 0.10 13.54 29.41 76.19 17.51 23.46 60.84
    308号脉 16JJKS11 0.06 29.37 31.85 58.07 19.24 25.57 42.89
    308脉旁海子边 16JJKS12 0.07 8.59 20.77 43.40 10.78 17.60 58.42
    X03脉上游支流旁 16JJKS14 0.12 13.00 24.61 60.57 14.59 21.08 46.76
    134脉矿区支流旁 16JJKS16 0.14 11.17 23.36 69.15 19.53 28.70 77.04
    仁尼措东侧干流旁 16JJKS22 0.21 28.40 20.90 46.40 21.10 23.00 40.00
    仁尼措东侧海子边 16JJKS23 0.09 11.20 30.20 56.10 11.50 17.00 41.90
    X03脉 16JJKS26 0.21 12.40 25.00 61.40 15.50 23.70 62.30
    X03脉 16JJKS27 0.13 14.30 28.20 71.20 18.50 25.20 75.30
    X03脉 16JJKS30 0.15 29.20 26.30 64.50 16.70 22.40 63.50
    X03脉 16JJKS31 0.17 12.90 28.10 66.00 19.50 22.20 79.50
    308东侧草地 16JJKS32 0.16 14.20 28.70 69.60 19.30 18.90 80.70
    X05脉 16JJKS33 0.11 4.18 28.00 63.10 19.10 26.70 43.40
    X03脉 16JJKS35 0.08 8.55 24.30 56.10 15.20 23.50 52.80
    308号脉 16JJKS36 0.13 5.84 24.90 50.20 13.20 21.00 51.60
    矿区支流旁 16JJKS38 0.03 9.91 25.90 62.50 15.60 20.50 63.20
    134脉下游 16JJKS39 0.08 7.65 23.70 58.20 14.50 20.20 43.10
    尾矿库 16JJKS40 0.13 37.80 25.20 72.60 18.70 24.90 81.10
    尾矿库下游 16JJKS42 0.18 29.80 23.70 67.90 26.30 32.80 105.00
    尾矿库下游 16JJKS43 0.08 16.60 27.20 81.80 25.30 36.20 89.60
    308脉北侧干流旁 16JJKS46 0.10 8.74 23.40 61.20 17.70 24.60 52.00
    308脉北侧支流旁 16JJKS48 0.10 4.17 23.40 56.50 14.10 16.00 42.50
    308脉北侧支流旁 16JJKS49 0.21 6.47 20.80 52.20 11.40 18.30 48.70
    308脉北侧支流旁 16JJKS52 0.12 10.30 23.10 61.70 24.10 27.30 74.40
    矿区支流旁 16JJKS53 0.14 11.00 28.10 72.50 23.00 34.40 60.70
    2017 绝情谷海子边 17JJKS01 0.08 7.07 24.90 52.30 10.00 17.90 35.70
    出拉海子东侧支流旁 17JJKS02 0.19 10.60 23.60 56.40 18.00 25.90 48.40
    308脉上游支流旁 17JJKS04 0.29 9.82 20.20 47.50 14.70 18.20 116.00
    308脉西北侧干流旁 17JJKS05 0.17 16.60 24.10 53.10 11.90 21.80 65.40
    308脉干流旁 17JJKS06 0.19 29.10 26.20 56.60 17.90 27.60 60.70
    308脉海子边 17JJKS07 0.12 19.30 31.60 60.20 17.10 21.30 54.20
    X03脉上游 17JJKS08 0.13 12.20 23.10 62.50 11.20 26.00 57.00
    134脉西侧干流旁 17JJKS09 0.09 8.08 26.50 62.20 14.60 22.20 36.30
    134脉矿区支流旁 17JJKS10 0.11 12.40 25.20 73.40 16.10 25.60 43.40
    134脉下游 17JJKS11 0.15 7.55 24.60 59.40 12.40 20.50 73.10
    融达北西海子边 17JJKS12 0.11 9.46 24.20 68.10 15.90 28.60 65.30
    融达北海子边 17JJKS13 0.15 11.70 24.20 45.00 16.00 15.80 32.80
    尾矿库 17JJKS14 0.11 32.80 26.90 67.80 18.80 27.30 99.40
    融达北海子边 17JJKS21 0.12 11.00 29.90 72.40 16.70 24.60 94.60
    融达东北坡 17JJKS22 0.25 25.30 23.00 43.50 20.90 21.40 124.00
    融达东北坡 17JJKS23 0.12 21.70 26.50 72.80 17.00 23.40 75.50
    融达东北坡 17JJKS24 0.15 11.30 25.70 68.40 17.80 24.40 88.00
    融达东北坡 17JJKS25 0.12 20.50 28.40 74.00 20.50 26.80 85.80
    融达东北坡 17JJKS26 0.16 9.22 27.80 70.60 16.60 25.20 101.00
    融达东北坡 17JJKS28 0.23 7.49 22.20 33.60 11.90 13.60 56.00
    烧炭沟河边片岩旁 17STGS01 0.26 25.50 21.40 66.20 12.50 22.20 87.10
    烧炭沟含锂辉石伟晶岩旁 17STGS02 0.23 16.10 28.60 68.60 19.00 23.20 103.00
    烧炭沟伟晶岩转石旁 17STGS03 0.28 10.60 32.70 71.40 16.60 25.80 82.60
    烧炭沟海子边 17STGS04 0.18 13.80 32.70 78.40 15.20 27.60 80.90
    2018 308脉 18JJKS01 0.08 18.40 28.90 66.30 16.70 31.30 80.00
    134脉矿区支流旁 18JJKS02 0.11 10.30 27.90 32.70 10.50 15.30 62.30
    134脉下游 18JJKS03 0.07 12.20 24.20 60.60 18.10 26.60 71.70
    融达北西方向支流 18JJKS04 0.08 7.10 21.70 65.70 14.10 38.70 65.60
    融达海子北侧 18JJKS05 0.03 21.80 21.70 60.10 14.80 26.40 97.40
    尾矿库 18JJKS06 0.03 17.50 20.60 57.10 15.20 22.70 89.60
    尾矿库支流旁 18JJKS07 0.03 38.50 18.20 33.50 9.11 12.80 59.00
    甲基措海子北侧 18JJKS08 0.08 7.61 25.50 45.30 9.79 19.20 51.00
    308脉上游支流旁 18JJKS09 0.03 6.88 21.20 55.20 8.87 22.10 53.60
    308脉上游支流旁 18JJKS10 0.09 26.70 28.50 75.70 15.60 27.10 70.20
    308脉干流旁 18JJKS11 0.10 33.50 30.20 52.90 11.70 24.30 47.00
    融达南西侧 18JJKS13 0.03 7.34 10.30 11.20 5.06 9.93 58.50
    融达南西侧 18JJKS14 0.09 37.20 23.10 57.70 13.00 22.50 101.00
    下载: 导出CSV

    表 2  甲基卡矿区不同区域根系土壤重金属元素含量统计结果

    Table 2.  Statistical results of heavy metal content of root soils in different areas of Jiajika mining area

    重金属
    元素
    参数 尾矿库区 选矿
    厂房
    已开采
    矿区
    未开采资
    源富集区
    无矿业活动区 甲基卡根系
    土壤均值
    全国A层
    土壤背景值
    Cd 最小值(mg/kg) 0.03 0.03 0.03 0.10 0.03 0.13 0.10
    最大值(mg/kg) 0.18 0.25 0.29 0.28 0.24
    平均值(mg/kg) 0.09 0.13 0.11 0.17 0.13
    As 最小值(mg/kg) 16.60 7.10 5.84 4.18 4.17 15.32 11.20
    最大值(mg/kg) 38.50 37.20 33.50 29.20 28.40
    平均值(mg/kg) 28.83 15.42 15.37 14.41 11.28
    Pb 最小值(mg/kg) 18.20 10.30 20.20 23.10 20.77 25.47 26.00
    最大值(mg/kg) 27.20 29.90 31.85 32.70 30.20
    平均值(mg/kg) 23.63 23.88 26.59 26.84 25.27
    Cr 最小值(mg/kg) 33.50 11.20 32.70 60.57 43.40 60.57 61.00
    最大值(mg/kg) 81.80 74.00 76.19 78.40 72.50
    平均值(mg/kg) 63.45 57.86 60.58 66.26 57.91
    Cu 最小值(mg/kg) 9.11 5.06 8.87 11.20 9.79 16.12 22.60
    最大值(mg/kg) 26.30 20.90 19.53 19.50 24.10
    平均值(mg/kg) 18.90 15.77 15.40 16.34 16.04
    Ni 最小值(mg/kg) 12.80 9.93 15.30 21.08 16.00 23.59 26.90
    最大值(mg/kg) 36.20 38.70 31.30 27.60 34.40
    平均值(mg/kg) 26.12 23.48 23.69 24.22 22.32
    Zn 最小值(mg/kg) 59.00 32.80 36.30 43.40 35.70 66.83 74.2
    最大值(mg/kg) 105.00 124.00 116.00 103.00 80.70
    平均值(mg/kg) 87.28 81.06 60.74 69.45 53.30
    下载: 导出CSV

    表 3  农用地(非水田)土壤污染风险筛选值、管制值及矿区土壤重金属含量对比(基本项目)

    Table 3.  Risk screening values and control values for soil contamination of agricultural land and heavy metal content in root soils in Jiajika mining area (non-paddy field)

    污染物
    项目
    风险筛选值
    (mg/kg)
    pH≤5.5
    风险管制值
    (mg/kg)pH≤5.5
    甲基卡根系土壤重金属
    元素含量(mg/kg)
    Cd 0.3 1.5 0.03~0.29
    Hg 1.3 2.0 -
    As 40 200 4.17~38.5
    Pb 79 400 10.3~32.7
    Cr 150 800 11.2~81.8
    Cu 50 - 5.06~26.3
    Ni 60 - 9.3~38.7
    Zn 200 - 32.8~124
    下载: 导出CSV
  • [1]

    余广学, 张金震, 王烨, 等.郑州市土壤重金属污染状况和质量评价[J].岩矿测试, 2015, 34(3):340-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.014

    Yu G X, Zhang J Z, Wang Y, et al.Investigation and evaluation of heavy metal pollution in soil from Zhengzhou City[J].Rock and Mineral Analysis, 2015, 34(3):340-345. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.03.014

    [2]

    郑喜珅, 鲁安怀, 高翔, 等.土壤中重金属污染现状与防治方法[J].土壤与环境, 2002, 11(1):79-84. doi: 10.3969/j.issn.1674-5906.2002.01.020

    Zheng X S, Lu A H, Gao X, et al.Contamination of heavy metals in soil present situation and method[J].Soil and Environmental Science, 2002, 11(1):79-84. doi: 10.3969/j.issn.1674-5906.2002.01.020

    [3]

    刘勇, 岳玲玲, 李晋昌.太原市土壤重金属污染及其潜在生态风险评价[J].环境科学学报, 2011, 31(6):1285-1293. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201106023

    Liu Y, Yue L L, Li J C.Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan, China[J].Acta Scientiae Circumstantiae, 2011, 31(6):1285-1293. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201106023

    [4]

    Fernández C J, Barba B C, GonzáLez I, et al.Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain)[J].Water, Air, and Soil Pollution, 2009, 200(1-4):211-226. doi: 10.1007/s11270-008-9905-7

    [5]

    徐友宁, 张江华, 柯海玲, 等.矿业活动区农田土壤重金属累积风险的评判方法——以小秦岭金矿区为例[J].地质通报, 2014, 33(8):1097-1105. doi: 10.3969/j.issn.1671-2552.2014.08.002

    Xu Y N, Zhang J H, Ke H L, et al.An assessment method for heavy metal cumulative risk on farmland soil in the mining area:A case study of the Xiaoqinling gold mining area[J].Geological Bulletin of China, 2014, 33(8):1097-1105. doi: 10.3969/j.issn.1671-2552.2014.08.002

    [6]

    陈小敏, 朱保虎, 杨文, 等.密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J].环境化学, 2015, 34(12):2248-2256. doi: 10.7524/j.issn.0254-6108.2015.12.2015071601

    Chen X M, Zhu B H, Yang W, et al.Sources, spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun Reservoir upstream, Beijing, China[J].Environmental Chemistry, 2015, 34(12):2248-2256. doi: 10.7524/j.issn.0254-6108.2015.12.2015071601

    [7]

    Candeias C, Melo R, Ávila P F, et al.Heavy metal pollution in mine-soil-plant system in S.Francisco de Assis-Panasqueira mine (Portugal)[J].Applied Geochemistry, 2014, 44(12):12-26. http://cn.bing.com/academic/profile?id=c26255129381c373ed38bb0a46e9b008&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    常玉虎, 赵元艺, 曹冲, 等.德兴铜矿区主要流域内环境介质中重金属含量特征与健康风险评价[J].地质学报, 2015, 89(5):889-908. doi: 10.3969/j.issn.0001-5717.2015.05.005

    Chang Y H, Zhao Y Y, Cao C, et al.Characteristics of heavy metals content and assessment of health risk in different environment media in the Dexing copper mining area[J].Acta Geologica Sinica, 2015, 89(5):889-908. doi: 10.3969/j.issn.0001-5717.2015.05.005

    [9]

    毛香菊, 马亚梦, 邹安华, 等.内蒙古草原某铜钼矿区土壤重金属污染特征研究[J].环境科学与技术, 2016, 39(6):156-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201606029

    Mao X J, Ma Y M, Zou A H, et al.Characteristics of heavy metals in soils from a copper-molybdenum mining area of grassland in Inner Mongolia[J].Environmental Science & Technology, 2016, 39(6):156-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201606029

    [10]

    兰砥中, 雷鸣, 周爽, 等.湘南某铅锌矿区周围农业土壤中重金属污染及其潜在风险评价[J].环境化学, 2014, 33(8):1307-1313. http://d.old.wanfangdata.com.cn/Periodical/hjhx201408008

    Lan D Z, Lei M, Zhou S, et al.Heavy metals pollution and potential ecological risk in soils around Pb/Zn mine area in Hunan Province[J].Environmental Chemistry, 2014, 33(8):1307-1313. http://d.old.wanfangdata.com.cn/Periodical/hjhx201408008

    [11]

    余志, 陈凤, 张军方, 等.锌冶炼区菜地土壤和蔬菜重金属污染状况及风险评价[J].中国环境科学, 2019, 39(5):2086-2094. doi: 10.3969/j.issn.1000-6923.2019.05.037

    Yu Z, Chen F, Zhang J F, et al.Contamination and risk of heavy metals in soils and vegetables from zinc smelting area[J].China Environmental Science, 2019, 39(5):2086-2094. doi: 10.3969/j.issn.1000-6923.2019.05.037

    [12]

    金晓丹, 罗栋源, 马华菊, 等.广西某铅锌矿区土壤镉、铅、砷形态分布对水稻重金属的影响[J].西南农业学报, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031

    Jin X D, Luo D Y, Ma H J, et al.Effect of soil Cd, Pb, As and their fractions distribution on corresponding heavy metals in rice surrounding lead-zinc mines in Guangxi Province[J].Southwest China Journal of Agricultural Science, 2018, 31(6):1293-1299. http://d.old.wanfangdata.com.cn/Periodical/xnnyxb201806031

    [13]

    邢奕, 司艳晓, 洪晨, 等.铁矿区重金属污染对土壤微生物群落变化的影响[J].环境科学研究, 2013, 26(11):1201-1211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201311008

    Xing Y, Si Y X, Hong C, et al.Impact of long term heavy metal pollution on microbial community in iron mine soil[J].Research of Environmental Science, 2013, 26(11):1201-1211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201311008

    [14]

    唐文杰, 黄江波, 余谦, 等.锰矿区农作物重金属含量及健康风险评价[J].环境科学与技术, 2015, 38(增刊1):464-473.

    Tang W J, Huang J B, Yu Q, et al.Analysis on the content of heavy metal in the food crop sand assessment on human health risk of manganese mine[J].Environmental Science & Technology, 2015, 38(Suppplement 1):464-473.

    [15]

    刘胜洪, 张雅君, 杨妙贤, 等.稀土尾矿区土壤重金属污染与优势植物累积特征[J].生态环境学报, 2014, 23(6):1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021

    Liu S H, Zhang Y J, Yang M X, et al.Heavy metal contamination of soil and concentration of dominant plants in rare earth mine tailing area[J].Ecology and Environmental Sciences, 2014, 23(6):1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021

    [16]

    徐狮.离子型稀土矿原地浸矿土壤重金属迁移转化规律研究[D].南昌: 江西理工大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10407-1017223392.htm

    Xu S.Study on Migration and Transformation of Heavy Metals in in-situ Leaching Soil of Ionic Rare Earth Ore[D].Nanchang: Jiangxi University of Science and Technology, 2017.

    [17]

    Claveria R J R, Perez T R, Perez R E C, et al.The identification of indigenous Cu and As metallophytes in the Lepanto Cu-Au mine, Luzon, Philippines[J].Environmental Monitoring and Assessment, 2019, 191(3):185. doi: 10.1007/s10661-019-7278-6

    [18]

    陈璐, 文方, 程艳, 等.铅锌尾矿库周边土壤重金属污染特征及环境风险[J].中国环境监测, 2017, 33(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201701018

    Chen L, Wen F, Cheng Y, et al.Study on contamination characteristics and environmental risk of heavy metals in the soils around Pb-Zn tailings reservoir[J].Environmental Monitoring in China, 2017, 33(1):82-87. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201701018

    [19]

    王登红, 王瑞江, 付小方, 等.对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例[J].地球学报, 2016, 37(4):471-480. doi: 10.3975/cagsb.2016.04.09

    Wang D H, Wang R J, Fu X F, et al.A discussion on the major problems related to geological investigation and assessment for energy metal resources base:A case study of the Jiajika large lithium mineral resource base[J].Acta Geoscientica Sinica, 2016, 37(4):471-480. doi: 10.3975/cagsb.2016.04.09

    [20]

    王登红, 孙艳, 刘喜方, 等.锂能源金属矿产深部探测技术方法与找矿方向[J].中国地质调查, 2018, 5(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201801001

    Wang D H, Sun Y, Liu X F, et al.Deep exploration technology and prospecting direction for lithium energy metal[J].Geological Survey of China, 2018, 5(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201801001

    [21]

    王登红, 吴西顺.21世纪的能源金属——锂的奥秘[J].国土资源科普与文化, 2017(4):22-27. http://www.cnki.com.cn/Article/CJFDTotal-GTKW201704007.htm

    Wang D H, Wu X S.Energy metals in the 21st century:The mystery of lithium[J].Land Resources Science and Culture, 2017(4):22-27. http://www.cnki.com.cn/Article/CJFDTotal-GTKW201704007.htm

    [22]

    王登红, 付小方.四川甲基卡外围锂矿找矿取得突破[J].岩矿测试, 2013, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023 http://www.ykcs.ac.cn/article/id/4200b28a-e0c7-4f42-8273-65bbca03a88a

    Wang D H, Fu X F.A breakthrough in the prospecting of lithium deposits in the periphery of Sichuan Jiajika[J].Rock and Mineral Analysis, 2013, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023 http://www.ykcs.ac.cn/article/id/4200b28a-e0c7-4f42-8273-65bbca03a88a

    [23]

    王登红, 刘丽君, 侯江龙, 等.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型[J].地学前缘, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm

    Wang D H, Liu L J, Hou J L, et al.A preliminary review of the application of "Five levels+Basement" model for Jiajika-style rare metal deposits[J].Earth Science Frontiers, 2017, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705002.htm

    [24]

    刘丽君, 付小方, 王登红, 等.甲基卡式稀有金属矿床的地质特征与成矿规律[J].矿床地质, 2015, 34(6):1187-1198. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506008

    Liu L J, Fu X F, Wang D H, et al.Geological characteristics and metallogeny of Jiajika style rare metal deposits[J].Mineral Deposit, 2015, 34(6):1187-1198. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506008

    [25]

    付小方, 袁蔺平, 王登红, 等.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J].矿床地质, 2015, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007

    Fu X F, Yuan L P, Wang D H, et al.Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan[J].Mineral Deposit, 2015, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007

    [26]

    鲁照玲, 胡红云, 姚洪.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008 http://www.ykcs.ac.cn/article/id/ykcs_20120208

    Lu Z L, Hu H Y, Yao H.Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008 http://www.ykcs.ac.cn/article/id/ykcs_20120208

    [27]

    苏荣, 王晓飞, 洪欣, 等.微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J].现代化工, 2015, 35(1):175-177. http://d.old.wanfangdata.com.cn/Periodical/xdhg201501043

    Su R, Wang X F, Hong X, et al.Determination of 10 elements in soil by inductively coupled plasma-mass spectrometry with microwave digestion[J].Modern Chemical Industry, 2015, 35(1):175-177. http://d.old.wanfangdata.com.cn/Periodical/xdhg201501043

    [28]

    李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    [29]

    国家环境保护局.中国元素土壤背景值[M].北京:中国环境科学出版社, 1990.

    National Environmental Protection Agency.Background Value of Elements in Chinese Soil[M].Beijing:China Environmental Science Press, 1990.

    [30]

    贾婷, 贾洋洋, 余淑娟, 等.闽东某钼矿周边农田土壤钼和重金属的污染状况[J].中国环境监测, 2015, 31(1):45-49. doi: 10.3969/j.issn.1002-6002.2015.01.009

    Jia T, Jia Y Y, Yu S J, et al.Pollution of molybdenum and heavy metals of the soils and rice near a molybdenum mining site in Eastern Fujian[J].Environmental Monitoring in China, 2015, 31(1):45-49. doi: 10.3969/j.issn.1002-6002.2015.01.009

    [31]

    王斐, 黄益宗, 王小玲, 等.江西钨矿周边土壤重金属生态风险评价:不同评价方法的比较[J].环境化学, 2015, 34(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/hjhx2015020005

    Wang F, Huang Y Z, Wang X L, et al.Ecological risk assessment of heavy metals in surrounding soils of tungsten ores:Comparison of different evaluation methods[J].Environmental Chemistry, 2015, 34(2):225-233. http://d.old.wanfangdata.com.cn/Periodical/hjhx2015020005

    [32]

    卓静, 朱延年.秦岭主脊区年降水量空间插值最优方法研究[J].干旱区地理, 2017, 40(3):555-563. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201703009

    Zhuo J, Zhu Y N.Spatial interpolation methods of annual average precipitation on Qinling Mountains[J].Arid Land Geography, 2017, 40(3):555-563. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201703009

    [33]

    贾悦, 崔宁博, 魏新平, 等.基于反距离权重法的长江流域参考作物蒸散量算法适用性评价[J].农业工程学报, 2016, 32(6):130-138. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606018

    Jia Y, Cui N B, Wei X P, et al.Applicability evaluation of different algorithm for reference crop evapotrans-piration in Yangtze River Basin based on inverse distance weighted method[J].Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6):130-138. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201606018

    [34]

    李凯, 赵华甫, 吴克宁, 等.土壤重金属Cd污染指数的适宜插值方法和合理采样数量研究[J].土壤通报, 2016, 47(5):1056-1064. http://d.old.wanfangdata.com.cn/Periodical/trtb201605006

    Li K, Zhao H F, Wu K N, et al.Suitable interpolation method and reasonable sampling quantity of Cd pollution index in soil[J].Chinese Journal of Soil Science, 2016, 47(5):1056-1064. http://d.old.wanfangdata.com.cn/Periodical/trtb201605006

    [35]

    解恒燕, 张深远, 侯善策, 等.降水量空间插值方法在小样本区域的比较研究[J].水土保持研究, 2018, 25(3):117-121. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803020

    Xie H Y, Zhang S Y, Hou S C, et al.Comparison research on rainfall interpolation methods in small sample areas[J].Research of Soil and Water Conservation, 2018, 25(3):117-121. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201803020

  • 加载中

(4)

(3)

计量
  • 文章访问数:  1980
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2018-12-19
修回日期:  2019-07-01
录用日期:  2019-07-16

目录