中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示

王忠强, 李超, 江小均, 周利敏, 赵九江, 严清高, 李亚东, 陈耀坤. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示[J]. 岩矿测试, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118
引用本文: 王忠强, 李超, 江小均, 周利敏, 赵九江, 严清高, 李亚东, 陈耀坤. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示[J]. 岩矿测试, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118
WANG Zhong-qiang, LI Chao, JIANG Xiao-jun, ZHOU Li-min, ZHAO Jiu-jiang, YAN Qing-gao, LI Ya-dong, CHEN Yao-kun. In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization[J]. Rock and Mineral Analysis, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118
Citation: WANG Zhong-qiang, LI Chao, JIANG Xiao-jun, ZHOU Li-min, ZHAO Jiu-jiang, YAN Qing-gao, LI Ya-dong, CHEN Yao-kun. In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization[J]. Rock and Mineral Analysis, 2020, 39(5): 762-776. doi: 10.15898/j.cnki.11-2131/td.201907310118

滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示

  • 基金项目:
    国家自然科学基金项目(41673060,41873065)
详细信息
    作者简介: 王忠强, 硕士研究生, 从事矿物学、地球化学研究。E-mail:kmustwzq@126.com
    通讯作者: 江小均, 博士, 讲师, 主要从事沉积学和大地构造学研究。E-mail:cagsjiang@126.com
  • 中图分类号: O628;O614.232

In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization

More Information
  • 滇西北休瓦促钼钨矿床是义敦岛弧Cu-Mo成矿带南缘典型的热液石英脉型钼钨矿床,目前前人对该矿床主要开展了成岩-成矿年代学、岩石成因、动力学过程等研究。本文以白钨矿为研究对象,利用原位微量LA-ICP-MS以及原位Sr同位素LA-MC-ICP-MS测试技术对成矿流体演化及成矿物质来源开展了系统研究。白钨矿的产状和阴极发光图像显示其存在早中晚三个阶段,以中阶段白钨矿最为发育。早阶段白钨矿稀土配分与斑状二长花岗岩相似,呈轻稀土富集的右倾模式,Eu具有中等负异常(δEu=0.42),Mo平均含量为3.0%,87Sr/86Sr平均值为0.7098,与斑状二长花岗岩(0.7075~0.7098)接近;与早阶段相比,中阶段白钨矿轻稀土含量降低,Eu也具有中等负异常(δEu=0.37),Mo平均含量降低至2445μg/g,87Sr/86Sr值升高至0.7113;晚阶段白钨矿稀土配分呈中稀土相对富集的拱形模式,Eu基本无异常(δEu=0.93),Mo平均含量降低至56μg/g,87Sr/86Sr平均值为0.7083。从早到晚,白钨矿中轻稀土元素尤其是La和Ce的逐渐亏损表明存在氟碳铈镧矿的结晶;δEu升高和Mo急剧降低指示成矿流体从氧化到还原的转换;Sr同位素组成的变化指示了成矿物质来源的转变,早阶段岩浆流体贡献大,在中阶段白钨矿岩浆热液与围岩地层大规模作用下,地层为白钨矿的形成提供了大量Ca,表明强烈的水岩交互作用对矿床的形成发挥了重要作用。

  • 加载中
  • 图 1  休瓦促钨钼区域地质简图及矿区地质图(据余海军等[18]和张向飞等[19]修改)

    Figure 1. 

    图 2  白钨矿产出状态照片

    Figure 2. 

    图 3  白钨矿样品阴极发光图、激光打点图(黄圈:微量元素点;绿圈:Sr同位素点)

    Figure 3. 

    图 4  (a) 白钨矿和花岗岩体稀土球粒陨石标准化曲线图(据张向飞等[19])和(b)微量元素含量

    Figure 4. 

    图 5  不同阶段白钨矿δEu-Mo含量、Sr同位素比值图(松潘—甘孜沉积物引自Wu等[43];晚白垩世花岗岩引自Wang等[21])

    Figure 5. 

    表 1  白钨矿LA-ICP-MS微量元素测试结果

    Table 1.  LA-ICP-MS analytical results of trace elements in scheelite

    阶段划分 样品编号 元素含量(SymbolmA g/g) δEu
    Mo Sr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE
    XWC-1-12 21070 632 1089 102 491 125 807 274 30 222 35 202 36 94 13 83 10 571 2524 0.40
    XWC-1-13 26258 693 1182 120 575 150 947 341 35 274 42 243 44 114 15 97 12 610 3009 0.40
    XWC-3-08 34501 245 1025 535 1383 205 816 149 16 118 14 80 15 42 5.8 43 6.6 399 3429 0.40
    早阶段 XWC-3-09 25635 426 927 489 1247 178 710 121 17 96 12 63 12 33 4.5 33 5.4 308 3019 0.53
    XWC-3-10 30489 109 1020 491 1351 205 851 156 17 118 15 80 15 41 5.7 39 6.1 386 3391 0.44
    XWC-3-11 32617 168 1098 465 1305 204 845 167 17 129 16 90 18 49 6.3 45 7.2 441 3363 0.40
    XWC-3-12 38291 99 944 414 1149 181 766 161 16 125 16 87 17 45 6.2 42 6.5 419 3031 0.38
    XWC-1-01 2401 144 1567 123 583 152 977 349 38 290 45 258 46 120 17 102 13 1153 3114 0.41
    XWC-1-02 2569 146 1458 121 557 141 889 320 35 264 42 241 45 115 15 94 12 1110 2892 0.41
    XWC-1-03 2588 143 2008 150 648 180 1163 411 43 350 55 310 58 147 20 125 16 1365 3676 0.38
    XWC-1-04 2532 148 1638 121 573 150 994 362 38 297 46 275 51 137 18 117 15 1234 3194 0.39
    XWC-1-05 2611 164 1598 116 563 149 975 362 40 299 48 283 52 138 19 118 15 1249 3177 0.42
    XWC-1-06 2425 145 1920 134 696 203 1321 469 42 350 53 289 52 133 17 114 15 1378 3887 0.35
    中阶段 XWC-1-07 2510 231 1998 158 781 244 1609 547 49 403 57 321 54 139 18 117 14 1465 4511 0.36
    XWC-1-08 2649 139 2760 160 855 275 1762 597 53 443 66 354 62 164 23 158 20 1811 4991 0.35
    XWC-1-09 2570 148 2290 160 792 248 1602 562 48 418 62 328 57 147 20 133 17 1595 4592 0.34
    XWC-1-10 2796 287 1966 129 672 204 1347 477 45 362 55 303 54 136 19 124 16 1467 3943 0.37
    XWC-1-11 2539 148 1436 110 578 165 1040 360 35 267 40 217 38 96 13 86 11 1161 3057 0.39
    XWC-1-14 2361 333 1232 321 975 180 865 210 22 168 22 126 23 58 7.6 48 6.4 942 3033 0.42
    XWC-1-15 2566 156 1498 396 1122 209 971 223 24 184 25 140 25 65 8.7 54 8.0 1127 3454 0.39
    XWC-2-01 2603 102 1409 92 554 158 1030 376 33 285 41 215 37 96 13 86 11 1087 3027 0.34
    XWC-2-02 2352 108 1743 106 602 166 1086 407 37 311 48 261 47 121 17 106 13 1226 3328 0.36
    XWC-2-03 2471 109 1750 108 614 176 1125 410 37 312 48 256 45 119 16 107 13 1229 3387 0.36
    XWC-2-04 2198 111 1772 105 616 185 1188 432 37 317 47 247 43 114 15 104 13 1192 3462 0.34
    XWC-2-05 2174 144 2015 122 665 192 1272 466 41 344 52 278 49 122 17 117 14 1335 3751 0.35
    中阶段 XWC-2-06 2218 111 1445 107 579 164 1038 367 33 273 41 215 38 97 13 85 11 984 3060 0.35
    XWC-2-07 2102 214 1387 98 540 155 1000 365 34 269 41 217 39 97 13 88 11 1003 2966 0.37
    XWC-2-08 2185 115 1467 112 599 163 1066 376 33 279 40 212 38 96 13 87 11 1031 3125 0.35
    XWC-2-09 2129 117 1234 104 501 136 858 307 31 238 37 209 37 96 13 84 11 932 2661 0.39
    XWC-2-10 2233 166 1340 103 482 128 813 302 33 249 40 233 44 116 16 101 13 979 2674 0.41
    XWC-2-11 2233 124 1586 120 517 140 898 335 37 281 46 264 49 128 17 109 14 1098 2955 0.41
    XWC-2-12 2139 120 1216 105 476 124 774 284 30 225 37 205 38 98 13 84 11 917 2505 0.40
    XWC-3-01 2218 119 1408 112 521 136 822 313 33 251 40 221 40 104 14 89 11 962 2708 0.40
    XWC-3-02 2339 115 1698 111 542 139 869 336 38 268 45 255 48 128 17 115 15 1126 2927 0.43
    XWC-3-03 2180 114 1160 95 474 119 767 281 30 222 35 194 37 98 13 84 11 903 2460 0.41
    中阶段 XWC-3-04 2159 128 1258 109 518 137 841 301 32 230 36 199 37 97 13 88 11 939 2648 0.41
    XWC-3-05 2186 112 1670 112 624 179 1153 417 38 317 47 247 44 110 15 101 12 1109 3415 0.36
    XWC-3-06 2287 109 1589 111 595 173 1102 389 36 294 45 247 43 112 15 103 13 1118 3278 0.36
    XWC-3-07 2364 122 1327 100 558 158 995 361 33 270 41 214 39 99 13 91 11 1042 2982 0.36
    XWC-4-01 2907 129 1452 115 642 177 1167 440 39 343 50 271 48 123 16 102 13 1329 3548 0.35
    XWC-4-02 2610 160 1895 130 676 211 1360 502 44 379 57 301 54 139 19 125 16 1419 4013 0.34
    XWC-4-03 2841 317 2614 189 762 245 1579 566 53 453 70 390 72 187 26 170 21 1606 4783 0.35
    中阶段 XWC-4-04 2544 507 2112 164 696 226 1419 516 46 392 60 315 56 146 19 127 16 1405 4198 0.35
    XWC-4-05 2792 177 1685 131 657 187 1293 445 42 335 51 267 49 124 17 111 15 1324 3724 0.37
    XWC-4-06 2676 154 1501 113 651 193 1259 446 39 328 48 251 44 113 16 106 14 1312 3622 0.35
    XWC-4-07 2733 129 1472 113 680 189 1259 439 38 324 46 235 42 109 14 98 12 1252 3601 0.34
    XWC-4-08 2814 132 1443 116 663 193 1256 453 39 331 47 249 43 112 16 103 13 1323 3636 0.35
    XWC-1-16 12 4533 1.0 0.8 10 7.3 90 93 25 99 16 81 12 22 1.8 5.9 0.4 161 465 0.89
    晚阶段Ⅰ XWC-1-17 71 4765 4.4 1.6 7.4 4.6 75 116 36 140 24 118 17 29 2.3 6.8 0.5 194 578 0.97
    XWC-1-18 65 4445 8.3 1.2 9.1 5.0 77 112 40 141 24 121 16 28 2.1 5.7 0.4 183 583 1.09
    XWC-3-13 75 2874 4.9 3.3 20 8.4 81 71 16 70 11 53 8.8 18 1.4 5.3 0.5 121 368 0.78
    XWC-2-13 2248 333 1579 92 563 164 1096 404 36 297 45 233 41 103 14 94 11 1100 3194 0.35
    XWC-2-14 2150 572 1487 91 559 155 1023 375 37 281 42 217 38 99 13 89 11 1097 3030 0.38
    XWC-2-15 1664 1331 1093 67 408 115 766 306 35 237 37 197 33 80 10 67 8.4 831 2369 0.45
    XWC-2-16 1360 1712 875 58 345 95 620 263 33 207 33 177 30 73 9.4 59 7.2 703 2010 0.49
    XWC-2-17 1227 1819 892 52 322 90 599 258 32 211 33 172 28 70 9.1 56 7.0 700 1939 0.48
    XWC-4-09 1786 133 754 58 301 74 490 208 25 180 28 157 28 68 8.8 50 6.0 517 1681 0.43
    XWC-4-10 1733 155 694 80 380 90 571 225 28 188 29 158 28 66 8.3 51 5.9 425 1909 0.47
    晚阶段Ⅱ XWC-4-11 1679 148 852 71 362 91 607 256 30 223 34 187 33 78 10 57 6.5 518 2046 0.42
    XWC-4-12 2217 137 984 56 306 82 574 242 28 227 36 189 35 85 11 65 7.3 742 1943 0.41
    XWC-4-13 1864 147 759 76 375 90 596 242 30 211 33 178 32 78 10 58 6.6 529 2016 0.45
    XWC-4-14 1937 142 913 68 339 86 582 258 31 225 35 187 34 82 10 60 7.3 662 2005 0.43
    XWC-4-15 1606 152 665 79 373 89 563 217 28 184 28 153 27 65 8.2 49 5.8 407 1869 0.48
    XWC-4-16 1649 140 636 79 368 86 523 211 28 179 27 143 26 65 8.1 49 5.8 407 1798 0.50
    XWC-4-17 1994 151 847 55 289 75 516 225 27 209 33 182 32 79 10 60 6.6 613 1797 0.42
    XWC-4-18 1932 140 764 69 333 81 520 210 27 188 29 162 29 73 9.4 55 6.3 570 1790 0.47
    注:δEu=EuN/(SmN×GdN)1/2
    下载: 导出CSV

    表 2  白钨矿原位Sr同位素分析结果

    Table 2.  In situ strontium isotope analytical results of scheelite

    时期 样品编号 85Rb信号强度(Ⅴ) 88Sr信号强度(Ⅴ) 84Sr/86Sr 2σ 87Sr/86Sr 2σ
    XWC-1-Sr-19 0.00221 1.08 0.05735 0.00326 0.70872 0.00070
    XWC-1-Sr-20 0.00039 0.34 0.04690 0.00310 0.70969 0.00071
    XWC-1-Sr-21 0.00074 1.25 0.05433 0.00243 0.71027 0.00061
    XWC-1-Sr-22 0.00066 0.52 0.04976 0.00254 0.71023 0.00058
    早阶段 XWC-3-Sr-08 0.00023 0.22 0.04464 0.00811 0.70896 0.00166
    XWC-3-Sr-09 0.00074 0.76 0.05331 0.00181 0.70993 0.00051
    XWC-3-Sr-10 0.00071 2.80 0.05211 0.00354 0.71008 0.00071
    XWC-3-Sr-11 0.00164 2.23 0.05540 0.00105 0.70946 0.00026
    XWC-3-Sr-12 0.00119 0.83 0.05073 0.00202 0.71108 0.00048
    XWC-1-Sr-01 0.00206 0.76 0.05132 0.00157 0.71158 0.00034
    XWC-1-Sr-02 0.00303 1.29 0.05027 0.00083 0.71017 0.00024
    XWC-1-Sr-03 0.00434 1.23 0.04515 0.00107 0.71145 0.00020
    XWC-1-Sr-04 0.00381 1.26 0.04662 0.00112 0.71118 0.00024
    XWC-1-Sr-05 0.00390 1.41 0.04732 0.00086 0.71093 0.00025
    中阶段 XWC-1-Sr-06 0.00377 1.26 0.04486 0.00107 0.71174 0.00023
    XWC-1-Sr-07 0.00463 1.24 0.04403 0.00117 0.71180 0.00024
    XWC-1-Sr-08 0.00460 1.20 0.04121 0.00104 0.71440 0.00026
    XWC-1-Sr-09 0.00407 4.97 0.05298 0.00034 0.70932 0.00010
    XWC-1-Sr-10 0.00326 1.24 0.04809 0.00105 0.71151 0.00026
    XWC-1-Sr-11 0.00272 2.04 0.05177 >0.00060 0.70921 0.00016
    XWC-2-Sr-01 0.00295 0.99 0.04178 0.00138 0.71210 0.00036
    XWC-2-Sr-02 0.00395 1.08 0.04239 0.00113 0.71254 0.00028
    XWC-2-Sr-03 0.00363 1.07 0.04404 0.00115 0.71225 0.00024
    XWC-2-Sr-04 0.00330 0.99 0.04434 0.00147 0.71344 0.00032
    XWC-2-Sr-05 0.00381 1.48 0.04664 0.00097 0.71090 0.00022
    中阶段 XWC-2-Sr-06 0.00278 1.09 0.04924 .00114 0.71132 0.00026
    XWC-2-Sr-07 0.00278 3.35 0.05422 0.00039 0.70947 0.00017
    XWC-2-Sr-08 0.00276 1.18 0.05163 0.00131 0.71142 0.00030
    XWC-2-Sr-09 0.00297 1.05 0.04654 0.00137 0.71096 0.00032
    XWC-2-Sr-10 0.00323 1.41 0.04878 0.00083 0.71057 0.00021
    XWC-2-Sr-11 0.00378 1.18 0.04601 0.00103 0.71132 0.00026
    XWC-2-Sr-12 0.00346 1.21 0.04787 0.00095 0.71094 0.00025
    XWC-3-Sr-01 0.00351 1.24 0.04778 0.00112 0.71126 0.00026
    XWC-3-Sr-02 0.00375 1.28 0.04535 0.00099 0.71077 0.00027
    XWC-3-Sr-03 0.00363 1.32 0.04567 0.00083 0.71106 0.00021
    中阶段 XWC-3-Sr-04 0.00364 1.45 0.04614 0.00089 0.71033 0.00019
    XWC-3-Sr-05 0.00389 1.23 0.04438 0.00094 0.71213 0.00022
    XWC-3-Sr-06 0.00392 1.20 0.04386 0.00108 0.71218 0.00026
    XWC-3-Sr-07 0.00338 1.13 0.04685 0.00119 0.71210 0.00028
    XWC-4-Sr-01 0.00204 0.81 0.04823 0.00144 0.71066 0.00033
    XWC-4-Sr-02 0.00344 1.01 0.05254 0.00133 0.71136 0.00027
    XWC-4-Sr-03 0.00290 0.99 0.04641 0.00125 0.71160 0.00027
    中阶段 XWC-4-Sr-04 0.00302 1.03 0.05068 0.00126 0.71166 0.00027
    XWC-4-Sr-05 0.00376 1.34 0.05085 0.00098 0.71059 0.00023
    XWC-4-Sr-06 0.00243 0.82 0.05193 0.00135 0.71181 0.00031
    XWC-4-Sr-07 0.00271 0.76 0.05411 0.00141 0.71135 0.00033
    XWC-4-Sr-08 0.00205 0.84 0.05188 0.00147 0.71144 0.00030
    晚阶段Ⅰ XWC-1-Sr-23 0.00038 7.01 0.05651 0.00016 0.70824 0.00008
    XWC-3-Sr-13 0.00008 5.36 0.05644 0.00023 0.70820 0.00014
    XWC-2-Sr-18 0.00018 10.47 0.05634 0.00011 0.70841 0.00007
    XWC-2-Sr-19 0.00023 10.46 0.05633 0.00011 0.70849 0.00008
    XWC-2-Sr-20 0.00021 9.51 0.05685 0.00013 0.70837 0.00008
    XWC-2-Sr-21 0.00020 10.57 0.05647 0.00011 0.70810 0.00007
    XWC-4-Sr-09 0.00134 0.91 0.05488 0.00120 0.70902 0.00028
    XWC-4-Sr-10 0.00168 0.90 0.05225 0.00151 0.70888 0.00030
    晚阶段Ⅱ XWC-4-Sr-11 0.00163 0.95 0.05197 0.00123 0.70878 0.00027
    XWC-4-Sr-12 0.00197 1.33 0.05502 0.00100 0.70836 0.00024
    XWC-4-Sr-13 0.00166 1.02 0.05621 0.00106 0.70936 0.00026
    XWC-4-Sr-14 0.00178 0.89 0.05610 0.00119 0.70892 0.00028
    XWC-4-Sr-15 0.00251 0.83 0.05758 0.00150 0.70936 0.00034
    XWC-4-Sr-16 0.00440 1.05 0.05258 0.00120 0.70993 0.00029
    XWC-4-Sr-17 0.00155 0.93 0.05525 0.00126 0.70905 0.00027
    XWC-4-Sr-18 0.00132 1.00 0.05469 0.00135 0.70913 0.00025
    内部监控样(谢家山白钨矿标准样品) WSTD (n=8) 0.00006 12.02 0.05659 0.00010 0.72088 0.00007
    下载: 导出CSV
  • [1]

    Brugger J, Lahaye Y, Costa S, et al.Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3):251-264. doi: 10.1007/s004100000135

    [2]

    Brugger J, Maas R, Lahaye Y, et al.Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, western Australia[J].Chemical Geology, 2002, 182(2):203-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a41e5122ad0d4b8120ce4abe7d9003

    [3]

    Dostal J, Kontak D J, Chatterjee A K.Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada:Genetic implications[J].Mineralogy & Petrology, 2009, 97(1-2):95-109. http://link.springer.com/article/10.1007/s00710-009-0067-0

    [4]

    Fu Y, Sun X, Zhou H, et al.In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, southwest China and its metallogenic implications[J].Ore Geology Reviews, 2017, 80:828-837. doi: 10.1016/j.oregeorev.2016.08.030

    [5]

    Guo S, Chen Y, Liu C Z, et al.Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar:Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization[J].Journal of Asian Earth Sciences, 2016, 117:82-106. doi: 10.1016/j.jseaes.2015.12.004

    [6]

    Li C, Zhou L, Zhao Z, et al.In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025

    [7]

    Ding T, Ma D, Lu J, et al.Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94:193-211. doi: 10.1016/j.oregeorev.2018.01.029

    [8]

    Ghaderi M.Rare earth element tracing for Bamsar, Revesht and Nezam-Abad tungsten deposits in Central Iran[C]//Proceedings of American Geophysical Union 1999 Fall Meeting, 1999.

    [9]

    曾志刚, 李朝阳, 刘玉平, 等.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376

    Zeng Z G, Li C Y, Liu Y P, et al.REE geochemistry of scheelite of two genetic types from Nanyangtian, southeastern Yunnan[J].Geology-Geochemistry, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376

    [10]

    张家菁, 梅玉萍, 王登红, 等.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报, 2008, 82(7):927-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200807010

    Zhang J Q, Mei Y P, Wang D H, et al.Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance[J].Acta Geologica Sinic, 2008, 82(7):927-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200807010

    [11]

    彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报, 2003, 48(18):1976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200318015

    Peng J T, Hu R Z, Zhao J H, et al.Sm-Nd and quartz Ar-Ar dating of scheelite in Woxi Au-Sb-W deposit, western Hunan[J].Chinese Science Bulletin, 2003, 48(18):1976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200318015

    [12]

    彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学, 2005, 34(2):115-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502003

    Peng J T, Hu R Z, Zhao J H, et al.Rare earth element (REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J].Geochimica, 2005, 34(2):115-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502003

    [13]

    熊德信, 孙晓明, 石贵勇, 等.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报, 2005, 22(3):733-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603023

    Xiong D X, Sun X M, Shi G Y.Trace elements, rare earth elements (REE) and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China[J].Acta Petrologica Sinica, 2005, 22(3):733-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603023

    [14]

    刘善宝, 刘战庆, 王成辉, 等.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J].地学前缘, 2017, 24(5):17-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705003

    Liu S B, Liu Z Q, Wang C H, et al.Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi[J].Earth Science Frontiers, 2017, 24(5):17-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705003

    [15]

    聂利青, 周涛发, 张千明, 等.安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J].岩石学报, 2017, 33(11):3518-3530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711013

    Nie L Q, Zhou T F, Zhang Q M, et al.Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J].Acta Petrologica Sinica, 2017, 33(11):3518-3530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711013

    [16]

    Sun K, Chen B.Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China[J].American Mineralogist, 2017, 102(5):1114-1128. http://smartsearch.nstl.gov.cn/paper_detail.html?id=61fa12036af569506798e41bf25beceb

    [17]

    Zhang Q, Zhang R Q, Gao J F, et al.In-situ LA-ICP-MS trace elemental analyses of scheelite and wolframite:Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China[J].Ore Geology Reviews, 2018:S0169136817310065. http://smartsearch.nstl.gov.cn/paper_detail.html?id=33c265556486ae64c34f7df5746d95e5

    [18]

    余海军, 李文昌.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 2016, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm

    Yu H J, Li W C.Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization[J].Acta Petrologica Sinica, 2016, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm

    [19]

    张向飞, 李文昌, 尹光候, 等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017, 33(7):2018-2036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707004

    Zhang X F, Li W C, Yin G H, et al.Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo mining district, NW Yunnan, China:Constraints by geochronology, oxygen fugacity and geochemistry[J].Acta Petrologica Sinica, 2017, 33(7):2018-2036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707004

    [20]

    Wang X S, Bi X W, Leng C B, et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 2014, 61:73-95. doi: 10.1016/j.oregeorev.2014.01.006

    [21]

    Wang X S, Hu R Z, Bi X W, et al.Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos, 2014, 208-209:202-219. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b44b0c27a17bf0dc2f9fd998a25129fd

    [22]

    王新松, 毕献武, 胡瑞忠, 等.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 2015, 31(11):3171-3188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201511002

    Wang X S, Bi X W, Hu R Z, et al.S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal[J].Acta Petrologica Sinica, 2015, 31(11):3171-3188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201511002

    [23]

    余海军, 李文昌.滇西北休瓦促钼矿区两期侵入岩年代学、地球化学及其地质意义[J].矿床地质, 2014, 33(增刊):319-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8450536

    Yu H J, Li W C.Chronology, geochemistry and geological significance of two stages of intrusive rocks in Xiuwa Mo mining area, northwest Yunnan[J].Mineral Deposits, 2014, 33(Supplement):319-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8450536

    [24]

    刘学龙, 李文昌, 杨富成, 等.云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义[J].地质学报, 2017, 91(4):849-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201704011

    Liu X L, Li W C, Yang F C, et al.Zircon U-Pb Age and Hf isotopic composition of the two-period magmatism of the Xiuwacu Mo-W-Cu deposit in the Geza arc belt, Yunnan, and their tectonic significance[J].Acta Geologica Sinica, 2017, 91(4):849-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201704011

    [25]

    江小均, 陈振宇, 李文昌, 等.滇西北休瓦促晚白垩世岩浆成矿作用动力学机制探讨[J].地学前缘, 2019, 26(2):137-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902010

    Jiang X J, Chen Z Y, Li W C, et al.Discussion on the dynamic mechanisms of the Late Cretaceous magmatism-metallogenesis in Xiuwacu, northwestern Yunnan Province[J].Earth Science Frontiers, 2019, 26(2):137-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902010

    [26]

    李文昌, 余海军, 尹光候.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003

    Li W C, Yu H J, Yin G H.Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J].Acta Petrologica Sinica, 2013, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003

    [27]

    侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003.

    Hou Z Q, Yang Y Q, Wang H P, et al.Sand-forming process and metallogenic system of the island arc collision in the Sanjiang River[M].Beijing:Geological Publishing House, 2003.

    [28]

    李文昌, 尹光侯, 余海军, 等.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 2011, 27(9):2541-2552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201109005

    Li W C, Yin G H, Yu H J, et al.The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J].Acta Petrologica Sinica, 2011, 27(9):2541-2552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201109005

    [29]

    Deng J, Wang Q F, Li G J, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 2014, 26(2):419-437. doi: 10.1016/j.gr.2013.08.002

    [30]

    Deng J, Wang C, Zi J W, et al.Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith[J].Gondwana Research, 2018, 62:75-92. doi: 10.1016/j.gr.2017.10.008

    [31]

    李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710010

    Li J K, Li W C, Wang D H, et al.Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian arc[J].Acta Petrologica Sinica, 2007, 23(10):2415-2422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710010

    [32]

    李文昌, 余海军, 尹光侯, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201202009

    Li W C, Yu H J, Yin G H, et al.Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment[J].Mineral Deposits, 2012, 31(2):282-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201202009

    [33]

    Peng H J, Mao J W, Pei R F, et al.Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan Province, China:Implications for mineralization of the Zhongdian arc[J].Journal of Asian Earth Sciences, 2014, 79:682-695. doi: 10.1016/j.jseaes.2013.07.008

    [34]

    Wang C, Bagas L, Lu Y, et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews, 2016, 156:39-65. doi: 10.1016/j.earscirev.2016.02.008

    [35]

    Wang C, Deng J, Bagas L, et al.Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the eastern Qinling Orogen[J].Gondwana Research, 2017, 50:293-310. doi: 10.1016/j.gr.2017.04.008

    [36]

    Zu B, Xue C J, Chi G X, et al.Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit:Insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China[J].Ore Geology Reviews, 2016, 77:25-42. doi: 10.1016/j.oregeorev.2016.02.002

    [37]

    孟健寅, 杨立强, 吕亮, 等.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304009

    Meng J Y, Yang L Q, Lü L, et al.Re-Os dating of molybdenite from the Hongshan Cu-Mo deposit in northwest Yunnan and its implications for mineralization[J].Acta Petrologica Sinica, 2013, 29(4):1214-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304009

    [38]

    Lai A Q, Zhe L Ⅰ, Liu X, et al.Petrogenesis and tectonic significance of the Xiuwacu two-period magmatism in Geza arc of Yunnan Province:Constraints from lithogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J].Acta Geologica Sinica, 2016, 90(2):757-758. doi: 10.1111/1755-6724.12706

    [39]

    Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [40]

    Linnen R L, Williams-Jones A E.Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia[J].Economic Geology, 1990, 85(8):1840-1856. doi: 10.2113/gsecongeo.85.8.1840

    [41]

    Rempel K U, Williams-Jones A E, Migdisov A A.The partitioning of molybdenum(Ⅵ) between aqueous liquid and vapour at temperatures up to 370℃[J].Geochimica et Cosmochimica Acta, 2009, 73(11):3381-3392. doi: 10.1016/j.gca.2009.03.004

    [42]

    Song G, Qin K, Li G, et al.Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China[J]. American Mineralogist, 2014, 99:303-317. doi: 10.2138/am.2014.4431

    [43]

    Wu W H, Xu S J, Yang J D, et al.Isotopic characteristics of river sediments on the Tibetan Plateau[J].Chemical Geology, 2010, 269(3-4):406-413. doi: 10.1016/j.chemgeo.2009.10.015

    [44]

    Jahn B M, Wu F Y, Lo C H, et al.Curst-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, central China[J].Chemical Geology, 1999, 157(2-3):119-146. http://www.onacademic.com/detail/journal_1000035459091910_cc00.html

  • 加载中

(5)

(2)

计量
  • 文章访问数:  2070
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2019-08-12
修回日期:  2019-09-02
录用日期:  2019-10-21
刊出日期:  2020-09-25

目录