Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry
-
摘要: X射线荧光光谱法(XRF)是测定土壤和沉积物中锰的重要方法,具有制样简单、非破坏性测定、检测速度快等优点。目前用于建立工作曲线的土壤和沉积物标准物质的锰含量最高为2490mg/kg,采用XRF法测定受污染土壤和沉积物中的锰含量时易超出工作曲线测定范围。本文将锰标准溶液定量加入到土壤标准物质中,制备锰含量更高的校准样品,工作曲线的测定上限范围由2490mg/kg提高至3780mg/kg。该方法测定不同含量标准物质中锰含量的结果均在认定值范围内,实际样品的加标回收率为97.8%~108.3%,高含量锰的实际样品测定值与电感耦合等离子体发射光谱法测定值的相对偏差小于5.7%,相对标准偏差(RSD)小于0.4%(n=7)。实验结果表明该法测定锰含量高的土壤和沉积物的准确度和精密度良好。Abstract:
OBJECTIVES Due to the advantages of simple sample preparation, non-destructive determination, and rapid detection, the X-ray fluorescence spectrometry technique has become a robust method for determination of manganese in soil or sediment. Manganese in soil and sediment standard material has the maximum content of 2490mg/kg, thus the traditional X-ray fluorescence spectrometry (XRF) can easily suffer from the drawbacks of standard curve measurement range due to the limited manganese content in standard soil or sediment samples. OBJECTIVES To develop a good method for the determination of manganese in polluted soil or sediment. METHODS To address this major concern, manganese solutions were added to the commercially available soil standards in a quantitative manner to give a series of new soil standards with higher manganese content. The content of manganese can be determined by X-ray fluorescence spectrometry. RESULTS The establishment of a novel standard curve by taking advantage of these new soil standards could significantly promote the upper limit of manganese measurement from 2490mg/kg to 3780mg/kg. The analytical results of manganese were consistent with the reference value and a recovery of 97.8%-108.3%. The results of high-manganese samples were consistent with the values acquired by inductively coupled plasma-optical emission spectrometry, with the relative deviation less than 5.7% and the relative standard deviation lower than 0.4% (n=7). Conclusion Results show good accuracy and precision in the determination of high-manganese soils and sediments. -
Key words:
- X-ray fluorescence spectrometry /
- spiked recovery test /
- manganese /
- soil /
- sediment
-
表 1 校准样品中锰的酸提取态结果和谱峰参数
Table 1. Analytical results of acid extraction and spectrogram parameters of Mn in calibration samples
样品编号 校准样品中Mn
的理论浓度
(mg/kg)测定
次数弱酸提取态中
锰的测定值
(mg/L)平行测定的
相对偏差
(%)0.5g样品中锰的酸提取态
含量的增加值
m1(mg)0.5g样品中锰标液
加入量的理论值
m2(mg)m1/m2 2θ(°) GBW07407 1780 1
28.78
8.810.17 / / / 62.9950 校准样品1 2780 1
234.5
35.41.29 0.523 0.50 1.05 62.9922 校准样品2 3080 1
241.8
42.40.71 0.666 0.65 1.02 62.9922 校准样品3 3280 1
248.3
46.81.58 0.774 0.75 1.03 62.9926 校准样品4 3380 1
251.0
48.92.10 0.822 0.80 1.03 62.9920 校准样品5 3780 1
260.4
55.93.87 0.988 1.00 0.99 62.9920 表 2 标准物质和方法比对的测试结果
Table 2. Analytical results of certified reference materials and methods comparison
标准物质
编号锰含量测定值
(mg/kg)锰含量认定值
(mg/kg)相对误差
(%)GBW07375 309 322±14 -4.0 GBW07377 517 519±18 -0.4 GBW07385 767 760±16 0.9 GBW07387 892 907±15 -1.7 GBW07384 1386 1440±70 -3.8 GBW07311 2473 2490±84 0.7 实际样品
编号锰含量XRF测定值
(mg/kg)锰含量ICP-OES
测定值(mg/kg)相对偏差
(%)样品4 2834 2619 3.9 样品5 3585 3274 4.5 样品6 3000 2678 5.7 样品7 2679 2722 0.8 样品8 3064 3169 1.7 样品9 3606 3306 4.3 样品10 3580 3792 2.9 样品11 2657 2459 3.9 样品12 2692 2582 2.1 表 3 实际样品加标回收实验结果
Table 3. Analytical results of spiked recovery test for real samples
实际样品
编号锰含量
测定值
(mg/kg)样品称样量
(g)标准溶液
浓度
(mg/L)加标体积
(mL)加标后样品中
锰含量测定值
(mg/kg)回收率
(%)样品1 525 5.0000 500 5.00 1028 100.6 样品2 915 5.0000 500 10.00 1893 97.8 样品3 1509 5.0000 500 15.00 3134 108.3 表 4 精密度实验结果
Table 4. Analytical results of the precision test
样品编号 锰含量7次测定值
(mg/kg)RSD
(%)实际样品4 2823 2832 2837 2832 2834 2842 2838 0.2 实际样品5 3578 3587 3581 3584 3585 3593 3590 0.1 实际样品6 2992 3007 3006 2998 2999 3000 2999 0.2 实际样品7 2672 2681 2683 2683 2669 2682 2682 0.2 实际样品8 3053 3064 3066 3068 3065 3071 3067 0.2 实际样品9 3603 3603 3612 3601 3607 3606 3609 0.1 GBW07375 310 310 310 310 308 307 310 0.4 GBW07385 765 765 770 768 769 765 767 0.3 GBW07384 1388 1386 1386 1384 1388 1388 1388 0.1 -
[1] Curran C P, Robert M P, Ho S, et al.Incorporating genetics and genomics in risk assessment for inhaled manganese:From data to policy[J].Neuro Toxicology, 2009, 30(5):754-760. http://pubmedcentralcanada.ca/pmcc/articles/PMC2765692/
[2] 张飞, 罗学刚, 王佳.U及伴生重金属Mn、Pb对土壤酶活性的影响[J].环境科学与技术, 2015, 38(3):44-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201503009
Zhang F, Luo X G, Wang J.Effects of uranium and associated heavy metals Mn and Pb on soil enzyme activities[J].Environmental Science & Technology, 2015, 38(3):44-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201503009
[3] 于方明, 漆培艺, 刘可慧, 等.锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响[J].农业环境科学学报, 2019, 38(8):1882-1890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201908027
Yu F M, Qi P Y, Liu K H, et al.Effects of lime on the growth and antioxidant enzyme system of camellia oleifera in manganese-contaminated soil[J].Journal of Agro-Environment Science, 2019, 38(8):1882-1890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201908027
[4] 马剑丽, 倪群英.微波消解-火焰原子吸收法测定土壤中铜锌铅镍锰[J].广州化工, 2006, 34(4):61-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzhg200604021
Ma J L, Ni Q Y.Detecting Cu, Zn, Pb, Ni and Mn in soil with microwave digestion- AAS[J].Guangzhou Chemical Industry, 2006, 34(4):61-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzhg200604021
[5] 赵庆令, 李清彩.电感耦合等离子体发射光谱法同时测定土壤样品中54种组分[J].岩矿测试, 2011, 30(1):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201101016
Zhao Q L, Li Q C.Simultaneous determination of 54 components in soil samples by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2011, 30(1):75-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201101016
[6] 徐进力, 邢夏, 顾雪, 等.KED模式/电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中磷、钛、钒、铬、锰[J].中国无机分析化学, 2018, 8(5):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201805006
Xu J L, Xing X, Gu X, et al.Determination of P, Ti, Ⅴ, Cr, Mn in geological samples by KED mode/ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201805006
[7] 王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201611024
Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J].Food Safety and Quality Detection Technology, 2016, 7(11):4394-4400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201611024
[8] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302
Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302
[9] Ferri R, Donna F, Smith D R, et al.Heavy metals in soil and salad in the proximity of historical ferroalloy emission[J].Journal of Environmental Protection, 2012, 3:374-375. doi: 10.4236/jep.2012.35047
[10] 田衎, 郭伟臣, 杨永, 等.波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素[J].冶金分析, 2019, 39(10):30-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201910006
Tian K, Guo W C, Yang Y, et al.Determination of thirteen heavy metals in soil and stream sediment by wavelength dispersive X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2019, 39(10):30-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201910006
[11] Minkina T M, Soldatov A Ⅴ, Nevidomskaya D G, et al.New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation[J].Geochemistry International, 2016, 54(2):197-204. doi: 10.1134/S001670291512006X
[12] 梁祖顺, 李小莉, 刘峰, 等.粉末压片-X射线荧光光谱法测定含铌多金属矿样中铌[J].冶金分析, 2014, 34(10):65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201410013
Liang Z S, Li X L, Liu F, et al.Determination of niobium in niobium containing multi-metal ore by X-ray fluorescence spectrometry with powder pressed pellet[J].Metallurgical Analysis, 2014, 34(10):65-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201410013
[13] 王子杰, 王干珍, 汤行, 等.粉末压片-X射线荧光光谱法测定铋矿石中铋及主量组分[J].冶金分析, 2018, 38(8):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201808004
Wang Z J, Wang G Z, Tang X, et al.Determination of bismuth and major components in bismuth ore by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(8):21-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201808004
[14] 张莉娟, 刘义博, 李小莉, 等.超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J].岩矿测试, 2014, 33(4):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201404011
Zhang L J, Liu Y B, Li X L, et al.Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J].Rock and Mineral Analysis, 2014, 33(4):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201404011
[15] 刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201806009
Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201806009
[16] 孙晓慧, 李章, 刘希良.微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J].冶金分析, 2014, 34(11):56-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201411011
Sun X H, Li Z, Liu X L.Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2014, 34(11):56-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201411011
[17] 何恬叶, 张颖红, 胡子文.微波消解ICP-OES法测定土壤样品中22种元素[J].分析试验室, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018
He T Y, Zhang Y H, Hu Z W.Determination of 22 elements in soil by ICP-OES with microwave digestion[J].Chinese Journal of Analysis Laboratory, 2018, 37(1):84-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201801018
[18] 余海军, 张莉莉, 屈志朋, 等.微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J].中国无机分析化学, 2019, 9(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201901008
Yu H J, Zhang L L, Qu Z P, et al.Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201901008
[19] 杨叶琴, 赵昌平, 赵杰.微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J].理化检验(化学分册), 2019, 5(1):63-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201901011
Yang Y Q, Zhao C P, Zhao J.Determination of eight heavy metal elements in soil by microwave digestion inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 5(1):63-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201901011
[20] 龙海洋, 王维生, 韦月越, 等.矿区周边土壤中重金属形态分析及污染风险评价[J].广西大学学报, 2016, 41(5):1676-1682. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201605044
Long H Y, Wang W S, Wei Y Y, et al.Speciation analysis and pollution risk assessment of heavy metals in the soils surrounding mine area[J].Journal of Guangxi University (Natural Science Edition), 2016, 41(5):1676-1682. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201605044
[21] 高焕方, 曹园城, 何炉杰, 等.Tessier法和BCR法对比磷酸二氢钠处置含铅污染土壤形态分析[J].环境工程学报, 2017, 11(10):2751-2756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201710060
Gao H F, Cao Y C, He L J, et al.Speciation analysis of lead-contaminated soil treated with sodium dihydrogen phosphate using Tessier and BCR[J].Chinese Journal of Environmental Engineering, 2017, 11(10):2751-2756. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201710060
[22] 倪子月, 陈吉文, 刘明博, 等.能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J].冶金分析, 2016, 36(10):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201610003
Ni Z Y, Chen J W, Liu M B, et al.Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J].Metallurgical Analysis, 2016, 36(10):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201610003
[23] 尹静, 黄睿涛.粉末压片制-X射线荧光光谱法测定铁矿石中锌砷锰[J].岩矿测试, 2011, 30(4):491-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201104021
Yin J, Huang R T.Elemental determination of zinc, arsenic and manganese in iron ore by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2011, 30(4):491-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201104021
[24] 邓述培, 范鹏飞, 唐玉霜, 等.X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J].中国无机分析化学, 2019, 9(4):12-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201904003
Deng S P, Fan P F, Tang Y S, et al.Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):12-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwjfxhxwz201904003
[25] 吕善胜, 徐金龙, 曲强.理论α系数和经验系数法相结合校正-X射线荧光光谱法测定铁矿石中14种组分[J].冶金分析, 2016, 36(4):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201604011
Lü S S, Xu J L, Qu Q.Determination of fourteen components in iron ore by X-ray fluorescence spectrometry with theoretical α coefficient and empirical coefficient method correction[J].Metallurgical Analysis, 2016, 36(4):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201604011
[26] 殷惠民, 杜祯宇, 任立军, 等.波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J].冶金分析, 2018, 38(7):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201807001
Yin H M, Du Z Y, Ren L J, et al.Coefficient effectiveness judgment of overlapping line and matrix effect correction in wavelength dispersive X-ray fluorescence spectrometry and its application in determination of heavy metal elements in soils and sediment samples[J].Metallurgical Analysis, 2018, 38(7):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201807001
[27] 殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201804001
Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J].Metallurgical Analysis, 2018, 38(4):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201804001
[28] 胡德新, 武素茹, 刘跃勇, 等.改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J].岩矿测试, 2014, 33(3):369-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201403015
Hu D X, Wu S R, Liu Y Y, et al.Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J].Rock and Mineral Analysis, 2014, 33(3):369-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201403015
[29] 林承奇, 黄华斌, 胡恭任, 等.九龙江流域水稻土重金属赋存形态及污染评价[J].环境科学, 2019, 40(1):453-460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201901053
Lin C Q, Huang H B, Hu G R, et al.Assessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin[J].Environmental Science, 2019, 40(1):453-460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201901053
[30] 谭秉和, 张香荣, 姚迪民, 等.用X射线光谱法测定锰的X射线发射谱的细结构及锰的价态分析[J].岩矿测试, 1994, 13(3):169-174. http://www.cqvip.com/Main/Detail.aspx?id=1527841
Tan B H, Zhang X R, Yao D M, et al.Measurement of X-ray Mn Kβ spectra structure and chemical state analysis of Mn by the conventional XRF spectrometer[J].Rock and Mineral Analysis, 1994, 13(3):169-174. http://www.cqvip.com/Main/Detail.aspx?id=1527841
[31] 张建波, 王谦, 林力, 等.锰的价态研究及在X射线荧光光谱测定锰矿中的应用[J].冶金分析, 2011, 31(4):20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201104004
Zhang J B, Wang Q, Lin L, et al.Study on chemical valence of manganese and its application in X-ray fluorescence spectrometry determination of manganese ore[J].Metallurgical Analysis, 2011, 31(4):20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201104004
[32] 谭和平, 高杨, 吕昊, 等.土壤重金属X射线荧光光谱非标样测试方法研究[J].生态环境学报, 2012, 21(4):760-763. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201204030
Tan H P, Gao Y, Lü H, et al.The research of non-standard test method in soil heavy metal by X-ray fluorescence spectrometry[J].Ecology and Environmental Sciences, 2012, 21(4):760-763. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201204030
[33] 卢兵, 杜少文, 盛红宇, 等.AAS、ICP-AES、ICP-MS及XRF测定地质样品中铜铅锌锰的对比研究[J].黄金, 2014, 35(9):78-81. http://www.cqvip.com/QK/90449X/201409/662175000.html
Lu B, Du S W, Sheng H Y, et al.Contrast research on determination of Cu, Pb, Zn, Mn by AAS, ICP-AES, ICP-MS and XRF in geological samples[J].Gold, 2014, 35(9):78-81. http://www.cqvip.com/QK/90449X/201409/662175000.html
[34] 黄元.XRF-ICP-AES法测定土壤中的主次元素[J].化学分析计量, 2015, 24(6):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201506019
Huang Y.Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chemical Analysis and Meterage, 2015, 24(6):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201506019