In situ Trace Element and Sr Isotope Composition of Scheelite in the Xiuwacu Molybdenum-Tungsten Deposit, Northwest Yunnan: Constraints on Mineralization
-
摘要:
滇西北休瓦促钼钨矿床是义敦岛弧Cu-Mo成矿带南缘典型的热液石英脉型钼钨矿床,目前前人对该矿床主要开展了成岩-成矿年代学、岩石成因、动力学过程等研究。本文以白钨矿为研究对象,利用原位微量LA-ICP-MS以及原位Sr同位素LA-MC-ICP-MS测试技术对成矿流体演化及成矿物质来源开展了系统研究。白钨矿的产状和阴极发光图像显示其存在早中晚三个阶段,以中阶段白钨矿最为发育。早阶段白钨矿稀土配分与斑状二长花岗岩相似,呈轻稀土富集的右倾模式,Eu具有中等负异常(δEu=0.42),Mo平均含量为3.0%,87Sr/86Sr平均值为0.7098,与斑状二长花岗岩(0.7075~0.7098)接近;与早阶段相比,中阶段白钨矿轻稀土含量降低,Eu也具有中等负异常(δEu=0.37),Mo平均含量降低至2445μg/g,87Sr/86Sr值升高至0.7113;晚阶段白钨矿稀土配分呈中稀土相对富集的拱形模式,Eu基本无异常(δEu=0.93),Mo平均含量降低至56μg/g,87Sr/86Sr平均值为0.7083。从早到晚,白钨矿中轻稀土元素尤其是La和Ce的逐渐亏损表明存在氟碳铈镧矿的结晶;δEu升高和Mo急剧降低指示成矿流体从氧化到还原的转换;Sr同位素组成的变化指示了成矿物质来源的转变,早阶段岩浆流体贡献大,在中阶段白钨矿岩浆热液与围岩地层大规模作用下,地层为白钨矿的形成提供了大量Ca,表明强烈的水岩交互作用对矿床的形成发挥了重要作用。
Abstract:OBJECTIVES The Xiuwacu Mo-W deposit is a typical hydrothermal quartz vein deposit in the Yidun island arc Cu-Mo metallogenic belt, northwest Yunnan. Numerous studies have been conducted on rock and ore chronology and petrogenesis, dynamics, but its ore-forming fluid evolution has been rarely studied.
OBJECTIVES To reveal the origin and evolution of ore-forming fluids of the Xiuwacu Mo-W deposit.
METHODS Scanning electron microscope (SEM) cathodoluminescence method, and in situ trace element (LA-ICP-MS) and in situ Sr (fs-LA-MC-ICP-MS) isotope analyses of scheelite.
RESULTS The occurrences of scheelite and the cathodoluminescence images indicated three generations of scheelite, Ⅰ, Ⅱ, and Ⅲ, with the middle stage scheelite being the most developed. The rare earth element pattern of the scheelite in the early stage was similar to that of the porphyritic granite. It showed a right-inclined pattern with light rare earth enrichment and a moderate negative Eu anomaly (δEu=0.42). The average Mo content was 3.0%, and the average 87Sr/86Sr was 0.7098, close to the specular feldspar granite (0.7075-0.7098). Compared with scheelite in the early stage, the content of light rare earth elements in the scheelite from the middle stage was low, and Eu also had a medium negative anomaly (δEu=0.37). Mo content was reduced to an average of 2445μg/g, and 87Sr/86Sr increased to 0.7113. The rare earth distribution pattern of scheelite in the later stage showed an arched pattern with relative enrichment of middle rare earth and no Eu anomaly (δEu=0.93). Mo content of scheelite decreased to 56μg/g, and average 87Sr/86Sr was 0.7083.
Conclusion From early to late, the gradual decrease of light rare-earth elements, especially La and Ce, in scheelite indicates the crystallization of bastnaesite. The increase in δEu and the sharp decrease in Mo content indicate the transformation of ore-forming fluids from oxidation to reduction. The change of Sr isotope composition indicates the change in the source of ore-forming materials. The magmatic fluid contributed a lot in the early stage, and the large-scale interaction between the magma-hydrothermal fluids and surrounding rocks is responsible for the formation of scheelite in the middle stage. The strata provide amounts of Ca for scheelite formation, indicating that strong water-rock interaction played an important role in the formation of the deposit.
-
Key words:
- scheelite /
- Sr isotope /
- LA-ICP-MS /
- fs-LA-MC-ICP-MS /
- metallogenic fluid evolution /
- ore-forming material source
-
图 4 (a) 白钨矿和花岗岩体稀土球粒陨石标准化曲线图(据张向飞等[19])和(b)微量元素含量
Figure 4.
表 1 白钨矿LA-ICP-MS微量元素测试结果
Table 1. LA-ICP-MS analytical results of trace elements in scheelite
阶段划分 样品编号 元素含量(SymbolmA g/g) δEu Mo Sr Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE XWC-1-12 21070 632 1089 102 491 125 807 274 30 222 35 202 36 94 13 83 10 571 2524 0.40 XWC-1-13 26258 693 1182 120 575 150 947 341 35 274 42 243 44 114 15 97 12 610 3009 0.40 XWC-3-08 34501 245 1025 535 1383 205 816 149 16 118 14 80 15 42 5.8 43 6.6 399 3429 0.40 早阶段 XWC-3-09 25635 426 927 489 1247 178 710 121 17 96 12 63 12 33 4.5 33 5.4 308 3019 0.53 XWC-3-10 30489 109 1020 491 1351 205 851 156 17 118 15 80 15 41 5.7 39 6.1 386 3391 0.44 XWC-3-11 32617 168 1098 465 1305 204 845 167 17 129 16 90 18 49 6.3 45 7.2 441 3363 0.40 XWC-3-12 38291 99 944 414 1149 181 766 161 16 125 16 87 17 45 6.2 42 6.5 419 3031 0.38 XWC-1-01 2401 144 1567 123 583 152 977 349 38 290 45 258 46 120 17 102 13 1153 3114 0.41 XWC-1-02 2569 146 1458 121 557 141 889 320 35 264 42 241 45 115 15 94 12 1110 2892 0.41 XWC-1-03 2588 143 2008 150 648 180 1163 411 43 350 55 310 58 147 20 125 16 1365 3676 0.38 XWC-1-04 2532 148 1638 121 573 150 994 362 38 297 46 275 51 137 18 117 15 1234 3194 0.39 XWC-1-05 2611 164 1598 116 563 149 975 362 40 299 48 283 52 138 19 118 15 1249 3177 0.42 XWC-1-06 2425 145 1920 134 696 203 1321 469 42 350 53 289 52 133 17 114 15 1378 3887 0.35 中阶段 XWC-1-07 2510 231 1998 158 781 244 1609 547 49 403 57 321 54 139 18 117 14 1465 4511 0.36 XWC-1-08 2649 139 2760 160 855 275 1762 597 53 443 66 354 62 164 23 158 20 1811 4991 0.35 XWC-1-09 2570 148 2290 160 792 248 1602 562 48 418 62 328 57 147 20 133 17 1595 4592 0.34 XWC-1-10 2796 287 1966 129 672 204 1347 477 45 362 55 303 54 136 19 124 16 1467 3943 0.37 XWC-1-11 2539 148 1436 110 578 165 1040 360 35 267 40 217 38 96 13 86 11 1161 3057 0.39 XWC-1-14 2361 333 1232 321 975 180 865 210 22 168 22 126 23 58 7.6 48 6.4 942 3033 0.42 XWC-1-15 2566 156 1498 396 1122 209 971 223 24 184 25 140 25 65 8.7 54 8.0 1127 3454 0.39 XWC-2-01 2603 102 1409 92 554 158 1030 376 33 285 41 215 37 96 13 86 11 1087 3027 0.34 XWC-2-02 2352 108 1743 106 602 166 1086 407 37 311 48 261 47 121 17 106 13 1226 3328 0.36 XWC-2-03 2471 109 1750 108 614 176 1125 410 37 312 48 256 45 119 16 107 13 1229 3387 0.36 XWC-2-04 2198 111 1772 105 616 185 1188 432 37 317 47 247 43 114 15 104 13 1192 3462 0.34 XWC-2-05 2174 144 2015 122 665 192 1272 466 41 344 52 278 49 122 17 117 14 1335 3751 0.35 中阶段 XWC-2-06 2218 111 1445 107 579 164 1038 367 33 273 41 215 38 97 13 85 11 984 3060 0.35 XWC-2-07 2102 214 1387 98 540 155 1000 365 34 269 41 217 39 97 13 88 11 1003 2966 0.37 XWC-2-08 2185 115 1467 112 599 163 1066 376 33 279 40 212 38 96 13 87 11 1031 3125 0.35 XWC-2-09 2129 117 1234 104 501 136 858 307 31 238 37 209 37 96 13 84 11 932 2661 0.39 XWC-2-10 2233 166 1340 103 482 128 813 302 33 249 40 233 44 116 16 101 13 979 2674 0.41 XWC-2-11 2233 124 1586 120 517 140 898 335 37 281 46 264 49 128 17 109 14 1098 2955 0.41 XWC-2-12 2139 120 1216 105 476 124 774 284 30 225 37 205 38 98 13 84 11 917 2505 0.40 XWC-3-01 2218 119 1408 112 521 136 822 313 33 251 40 221 40 104 14 89 11 962 2708 0.40 XWC-3-02 2339 115 1698 111 542 139 869 336 38 268 45 255 48 128 17 115 15 1126 2927 0.43 XWC-3-03 2180 114 1160 95 474 119 767 281 30 222 35 194 37 98 13 84 11 903 2460 0.41 中阶段 XWC-3-04 2159 128 1258 109 518 137 841 301 32 230 36 199 37 97 13 88 11 939 2648 0.41 XWC-3-05 2186 112 1670 112 624 179 1153 417 38 317 47 247 44 110 15 101 12 1109 3415 0.36 XWC-3-06 2287 109 1589 111 595 173 1102 389 36 294 45 247 43 112 15 103 13 1118 3278 0.36 XWC-3-07 2364 122 1327 100 558 158 995 361 33 270 41 214 39 99 13 91 11 1042 2982 0.36 XWC-4-01 2907 129 1452 115 642 177 1167 440 39 343 50 271 48 123 16 102 13 1329 3548 0.35 XWC-4-02 2610 160 1895 130 676 211 1360 502 44 379 57 301 54 139 19 125 16 1419 4013 0.34 XWC-4-03 2841 317 2614 189 762 245 1579 566 53 453 70 390 72 187 26 170 21 1606 4783 0.35 中阶段 XWC-4-04 2544 507 2112 164 696 226 1419 516 46 392 60 315 56 146 19 127 16 1405 4198 0.35 XWC-4-05 2792 177 1685 131 657 187 1293 445 42 335 51 267 49 124 17 111 15 1324 3724 0.37 XWC-4-06 2676 154 1501 113 651 193 1259 446 39 328 48 251 44 113 16 106 14 1312 3622 0.35 XWC-4-07 2733 129 1472 113 680 189 1259 439 38 324 46 235 42 109 14 98 12 1252 3601 0.34 XWC-4-08 2814 132 1443 116 663 193 1256 453 39 331 47 249 43 112 16 103 13 1323 3636 0.35 XWC-1-16 12 4533 1.0 0.8 10 7.3 90 93 25 99 16 81 12 22 1.8 5.9 0.4 161 465 0.89 晚阶段Ⅰ XWC-1-17 71 4765 4.4 1.6 7.4 4.6 75 116 36 140 24 118 17 29 2.3 6.8 0.5 194 578 0.97 XWC-1-18 65 4445 8.3 1.2 9.1 5.0 77 112 40 141 24 121 16 28 2.1 5.7 0.4 183 583 1.09 XWC-3-13 75 2874 4.9 3.3 20 8.4 81 71 16 70 11 53 8.8 18 1.4 5.3 0.5 121 368 0.78 XWC-2-13 2248 333 1579 92 563 164 1096 404 36 297 45 233 41 103 14 94 11 1100 3194 0.35 XWC-2-14 2150 572 1487 91 559 155 1023 375 37 281 42 217 38 99 13 89 11 1097 3030 0.38 XWC-2-15 1664 1331 1093 67 408 115 766 306 35 237 37 197 33 80 10 67 8.4 831 2369 0.45 XWC-2-16 1360 1712 875 58 345 95 620 263 33 207 33 177 30 73 9.4 59 7.2 703 2010 0.49 XWC-2-17 1227 1819 892 52 322 90 599 258 32 211 33 172 28 70 9.1 56 7.0 700 1939 0.48 XWC-4-09 1786 133 754 58 301 74 490 208 25 180 28 157 28 68 8.8 50 6.0 517 1681 0.43 XWC-4-10 1733 155 694 80 380 90 571 225 28 188 29 158 28 66 8.3 51 5.9 425 1909 0.47 晚阶段Ⅱ XWC-4-11 1679 148 852 71 362 91 607 256 30 223 34 187 33 78 10 57 6.5 518 2046 0.42 XWC-4-12 2217 137 984 56 306 82 574 242 28 227 36 189 35 85 11 65 7.3 742 1943 0.41 XWC-4-13 1864 147 759 76 375 90 596 242 30 211 33 178 32 78 10 58 6.6 529 2016 0.45 XWC-4-14 1937 142 913 68 339 86 582 258 31 225 35 187 34 82 10 60 7.3 662 2005 0.43 XWC-4-15 1606 152 665 79 373 89 563 217 28 184 28 153 27 65 8.2 49 5.8 407 1869 0.48 XWC-4-16 1649 140 636 79 368 86 523 211 28 179 27 143 26 65 8.1 49 5.8 407 1798 0.50 XWC-4-17 1994 151 847 55 289 75 516 225 27 209 33 182 32 79 10 60 6.6 613 1797 0.42 XWC-4-18 1932 140 764 69 333 81 520 210 27 188 29 162 29 73 9.4 55 6.3 570 1790 0.47 注:δEu=EuN/(SmN×GdN)1/2。 表 2 白钨矿原位Sr同位素分析结果
Table 2. In situ strontium isotope analytical results of scheelite
时期 样品编号 85Rb信号强度(Ⅴ) 88Sr信号强度(Ⅴ) 84Sr/86Sr 2σ 87Sr/86Sr 2σ XWC-1-Sr-19 0.00221 1.08 0.05735 0.00326 0.70872 0.00070 XWC-1-Sr-20 0.00039 0.34 0.04690 0.00310 0.70969 0.00071 XWC-1-Sr-21 0.00074 1.25 0.05433 0.00243 0.71027 0.00061 XWC-1-Sr-22 0.00066 0.52 0.04976 0.00254 0.71023 0.00058 早阶段 XWC-3-Sr-08 0.00023 0.22 0.04464 0.00811 0.70896 0.00166 XWC-3-Sr-09 0.00074 0.76 0.05331 0.00181 0.70993 0.00051 XWC-3-Sr-10 0.00071 2.80 0.05211 0.00354 0.71008 0.00071 XWC-3-Sr-11 0.00164 2.23 0.05540 0.00105 0.70946 0.00026 XWC-3-Sr-12 0.00119 0.83 0.05073 0.00202 0.71108 0.00048 XWC-1-Sr-01 0.00206 0.76 0.05132 0.00157 0.71158 0.00034 XWC-1-Sr-02 0.00303 1.29 0.05027 0.00083 0.71017 0.00024 XWC-1-Sr-03 0.00434 1.23 0.04515 0.00107 0.71145 0.00020 XWC-1-Sr-04 0.00381 1.26 0.04662 0.00112 0.71118 0.00024 XWC-1-Sr-05 0.00390 1.41 0.04732 0.00086 0.71093 0.00025 中阶段 XWC-1-Sr-06 0.00377 1.26 0.04486 0.00107 0.71174 0.00023 XWC-1-Sr-07 0.00463 1.24 0.04403 0.00117 0.71180 0.00024 XWC-1-Sr-08 0.00460 1.20 0.04121 0.00104 0.71440 0.00026 XWC-1-Sr-09 0.00407 4.97 0.05298 0.00034 0.70932 0.00010 XWC-1-Sr-10 0.00326 1.24 0.04809 0.00105 0.71151 0.00026 XWC-1-Sr-11 0.00272 2.04 0.05177 >0.00060 0.70921 0.00016 XWC-2-Sr-01 0.00295 0.99 0.04178 0.00138 0.71210 0.00036 XWC-2-Sr-02 0.00395 1.08 0.04239 0.00113 0.71254 0.00028 XWC-2-Sr-03 0.00363 1.07 0.04404 0.00115 0.71225 0.00024 XWC-2-Sr-04 0.00330 0.99 0.04434 0.00147 0.71344 0.00032 XWC-2-Sr-05 0.00381 1.48 0.04664 0.00097 0.71090 0.00022 中阶段 XWC-2-Sr-06 0.00278 1.09 0.04924 .00114 0.71132 0.00026 XWC-2-Sr-07 0.00278 3.35 0.05422 0.00039 0.70947 0.00017 XWC-2-Sr-08 0.00276 1.18 0.05163 0.00131 0.71142 0.00030 XWC-2-Sr-09 0.00297 1.05 0.04654 0.00137 0.71096 0.00032 XWC-2-Sr-10 0.00323 1.41 0.04878 0.00083 0.71057 0.00021 XWC-2-Sr-11 0.00378 1.18 0.04601 0.00103 0.71132 0.00026 XWC-2-Sr-12 0.00346 1.21 0.04787 0.00095 0.71094 0.00025 XWC-3-Sr-01 0.00351 1.24 0.04778 0.00112 0.71126 0.00026 XWC-3-Sr-02 0.00375 1.28 0.04535 0.00099 0.71077 0.00027 XWC-3-Sr-03 0.00363 1.32 0.04567 0.00083 0.71106 0.00021 中阶段 XWC-3-Sr-04 0.00364 1.45 0.04614 0.00089 0.71033 0.00019 XWC-3-Sr-05 0.00389 1.23 0.04438 0.00094 0.71213 0.00022 XWC-3-Sr-06 0.00392 1.20 0.04386 0.00108 0.71218 0.00026 XWC-3-Sr-07 0.00338 1.13 0.04685 0.00119 0.71210 0.00028 XWC-4-Sr-01 0.00204 0.81 0.04823 0.00144 0.71066 0.00033 XWC-4-Sr-02 0.00344 1.01 0.05254 0.00133 0.71136 0.00027 XWC-4-Sr-03 0.00290 0.99 0.04641 0.00125 0.71160 0.00027 中阶段 XWC-4-Sr-04 0.00302 1.03 0.05068 0.00126 0.71166 0.00027 XWC-4-Sr-05 0.00376 1.34 0.05085 0.00098 0.71059 0.00023 XWC-4-Sr-06 0.00243 0.82 0.05193 0.00135 0.71181 0.00031 XWC-4-Sr-07 0.00271 0.76 0.05411 0.00141 0.71135 0.00033 XWC-4-Sr-08 0.00205 0.84 0.05188 0.00147 0.71144 0.00030 晚阶段Ⅰ XWC-1-Sr-23 0.00038 7.01 0.05651 0.00016 0.70824 0.00008 XWC-3-Sr-13 0.00008 5.36 0.05644 0.00023 0.70820 0.00014 XWC-2-Sr-18 0.00018 10.47 0.05634 0.00011 0.70841 0.00007 XWC-2-Sr-19 0.00023 10.46 0.05633 0.00011 0.70849 0.00008 XWC-2-Sr-20 0.00021 9.51 0.05685 0.00013 0.70837 0.00008 XWC-2-Sr-21 0.00020 10.57 0.05647 0.00011 0.70810 0.00007 XWC-4-Sr-09 0.00134 0.91 0.05488 0.00120 0.70902 0.00028 XWC-4-Sr-10 0.00168 0.90 0.05225 0.00151 0.70888 0.00030 晚阶段Ⅱ XWC-4-Sr-11 0.00163 0.95 0.05197 0.00123 0.70878 0.00027 XWC-4-Sr-12 0.00197 1.33 0.05502 0.00100 0.70836 0.00024 XWC-4-Sr-13 0.00166 1.02 0.05621 0.00106 0.70936 0.00026 XWC-4-Sr-14 0.00178 0.89 0.05610 0.00119 0.70892 0.00028 XWC-4-Sr-15 0.00251 0.83 0.05758 0.00150 0.70936 0.00034 XWC-4-Sr-16 0.00440 1.05 0.05258 0.00120 0.70993 0.00029 XWC-4-Sr-17 0.00155 0.93 0.05525 0.00126 0.70905 0.00027 XWC-4-Sr-18 0.00132 1.00 0.05469 0.00135 0.70913 0.00025 内部监控样(谢家山白钨矿标准样品) WSTD (n=8) 0.00006 12.02 0.05659 0.00010 0.72088 0.00007 -
[1] Brugger J, Lahaye Y, Costa S, et al.Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt.Charlotte and Drysdale gold deposits, western Australia)[J].Contributions to Mineralogy and Petrology, 2000, 139(3):251-264. doi: 10.1007/s004100000135
[2] Brugger J, Maas R, Lahaye Y, et al.Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, western Australia[J].Chemical Geology, 2002, 182(2):203-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81a41e5122ad0d4b8120ce4abe7d9003
[3] Dostal J, Kontak D J, Chatterjee A K.Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada:Genetic implications[J].Mineralogy & Petrology, 2009, 97(1-2):95-109. http://link.springer.com/article/10.1007/s00710-009-0067-0
[4] Fu Y, Sun X, Zhou H, et al.In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, southwest China and its metallogenic implications[J].Ore Geology Reviews, 2017, 80:828-837. doi: 10.1016/j.oregeorev.2016.08.030
[5] Guo S, Chen Y, Liu C Z, et al.Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar:Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization[J].Journal of Asian Earth Sciences, 2016, 117:82-106. doi: 10.1016/j.jseaes.2015.12.004
[6] Li C, Zhou L, Zhao Z, et al.In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS[J].Journal of Asian Earth Sciences, 2018, 160:38-47. doi: 10.1016/j.jseaes.2018.03.025
[7] Ding T, Ma D, Lu J, et al.Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China[J].Ore Geology Reviews, 2018, 94:193-211. doi: 10.1016/j.oregeorev.2018.01.029
[8] Ghaderi M.Rare earth element tracing for Bamsar, Revesht and Nezam-Abad tungsten deposits in Central Iran[C]//Proceedings of American Geophysical Union 1999 Fall Meeting, 1999.
[9] 曾志刚, 李朝阳, 刘玉平, 等.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376
Zeng Z G, Li C Y, Liu Y P, et al.REE geochemistry of scheelite of two genetic types from Nanyangtian, southeastern Yunnan[J].Geology-Geochemistry, 1998, 26(2):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800067376
[10] 张家菁, 梅玉萍, 王登红, 等.赣北香炉山白钨矿床的同位素年代学研究及其地质意义[J].地质学报, 2008, 82(7):927-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200807010
Zhang J Q, Mei Y P, Wang D H, et al.Isochronology study on the Xianglushan scheelite deposit in north Jiangxi Province and its geological significance[J].Acta Geologica Sinic, 2008, 82(7):927-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200807010
[11] 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报, 2003, 48(18):1976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200318015
Peng J T, Hu R Z, Zhao J H, et al.Sm-Nd and quartz Ar-Ar dating of scheelite in Woxi Au-Sb-W deposit, western Hunan[J].Chinese Science Bulletin, 2003, 48(18):1976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200318015
[12] 彭建堂, 胡瑞忠, 赵军红, 等.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学, 2005, 34(2):115-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502003
Peng J T, Hu R Z, Zhao J H, et al.Rare earth element (REE) geochemistry for scheelite from the Woxi Au-Sb-W deposit, western Hunan[J].Geochimica, 2005, 34(2):115-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200502003
[13] 熊德信, 孙晓明, 石贵勇, 等.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报, 2005, 22(3):733-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603023
Xiong D X, Sun X M, Shi G Y.Trace elements, rare earth elements (REE) and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan Province, China[J].Acta Petrologica Sinica, 2005, 22(3):733-741. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603023
[14] 刘善宝, 刘战庆, 王成辉, 等.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J].地学前缘, 2017, 24(5):17-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705003
Liu S B, Liu Z Q, Wang C H, et al.Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi[J].Earth Science Frontiers, 2017, 24(5):17-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705003
[15] 聂利青, 周涛发, 张千明, 等.安徽东顾山钨矿床白钨矿主微量元素和Sr-Nd同位素特征及其对成矿作用的指示[J].岩石学报, 2017, 33(11):3518-3530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711013
Nie L Q, Zhou T F, Zhang Q M, et al.Trace elements and Sr-Nd isotopes of scheelites:Implications for the skarn tungsten mineralization of the Donggushan deposit, Anhui Province, China[J].Acta Petrologica Sinica, 2017, 33(11):3518-3530. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711013
[16] Sun K, Chen B.Trace elements and Sr-Nd isotopes of scheelite:Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China[J].American Mineralogist, 2017, 102(5):1114-1128. http://smartsearch.nstl.gov.cn/paper_detail.html?id=61fa12036af569506798e41bf25beceb
[17] Zhang Q, Zhang R Q, Gao J F, et al.In-situ LA-ICP-MS trace elemental analyses of scheelite and wolframite:Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China[J].Ore Geology Reviews, 2018:S0169136817310065. http://smartsearch.nstl.gov.cn/paper_detail.html?id=33c265556486ae64c34f7df5746d95e5
[18] 余海军, 李文昌.滇西北休瓦促Mo-W矿区印支晚期和燕山晚期岩浆活动与成矿作用:来自锆石U-Pb年代学和地球化学的证据[J].岩石学报, 2016, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm
Yu H J, Li W C.Geochronology and geochemistry of Xiuwacu intrusions, NW Yunnan:Evidences for two-period magmatic activity and mineralization[J].Acta Petrologica Sinica, 2016, 32(8):2265-2280. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201608003.htm
[19] 张向飞, 李文昌, 尹光候, 等.滇西北休瓦促钨钼矿区复式岩体地质及其成矿特征——来自年代学、氧逸度和地球化学的约束[J].岩石学报, 2017, 33(7):2018-2036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707004
Zhang X F, Li W C, Yin G H, et al.Geological and mineralized characteristics of the composite complex in Xiuwacu W-Mo mining district, NW Yunnan, China:Constraints by geochronology, oxygen fugacity and geochemistry[J].Acta Petrologica Sinica, 2017, 33(7):2018-2036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201707004
[20] Wang X S, Bi X W, Leng C B, et al.Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc, SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews, 2014, 61:73-95. doi: 10.1016/j.oregeorev.2014.01.006
[21] Wang X S, Hu R Z, Bi X W, et al.Petrogenesis of Late Cretaceous Ⅰ-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos, 2014, 208-209:202-219. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b44b0c27a17bf0dc2f9fd998a25129fd
[22] 王新松, 毕献武, 胡瑞忠, 等.滇西北中甸地区休瓦促岩浆热液型Mo-W矿床S、Pb同位素对成矿物质来源的约束[J].岩石学报, 2015, 31(11):3171-3188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201511002
Wang X S, Bi X W, Hu R Z, et al.S-Pb isotopic geochemistry of Xiuwacu magmatic hydrothermal Mo-W deposit in Zhongdian area, NW Yunnan:Constrains on the sources of metal[J].Acta Petrologica Sinica, 2015, 31(11):3171-3188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201511002
[23] 余海军, 李文昌.滇西北休瓦促钼矿区两期侵入岩年代学、地球化学及其地质意义[J].矿床地质, 2014, 33(增刊):319-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8450536
Yu H J, Li W C.Chronology, geochemistry and geological significance of two stages of intrusive rocks in Xiuwa Mo mining area, northwest Yunnan[J].Mineral Deposits, 2014, 33(Supplement):319-320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8450536
[24] 刘学龙, 李文昌, 杨富成, 等.云南格咱岛弧带休瓦促Mo-W-Cu矿床两期岩浆作用的锆石U-Pb年龄、Hf同位素组成及构造意义[J].地质学报, 2017, 91(4):849-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201704011
Liu X L, Li W C, Yang F C, et al.Zircon U-Pb Age and Hf isotopic composition of the two-period magmatism of the Xiuwacu Mo-W-Cu deposit in the Geza arc belt, Yunnan, and their tectonic significance[J].Acta Geologica Sinica, 2017, 91(4):849-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201704011
[25] 江小均, 陈振宇, 李文昌, 等.滇西北休瓦促晚白垩世岩浆成矿作用动力学机制探讨[J].地学前缘, 2019, 26(2):137-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902010
Jiang X J, Chen Z Y, Li W C, et al.Discussion on the dynamic mechanisms of the Late Cretaceous magmatism-metallogenesis in Xiuwacu, northwestern Yunnan Province[J].Earth Science Frontiers, 2019, 26(2):137-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902010
[26] 李文昌, 余海军, 尹光候.西南"三江"格咱岛弧斑岩成矿系统[J].岩石学报, 2013, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003
Li W C, Yu H J, Yin G H.Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J].Acta Petrologica Sinica, 2013, 29(4):1129-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304003
[27] 侯增谦, 杨岳清, 王海平, 等.三江义敦岛弧碰撞造山过程与成矿系统[M].北京:地质出版社, 2003.
Hou Z Q, Yang Y Q, Wang H P, et al.Sand-forming process and metallogenic system of the island arc collision in the Sanjiang River[M].Beijing:Geological Publishing House, 2003.
[28] 李文昌, 尹光侯, 余海军, 等.滇西北格咱火山-岩浆弧斑岩成矿作用[J].岩石学报, 2011, 27(9):2541-2552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201109005
Li W C, Yin G H, Yu H J, et al.The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J].Acta Petrologica Sinica, 2011, 27(9):2541-2552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201109005
[29] Deng J, Wang Q F, Li G J, et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J].Gondwana Research, 2014, 26(2):419-437. doi: 10.1016/j.gr.2013.08.002
[30] Deng J, Wang C, Zi J W, et al.Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture:New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith[J].Gondwana Research, 2018, 62:75-92. doi: 10.1016/j.gr.2017.10.008
[31] 李建康, 李文昌, 王登红, 等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报, 2007, 23(10):2415-2422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710010
Li J K, Li W C, Wang D H, et al.Re-Os dating for ore-forming event in the late of Yanshan Epoch and research of ore-forming regularity in Zhongdian arc[J].Acta Petrologica Sinica, 2007, 23(10):2415-2422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710010
[32] 李文昌, 余海军, 尹光侯, 等.滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J].矿床地质, 2012, 31(2):282-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201202009
Li W C, Yu H J, Yin G H, et al.Re-Os dating of molybdenite from Tongchanggou Mo-polymetallic deposit in northwest Yunnan and its metallogenic environment[J].Mineral Deposits, 2012, 31(2):282-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201202009
[33] Peng H J, Mao J W, Pei R F, et al.Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan Province, China:Implications for mineralization of the Zhongdian arc[J].Journal of Asian Earth Sciences, 2014, 79:682-695. doi: 10.1016/j.jseaes.2013.07.008
[34] Wang C, Bagas L, Lu Y, et al.Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen:Insights from zircon Hf-isotopic mapping[J].Earth-Science Reviews, 2016, 156:39-65. doi: 10.1016/j.earscirev.2016.02.008
[35] Wang C, Deng J, Bagas L, et al.Zircon Hf-isotopic mapping for understanding crustal architecture and metallogenesis in the eastern Qinling Orogen[J].Gondwana Research, 2017, 50:293-310. doi: 10.1016/j.gr.2017.04.008
[36] Zu B, Xue C J, Chi G X, et al.Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit:Insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China[J].Ore Geology Reviews, 2016, 77:25-42. doi: 10.1016/j.oregeorev.2016.02.002
[37] 孟健寅, 杨立强, 吕亮, 等.滇西北红山铜钼矿床辉钼矿Re-Os同位素测年及其成矿意义[J].岩石学报, 2013, 29(4):1214-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304009
Meng J Y, Yang L Q, Lü L, et al.Re-Os dating of molybdenite from the Hongshan Cu-Mo deposit in northwest Yunnan and its implications for mineralization[J].Acta Petrologica Sinica, 2013, 29(4):1214-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201304009
[38] Lai A Q, Zhe L Ⅰ, Liu X, et al.Petrogenesis and tectonic significance of the Xiuwacu two-period magmatism in Geza arc of Yunnan Province:Constraints from lithogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J].Acta Geologica Sinica, 2016, 90(2):757-758. doi: 10.1111/1755-6724.12706
[39] Liu Y S, Hu Z C, Zong K Q, et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[40] Linnen R L, Williams-Jones A E.Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia[J].Economic Geology, 1990, 85(8):1840-1856. doi: 10.2113/gsecongeo.85.8.1840
[41] Rempel K U, Williams-Jones A E, Migdisov A A.The partitioning of molybdenum(Ⅵ) between aqueous liquid and vapour at temperatures up to 370℃[J].Geochimica et Cosmochimica Acta, 2009, 73(11):3381-3392. doi: 10.1016/j.gca.2009.03.004
[42] Song G, Qin K, Li G, et al.Scheelite elemental and isotopic signatures:Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China[J]. American Mineralogist, 2014, 99:303-317. doi: 10.2138/am.2014.4431
[43] Wu W H, Xu S J, Yang J D, et al.Isotopic characteristics of river sediments on the Tibetan Plateau[J].Chemical Geology, 2010, 269(3-4):406-413. doi: 10.1016/j.chemgeo.2009.10.015
[44] Jahn B M, Wu F Y, Lo C H, et al.Curst-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, central China[J].Chemical Geology, 1999, 157(2-3):119-146. http://www.onacademic.com/detail/journal_1000035459091910_cc00.html