Determination of High Content of Titanium in Ilmenite by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion
-
摘要: 钛矿资源主要类型为钛铁矿岩矿、钛铁矿砂矿、金红石矿。钛铁矿属于难熔矿物,一般不溶于硝酸、盐酸或王水。对于高品位钛铁矿,即使采用盐酸-硝酸-氢氟酸-高氯酸混合酸溶解样品,钛元素也易水解形成难溶的偏钛酸析出,常给分析带来很大困难。容量法和分光光度法等传统方法测定钛存在操作流程长、步骤多、效率低等不足。因此,选择合适前处理方法的同时将大型仪器分析方法结合起来,有利于提高钛铁矿分析的准确度和测试效率。本文建立了以2.0g过氧化钠为熔剂,使用刚玉坩埚在700℃熔融样品15min,热水浸取后盐酸酸化,用电感耦合等离子体发射光谱(ICP-OES)测定钛铁矿中的高含量钛元素的方法。实验中采用全程空白试液稀释定容标准溶液消除了钠基体影响,通过优化熔融温度和时间使样品分解完全,考察了过氧化钠用量来降低待测溶液中盐分以保证测定的稳定性,通过选择合适的分析谱线并采用背景扣除法消除光谱干扰。本方法检出限为0.0035%,测试范围为0.0066%~62.50%(均以TiO2含量计);经钛铁矿国家标准物质(GBW07839、GBW07841)验证,相对标准偏差(RSD,n=12)为1.1%~2.1%,相对误差为-1.69%~1.11%。本方法应用于实际样品分析,相对标准偏差(RSD,n=12)均小于4%,TiO2分析结果与国家标准方法(硫酸铁铵容量法)一致。本方法有效解决了钛铁矿分解不完全及高含量的钛易水解的问题,实现ICP-OES对不同类型钛铁矿样品中钛元素的定量分析。
-
关键词:
- 钛铁矿 /
- 钛 /
- 刚玉坩埚 /
- 过氧化钠碱熔 /
- 电感耦合等离子体发射光谱法
Abstract:BACKGROUNDThe main types of ilmenite resources are ilmenite ore, ilmenite placer, and rutile ore. Ilmenite is a mineral that is difficult to be digested, and generally insoluble in nitric acid, hydrochloric acid or an aqua system. For high-grade ilmenite, even if the sample is dissolved by hydrochloric acid-nitric acid-hydrofluoric acid-perchloric acid mixture, titanium element is also easy to hydrolyze to form insoluble partial titanic acid precipitation, which often causes great difficulties in analysis. However, the traditional methods such as volumetric and spectrophotometry have the problems of long operation process, many steps and low efficiency. OBJECTIVESTo improve the accuracy of the analysis of titanium in ilmenite and test efficiency by choosing the appropriate pretreatment combined with large-scale instrument analysis methods. METHODSUsing 2.0g sodium peroxide as flux, the samples were melted in a corundum crucible at 700℃ for 15min. The resulted melts were soaked in hot water of 40-50℃, and then acidified with hydrochloric acid. The high content of titanium in the sample was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effect of the sodium matrix was eliminated by diluting the standard solution with a blank test solution. The sample was decomposed completely by optimizing the melting temperature and time. The salt content in the solution was reduced by optimizing the quality of sodium peroxide to ensure the stability of the determination. The spectral interference was eliminated by optimizing the spectral lines and using the background deduction method. RESULTSThe detection limit of this method was 0.0035%, the analytical ranges were from 0.0066% to 62.50% (both were calculated by TiO2 content). The relative standard deviations (RSD, n=12) were 1.1%-2.1% and the relative errors were -1.69%-1.11%, which was verified by the national standard materials (GBW07839, GBW07841) of ilmenite. For actual sample analysis, the relative standard deviations of the method (RSD, n=12) were less than 4%. The analytical results were consistent, compared with the national standard method (ferric ammonium sulfate volumetric method). CONCLUSIONSThis method is used to effectively solve the problems of incomplete digestion of ilmenite and easy hydrolysis of high content ilmenite, and achieve rapidly quantitative analysis of titanium content in different ilmenite samples by ICP-OES. -
表 1 王水、四酸、碱熔法处理样品TiO2测定结果
Table 1. Analytical results of TiO2 in samples dissoluted with aqua regia, four acids and alkali fusion methods
标准物质编号 TiO2测定值(%) 三种溶解方法TiO2测定值与认定值的相对误差(%) 认定值 王水 四酸 碱熔 王水 四酸 碱熔 GBW07839 2.95±0.12 2.63 2.77 2.97 -10.85 -6.10 0.68 GBW07841 19.83±0.36 17.21 18.25 19.97 -13.21 -7.97 0.71 表 2 不同用量过氧化钠对TiO2测定的影响
Table 2. Effect of the quality of sodium peroxide on the determination of TiO2
过氧化钠用量(g) GBW07839 GBW07841 TiO2认定值(%) TiO2测定值(%) 相对误差(%) TiO2认定值(%) TiO2测定值(%) 相对误差(%) 1.0 2.95±0.12 2.65 -10.17 19.83±0.36 17.16 -13.46 1.5 2.95±0.12 2.76 -6.44 19.83±0.36 18.29 -7.77 2.0 2.95±0.12 2.92 -1.02 19.83±0.36 19.77 -0.30 2.5 2.95±0.12 2.94 -0.34 19.83±0.36 19.80 -0.15 3.0 2.95±0.12 2.94 -0.34 19.83±0.36 19.79 -0.20 表 3 实际样品采用X射线荧光光谱法测定结果
Table 3. Analytical results of TiO2 in the actual samples by X-ray fluorescence spectrometry
样品编号 SiO2(%) Al2O3 (%) CaO (%) TFe2O3 (%) MgO (%) K2O (%) TiO2 (%) Na2O (%) Mn (%) Ti-1 54.23 15.37 3.33 13.89 4.57 3.71 3.30 1.47 0.071 Ti-2 52.25 15.46 3.17 12.00 3.48 2.92 6.59 2.49 0.075 Ti-3 30.51 9.54 6.54 30.83 5.36 0.41 16.95 1.58 0.452 Ti-4 2.09 1.19 0.35 47.53 0.48 0.035 48.48 0.14 1.12 样品编号 P (%) S (mg/kg) V (mg/kg) Ni (mg/kg) Cu (mg/kg) Zn (mg/kg) Sr (mg/kg) Y (mg/kg) Zr (mg/kg) Ti-1 0.248 46 212 180 57.3 127 246 33.9 382 Ti-2 0.254 63 282 109 35.3 99 287 34.0 681 Ti-3 0.096 2843 601 51 50.9 198 402 25.9 212 Ti-4 0.024 168 485 25 23.3 296 38 36.9 400 表 4 实际样品采用本方法和传统化学方法测定结果比对
Table 4. Comparison of analytical results of TiO2 in the actual sample by this study and chemical method
样品编号 碱熔法(本方法)12次测定TiO2平均值(%) 容量法TiO2测定值(%) RSD(%) Ti-1 3.11 3.10 2.6 Ti-2 6.39 6.43 3.5 Ti-3 16.52 16.67 2.6 Ti-4 48.30 48.43 1.7 -
[1] 高阳, 刘雨晴, 李冠玉, 等.四川钛产业现状及可持续发展建议[J].四川有色金属, 2016(4):7-9. http://d.old.wanfangdata.com.cn/Periodical/scysjs201604001
Gao Y, Liu Y Q, Li G Y, et al.Situation analysis and sustainable development suggestions of titanium industry in Sichuan[J]. Sichuan Nonferrous Metals, 2016(4):7-9. http://d.old.wanfangdata.com.cn/Periodical/scysjs201604001
[2] 孙赛军, 廖仁强, 丛亚楠, 等.钛的地球化学性质与成矿[J].岩石学报, 2020, 36(1):68-76. http://d.old.wanfangdata.com.cn/Periodical/ysxb98202001008
Sun S J, Liao R Q, Cong Y N, et al.Geochemistry and mineralization of titanium[J]. Acta Petrologica Sinica, 2020, 36(1):68-76. http://d.old.wanfangdata.com.cn/Periodical/ysxb98202001008
[3] 吴贤, 张健.中国的钛资源分布及特点[J].钛工业进展, 2006(6):8-12. http://d.old.wanfangdata.com.cn/Periodical/tgyjz200606004
Wu X, Zhang J.Geographical distribution and chara-cteristics of titanium resources in China[J]. Titanium Industry Progress, 2006(6):8-12. http://d.old.wanfangdata.com.cn/Periodical/tgyjz200606004
[4] 《岩石矿物分析》编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:753-763.
The editorial committee of < Rock and mineral analysis>. Rock and mineral analysis (The fourth edition:Vol.Ⅱ)[M]. Beijing:Geological Publishing House, 2011:753-763.
[5] 刘冠龙, 许俊鸿.重铬酸钾滴定法快速测定钛铁矿中钛铁含量[J].冶金分析, 2012, 32(3):74-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201203016
Liu G L, Xu J H.Rapid determination of titaniumand iron in ilmenite by potassium dichromate titrimetry[J]. Metallurgical Analysis, 2012, 32(3):74-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201203016
[6] 刘艳花, 孙湘莉.莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J].冶金分析, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007
Liu Y H, Sun X L.Combined determination of titanium and chromium in the samples from the flotation- metallurgy process of heavy placer in Mozambique[J]. Metallurgical Analysis, 2017, 37(7):37-44. http://d.old.wanfangdata.com.cn/Periodical/yjfx201707007
[7] 许宁辉, 于红燕, 郝文婷.硫酸铁铵滴定法测定低密度铌合金中钛元素[J].材料开发与应用, 2019, 34(3):41-45. http://d.old.wanfangdata.com.cn/Periodical/clkfyyy201903007
Xu N H, Yu H Y, Hao W T.Determination of titanium in low density niobium alloy by ammonium ferric sulfate titration[J]. Development and Application of Materials, 2019, 34(3):41-45. http://d.old.wanfangdata.com.cn/Periodical/clkfyyy201903007
[8] 豆卫全, 高明, 夏培民, 等.分光光度法分步测定高纯硅铁中铝钛磷[J].冶金分析, 2019, 39(7):71-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201907011
Dou W Q, Gao M, Xia P M, et al.Determination of aluminium, titanium and phosphorus in high purity ferrosilicon by spectrophotometry[J]. Metallurgical Analysis, 2019, 39(7):71-76. http://d.old.wanfangdata.com.cn/Periodical/yjfx201907011
[9] Duchesne J C, Bologne G.XRF major and trace element determination in Fe-Ti oxide minerals[J]. Geologica Belgica, 2009, 12(3-4):205-212.
[10] 卜兆杰, 王晓旋, 黄健强, 等.粉末压片制样-X射线荧光光谱(XRF)法测定钛铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO的含量[J].中国无机分析化学, 2018, 8(1):17-20. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201801005
Bu Z J, Wang X X, Huang J Q, et al.Determination of TFe, TiO2, SiO2, Al2O3, CaO and MgO content in ilmenite by XRF with powder press method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(1):17-20. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201801005
[11] Morgan N K, Scholey D V, Burton E J.A comparison of two methods for determining titanium dioxide marker content in broiler digestibility studies[J]. Animal, 2014, 8(4):529-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3621596d44aa759af8f12071c85f14ef
[12] 沈春春.等离子体发射光谱仪测定钛铁矿中钛含量[J].化工时刊, 2016, 30(4):30-32. http://d.old.wanfangdata.com.cn/Periodical/hgsk201604013
Shen C C.The determination of titanium content in the ilmenite by ICP-AES[J]. Chemical Industry Times, 2016, 30(4):30-32. http://d.old.wanfangdata.com.cn/Periodical/hgsk201604013
[13] 赵伟, 王卿, 张会堂, 等.电感耦合等离子体发射光谱法测定钛铁矿中主、微量元素[J].山东国土资源, 2018, 34(5):107-110. http://d.old.wanfangdata.com.cn/Periodical/sddz201805014
Zhao W, Wang Q, Zhang H T, et al.Determination of main and trace elements in ilmenite by using inductively coupled plasma atomic emission spectrometry method[J]. Shandong Land and Resources, 2018, 34(5):107-110. http://d.old.wanfangdata.com.cn/Periodical/sddz201805014
[14] 巨力佩, 季伟, 张旺强.电感耦合等离子体发射光谱法测定钒钛铁矿中二氧化钛[J].分析测试技术与仪器, 2013, 19(2):88-91. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201302005
Ju L P, Ji W, Zhang W Q.Determination of TiO2 in sefstromite by inductively coupled plasma atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2013, 19(2):88-91. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201302005
[15] 陈玉秀, 闫月娥, 马小文, 等.ICP-OES测定钒钛铁精矿中钛、镁、钒、锰和铬的含量[J].广州化工, 2019, 47(16):109-111. http://d.old.wanfangdata.com.cn/Periodical/gzhg201916041
Chen Y X, Yan Y E, Ma X W, et al.Determination of titanium, magnesium, vanadium, manganese and chromium content in vanadium-titanium-iron concentrates by ICP-OES[J]. Guangzhou Chemical Industry, 2019, 47(16):109-111. http://d.old.wanfangdata.com.cn/Periodical/gzhg201916041
[16] 王延芹.电感耦合等离子体原子发射光谱法测定钛铁中Ti, Si, P, Al, Mn, Cu[J].世界有色金属, 2019(7):132, 134.
Wang Y Q.Inductively coupled plasma atomic emission spectrometry for the determination of Ti, Si, P, Al, Mn, Cu in ferrotitanium[J]. World Nonferrous Metals, 2019(7):132, 134.
[17] 郑浩.试论钒钛磁铁矿中二氧化钛的测定[J].世界有色金属, 2019(8):217-218. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201908125
Zheng H.Discussion on the determination of titanium dioxide in vanadium-titanium magnetite[J]. World Nonferrous Metals, 2019(8):217-218. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201908125
[18] 史健泽, 曲凤娇, 曹阳, 等.电感耦合等离子体发射光谱法测定铝合金中钛含量[J].有色金属加工, 2020, 49(2):63-66. http://d.old.wanfangdata.com.cn/Periodical/ysjsjg202002018
Shi J Z, Qu F J, Cao Y, et al.Determination of titanium in aluminum alloy by inductively coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Processing, 2020, 49(2):63-66. http://d.old.wanfangdata.com.cn/Periodical/ysjsjg202002018
[19] Francisco L F S, Thalita A O D, Luciana S M.Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry[J]. Talanta, 2016, 146:188-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c996feba04a311aa34c343d461b9d64a
[20] Daniel L, Laird D W, Hefter G T.Sodium peroxide fusion for reliable determination of gold in ores and metallurgical samples[J]. International Journal of Mineral Processing, 2017, 168:35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e7f9d2b1a0a75223ec22999663999aa
[21] Wei X J, Tian Z Q.Simultaneous determination of ruthenium and zinc in catalysts for hydrogenation of benzene to cyclohexene using sodium peroxide fusion sample digestion and ICP-OES[J]. Advanced Materials Research, 2014, 1004-1005:1281-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.1004-1005.1281
[22] 肖柳婧, 汤行, 吴玉华, 等.碱熔-电感耦合等离子体原子发射光谱(ICP-AES)法测定锡矿石中锡[J].中国无机分析化学, 2018, 8(5):38-40. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201805008
Xiao L J, Tang X, Wu Y H, et al.Determination of tin in tin ore by inductively coupled plasma-atomic emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5):38-40. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201805008
[23] 黄超冠, 蒙义舒, 郭焕花, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J].岩矿测试, 2018, 37(1):30-35. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065
Huang C G, Meng Y S, Guo H H, et al.Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1):30-35. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065
[24] 雷占昌, 韩斯琴图, 蒋常菊, 等.过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J].岩矿测试, 2019, 38(3):326-332. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030127
Lei Z C, Han S Q T, Jiang C J, et al.Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3):326-332. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201812030127
[25] 王小强, 夏辉, 秦九红, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J].岩矿测试, 2017, 36(1):52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.008
Wang X Q, Xia H, Qin J H, et al.Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1):52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.008
[26] 姜云军, 李星, 姜海伦, 等.四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫[J].岩矿测试, 2018, 37(2):152-158. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
Jiang Y J, Li X, Jiang H L, et al.Determination of sulfur in soil by inductively coupled plasma-optical emission spectrometry with four acids open dissolution[J]. Rock and Mineral Analysis, 2018, 37(2):152-158. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704010048
[27] 侯莎, 段玉宇, 马怡飞, 等.四酸溶解-电感耦合等离子体发射光谱法测定镍精矿中12种主次元素[J].化学分析计量, 2019, 28(3):96-99. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201903025
Hou S, Duan Y Y, Ma Y F, et al.Determination of 12 principal and secondary elements in nickel ore concentrate by four acids solution-inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(3):96-99. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201903025
[28] 仝晓红, 刘攀, 聂富强.碱熔-电感耦合等离子体原子发射光谱法测定高碳铬铁中铬[J].冶金分析, 2015, 35(9):36-41. http://d.old.wanfangdata.com.cn/Periodical/yjfx201509007
Tong X H, Liu P, Nie F Q.Determination of chromium in high-carbon ferrochrome by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(9):36-41. http://d.old.wanfangdata.com.cn/Periodical/yjfx201509007
[29] 董学林, 何海洋, 储溱, 等.碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J].岩矿测试, 2019, 38(6):620-630. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004
Dong X L, He H Y, Chu Q, et al.Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6):620-630. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901090004
[30] 赵庆令, 李清彩.电感耦合等离子体发射光谱法测定锆钛砂矿中铪钛锆[J].岩矿测试, 2013, 32(6):883-886. http://www.ykcs.ac.cn/article/id/c47cff27-d31e-48fb-a4cd-b7b8df6b5f6f
Zhao Q L, Li Q C.Determination of Hf, Ti and Zr in zirconium-titanium placer by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6):883-886. http://www.ykcs.ac.cn/article/id/c47cff27-d31e-48fb-a4cd-b7b8df6b5f6f
[31] 聂富强, 杜丽丽, 李景滨, 等.碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J].中国无机分析化学, 2015, 5(4):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201504017
Nie F Q, Du L L, Li J B, et al.Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201504017
[32] 邝安宏, 胡家明.偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定透辉石中的SiO2、CaO、MgO、Al2O3、Fe2O3[J].分析测试技术与仪器, 2018, 24(3):173-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsjsyyq201803008
Kuang A H, Hu J M.Determination of SiO2, CaO, MgO, Al2O3, Fe2O3 in diopside by inductively coupled plasma atomic emission spectrometry with lithium metaborate fusion sample pretreatment[J]. Analysis and Testing Technology and Instruments, 2018, 24(3):173-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxcsjsyyq201803008