Mineralogical Characteristics and TIMS U-Pb Dating of Tantalite-(Mn) from the Bieyesamas Rare Metal Deposit, Xinjiang
-
摘要: 钽矿是我国的紧缺资源,近年来对别也萨麻斯地区钽矿取得了找矿新进展,包括新矿点的发现以及花岗伟晶岩型稀有金属资源的找矿突破。区内伟晶岩脉广泛发育,为探究含矿脉体的成矿时代、查明区内典型铌钽矿物的矿物学特征,本文以L18号伟晶岩脉中的钽锰矿为研究对象,对其物理性质、化学成分、地质年代等进行了分析。应用电子探针测试钽锰矿的化学组成,热电离质谱法(TIMS)测定其U-Pb年龄,确定含矿脉体的形成年代。结果表明,研究区钽锰矿中Ta2O5含量为51.58%~74.80%,均值68.49%,Nb2O5含量为6.15%~27.63%;部分主量元素分布不均,未表现出规律的分带性,但矿物颗粒中心部位的CaO含量较边部低,横剖面上SiO2含量相对稳定,TiO2与WO3显示不规律波动。这种特征表明钽锰矿并非单纯由结晶分异作用形成,而是可能受到了后期交代作用的影响。钽锰矿的U-Pb年龄为160Ma,说明钽锰矿化发生于晚侏罗世早期,与围岩海西期二云母花岗岩相差甚远,后者并非L18号脉体的成矿母岩。Abstract:
BACKGROUNDTantalum is a scarce resource in China. A new breakthrough in ore prospecting was obtained on the tantalum ore in the Bieyesamasi area, Xinjiang, including new occurrences as well as the exploration of pegmatite-type rare metal resources. OBJECTIVESTo explore the mineralization age of ore-bearing veins and the mineralogical characteristics of typical columbite-tantalite minerals, tantalite-(Mn) from L18 pegmatite veins, and to evaluate one of the most distinctive minerals in this area. METHODSElectron microprobe was used to characterize mineralogy of tantalite-(Mn), and TIMS U-Pb geochronology of this mineral was used to constrain the age. RESULTSThe content of Ta2O5 in tantalite-(Mn) from L18 pegmatite veins ranged from 51.58% to 74.80%, with an average of 68.49%, while Nb2O5 contents varied from 6.15% to 27.63%. Some of the major elements were unevenly distributed and did not show regular banding, with the CaO content in the center of a mineral particle lower than at the edge, and the SiO2 content relatively stable in the cross section. TiO2 and WO3 showed irregular fluctuations. This feature indicated that the tantalite-(Mn) was not formed solely by crystal differentiation, but may be affected by later metasomatism. CONCLUSIONSTIMS U-Pb dating of tantalite-(Mn) yields an age of 160Ma, indicating that the mineralization of L18 pegmatite was formed in the early period of Late Jurassic, different from the surrounding Hercynian granite. It is inferred that Hercynian granite is not the source of L18 pegmatite vein. -
Key words:
- tantalite-(Mn) /
- Bieyesamasi deposit /
- rare metals /
- pegmatite vein /
- TIMS U-Pb dating /
- columbite-tantalite ore
-
-
图 1 (a) 新疆北阿尔泰区域地质简图(据文献[23]); (b)别也萨麻斯矿区地质简图
Figure 1.
表 1 电子探针工作条件
Table 1. Working conditions of electron microprobe
元素 晶体 线系 计数时间(s) 矿物标样 检测限(μg/g) 峰 背景 Na TAP Kα 10 5 硬玉 71~87 Mg TAP Kα 10 5 镁橄榄石 65~74 Al TAP Kα 10 5 硬玉 77~81 K PETJ Kα 10 5 钾长石 48~53 Ca PETJ Kα 10 5 硅灰石 64~77 Si PETJ Kα 10 5 硬玉 83~96 Fe LIF Kα 10 5 赤铁矿 87~99 Ti LIF Kα 10 5 金红石 236~244 P PETJ Kα 10 5 磷灰石 84~93 Cr LIFH Kα 10 5 三氧化二铬 112~137 Mn LIFH Kα 10 5 氧化锰 104~113 Ni LIF Kα 10 5 氧化镍 136~154 Nb PETJ Lα 10 5 铌酸钾 150~170 Ta PETJ Mα 10 5 钽酸锂 190~210 表 2 别也萨麻斯矿区钽锰矿的电子探针分析结果
Table 2. Electron microprobe analyses of tantalite-(Mn) from Bieyesamasi orefield
测点 含量(%) SiO2 Al2O3 Ta2O5 Nb2O5 CaO FeO MnO WO3 ZrO2 ThO2 UO2 V2O3 TiO2 合计 BY-1-1 0.35 - 60.85 19.77 0.006 1.50 13.69 3.68 0.044 0.049 - - 0.063 100.00 BY-1-2 0.36 - 60.02 19.39 - 1.32 15.11 3.88 - 0 0.075 - 0.156 100.31 BY-1-3 0.48 0.003 73.43 6.71 - 1.12 13.49 4.34 0.019 0.057 - 0.005 0.072 99.72 BY-1-4 0.41 0.020 72.09 7.52 0.033 1.09 14.05 4.46 0.117 - 0.017 - 0.062 99.86 BY-2-1 0.49 - 72.19 6.79 0.015 1.29 14.26 4.21 - 0.018 - 0.015 0.123 99.40 BY-2-2 0.45 0.011 70.19 9.20 0.003 1.33 14.24 5.38 0.014 0.043 0.007 0.002 0.090 100.95 BY-2-3 0.46 0.020 69.99 10.11 0.039 1.13 14.03 4.43 0.085 - 0.010 - 0.090 100.39 BY-2-4 1.14 - 69.82 9.56 0.003 1.10 14.44 4.38 0.081 - 0.028 - 0.095 100.64 BY-2-5 0.40 - 74.61 7.85 0.017 0.96 12.48 2.54 0.021 0.012 - - 0.175 99.06 BY-3-1 0.22 0.016 59.12 26.99 0.003 1.10 10.52 2.30 - - - - 0.098 100.37 BY-3-2 0.34 0.003 53.25 26.12 0.012 2.08 15.00 3.49 - 0.022 0.003 - 0.037 100.36 BY-3-3 0.42 - 73.00 10.86 0.040 0.96 11.50 2.85 - - - 0.006 0.079 99.71 BY-3-4 0.49 - 72.26 7.88 - 1.17 13.95 4.30 0.083 - 0.001 0.005 0.036 100.18 BY-3-5 0.50 - 73.10 7.35 0.023 1.09 14.20 2.50 0.007 - - 0.023 0.103 98.89 BY-3-6 0.35 0.008 52.76 26.61 0.022 1.78 15.46 3.23 - - 0.015 - 0.058 100.28 BY-3-7 0.46 - 74.65 6.15 0.047 1.23 14.30 2.62 0.064 - 0.026 0.006 0.069 99.61 BY-3-8 0.36 - 52.69 26.60 0.034 1.69 15.54 3.53 0.002 0.018 0.009 - 0.010 100.48 BY-3-9 0.46 0.014 73.50 6.31 - 1.13 13.99 4.16 0.026 - 0.023 0.031 0.097 99.75 BY-3-10 0.42 - 73.68 7.56 0.031 0.96 13.04 4.11 0.026 - - 0.066 0.049 99.94 BY-3-11 0.43 0.016 74.12 6.76 0.005 1.10 14.39 2.38 0.002 - 0.009 - 0.125 99.34 BY-3-12 0.45 - 72.75 9.01 0.042 1.14 14.22 2.19 0.064 0.001 0.024 0.011 0.100 100.01 BY-4-1 0.42 0.006 72.50 6.81 0.007 1.17 14.15 4.58 0.105 - 0.019 0.002 0.064 99.82 BY-4-2 0.37 - 63.48 16.88 - 4.11 11.86 2.19 - 0.002 - - 0.176 99.06 BY-4-3 0.31 - 51.58 27.07 - 1.48 15.50 3.26 - 0.023 0.006 0.003 0.126 99.35 BY-4-4 0.45 0.010 73.04 7.50 - 1.13 14.57 2.57 0.028 0.037 - 0.014 0.102 99.45 BY-4-5 0.37 - 63.67 16.81 - 4.85 11.88 1.89 - - 0.017 0.009 0.189 99.68 BY-4-6 0.44 0.006 73.13 8.34 0.026 1.24 14.25 2.09 0.033 0.005 - 0.037 0.023 99.62 BY-4-7 0.44 0.017 69.90 9.38 - 1.11 14.58 4.51 0.069 0.011 0.025 0.028 0.087 100.17 BY-4-8 0.40 0.012 57.70 23.94 0.001 1.85 14.75 1.69 - 0.020 - 0.014 0.029 100.40 BY-5-1 0.42 - 71.60 8.51 0.001 1.13 13.82 4.45 0.137 0.029 0.048 - 0.010 100.15 BY-5-2 0.290 - 73.32 17.19 0.015 0.42 6.38 1.96 0.021 0.020 - - 0.023 99.64 BY-5-3 0.44 0.007 71.12 7.44 0.027 1.19 14.42 5.41 0.164 - - - 0.095 100.32 BY-5-4 0.46 0.008 74.04 6.53 - 1.08 14.27 3.42 0.045 - 0.023 - 0.061 99.94 BY-5-5 0.32 0.009 74.80 8.08 0.006 1.04 11.72 3.42 0.002 0.015 - 0.050 0.135 99.59 BY-6-1 0.39 - 73.60 22.90 - 0.04 0.42 2.37 - 0.011 - - 0.064 99.80 BY-6-2 0.43 - 71.94 10.69 0.042 1.16 13.15 2.06 0.057 - 0.024 - 0.061 99.61 BY-6-3 0.20 - 70.12 25.45 0.013 0.08 1.30 2.42 0.043 0.030 - 0.02 0.020 99.68 BY-6-4 0.30 0.012 53.04 27.63 0.028 1.79 14.57 1.37 0.029 - 0.017 - 0.123 98.91 BY-7-1 0.44 0.010 71.15 9.24 0.024 1.14 13.20 4.26 0.116 - - 0.028 0.061 99.66 BY-7-2 0.44 0.025 72.91 8.75 - 0.98 13.37 2.46 0.133 - - - 0.074 99.14 BY-7-3 0.45 0.002 72.02 8.55 - 1.04 13.57 4.08 0.107 0.054 - - 0.094 99.98 BY-7-4 0.38 0.031 73.73 12.70 0.014 0.78 9.71 1.76 - - 0.009 - - 99.12 注:所有测点位于同一矿物,测点对应位置参见图 2;“-”表示未检出。 表 3 别也萨麻斯矿区钽锰矿TIMS U-Pb分析结果
Table 3. TIMS U-Pb dating data of tantalite-(Mn) from Bieyesamasi orefield
参数 测号H-N-1 测号H-N-2 U(mg/g) 13.112 11.845 Pb(mg/g) 3.192 5.421 206Pb/204Pb 25.34 22.02 误差(%) 0.087 0.004 207Pb/235U 0.1701 0.1715 误差(%) 7.34 11.40 206Pb/238U 0.0251 0.0252 误差(%) 0.431 0.61 207Pb/206Pb 0.0490 0.0494 误差(%) 6.98 10.90 206Pb/238U年 160.1 160.2 1σ 0.7 1.0 207Pb/235U年 159.5 160.7 1σ 11.7 18.3 207Pb/206Pb年 150.2 168.2 1σ 10.5 18.3 -
[1] 王贤觉, 邹天人, 徐建国, 等.阿尔泰伟晶岩矿物学研究[M].北京:科学出版社, 1981:1-140.
Wang X J, Zou T R, Xu J G, et al.Mineralogy of pegmatite in Altay[M].Beijing:Science Press, 1981:1-140.
[2] 王贤觉, 牛贺才, 郭国章.阿尔泰三号伟晶岩脉岩浆演化过程中铌、钽示踪的研究[J].地球化学, 1998, 27(1):1-11.
Wang X J, Niu H C, Guo G Z.The tracking study of Nb and Ta in magmatic evolutionary process for pegmatite vein No.3, Altay, China[J].Geochimica, 1998, 27(1):1-11.
[3] 陈毓川, 叶庆同, 王京彬, 等.中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价[M].北京:地质出版社, 2003:1-401.
Chen Y C, Ye Q T, Wang J B, et al.The mineral deposits, metallogeny, technical and economic evaluation in Altay metallogenic belt, Xinjiang, China[M].Beijing:Geological Publishing House, 2003:1-401.
[4] 张爱铖, 王汝成, 胡欢.新疆阿尔泰可可托海3号伟晶岩脉重钽铁矿研究[J].高校地质学报, 2003, 9(2):268-272. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200302011.htm
Zhang A C, Wang R C, Hu H.Tapiolite from the Koktokay No.3 rare metal granitic pegmatite dyke, Altai, Xinjiang Autonomous Region[J].Geological Journal of China Universities, 2003, 9(2):268-272. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200302011.htm
[5] 夏建明, 陈邦建.苏州富铌钽花岗岩的物质组成及钽的赋存状态研究[J].江苏地质, 1999, 23(4):236-240. http://www.cnki.com.cn/Article/CJFDTotal-JSDZ199904010.htm
Xia J M, Chen B J.Material composition of niobium and tantalum-rich granite and study of tantalum's occurrence state in Suzhou of Jiangsu Province[J].Geology of Jiangsu, 1999, 23(4):236-240. http://www.cnki.com.cn/Article/CJFDTotal-JSDZ199904010.htm
[6] 王汝成, Monchoux P, Fontan F.法国中央高原Beauvoir花岗岩中铌钽矿的带状构造:类型、化学成分和形成条件[J].矿物学报, 1991, 11(3):225-233. https://www.ixueshu.com/document/66a4b6e64603bc36c2c01ddab3e802d7318947a18e7f9386.html
Wang R C, Monchoux P, Fontan F.Zoning in columbite crystals from the Beauvoir granite, massif central, France:Types, composition and constraints on their formation[J].Acta Mineralogica Sinica, 1991, 11(3):225-233. https://www.ixueshu.com/document/66a4b6e64603bc36c2c01ddab3e802d7318947a18e7f9386.html
[7] Cerny P, Chapman R, Ferreira K, et al.Geochemistry of oxide minerals of Nb, Ta, Sn, and Sb in the Varutrask granitic pegmatite, Sweden:The case of an "anomalous" columbite-tantalite trend[J].American Mineralogist, 2004, 89:505-518. doi: 10.2138/am-2004-0405
[8] Llorens T, Moro M C.Microlite and tantalite in the LCT granitic pegmatites of LA Canalita, Navasfrías Sn-W district, Salamanca, Spain[J].The Canadian Mineralogist, 2010, 48:375-390. doi: 10.3749/canmin.48.2.375
[9] Chudík P, Uher P, Gadas P, et al.Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia:Ta to Nb and Fe to Mn evolutionary trends in a narrow Be, Cs-rich and Li, B-poor dike[J].Mineralogy and Petrology, 2011, 102:15-27. doi: 10.1007/s00710-011-0163-9
[10] 刘源俊, 黎家祥, 胡蓉.铌钽地质及普查勘探[M].北京:地质出版社, 1979:1-191.
Liu Y J, Li J X, Hu R.Geology and general exploration of niobium-tantalum[M].Beijing:Geological Publishing House, 1979:1-191.
[11] 王文瑛, 杨岳清, 陈成湖, 等.福建南平花岗伟晶岩中的铌钽矿物学研究[J].福建地质, 1999, 20(3):113-134. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199903000.htm
Wang W Y, Yang Y Q, Chen C H, et al.Study on the Nb and Ta-minerals from the granitic pegmatites in Nanping, Fujian Province[J].Geology of Fujian, 1999, 20(3):113-134. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ199903000.htm
[12] Badanina E V, Sitnikova M A, Gordienko V V, et al.Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia)[J].Ore Geology Review, 2015, 64:720-735. doi: 10.1016/j.oregeorev.2014.05.009
[13] Shao T, Jiang K, Liu Y, et al.Geochemistry and a metal-logenic model for Nb-Ta-bearing granitic pegmatites from the Northern Qaidam Basin[J].Geological Journal, 2018, 53(Supplement 1):113-123.
[14] Che X D, Wang R C, Wu F Y, et al.Episodic Nb-Ta mineralisation in South China:Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J].Ore Geology Review, 2019, 105:71-85. doi: 10.1016/j.oregeorev.2018.11.023
[15] Zhou Q F, Qin K Z, Tang D M, et al.LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China[J].Geological Magazine, 2018, 155(3):707-728. doi: 10.1017/S0016756816001096
[16] Yan Q H, Qiu Z W, Wang H, et al.Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China):Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J].Ore Geology Reviews, 2018, 100:561-573. doi: 10.1016/j.oregeorev.2016.11.010
[17] Singh Y, Sastry D V L N, Bagora S, et al.Dating of columbite-tantalite and monazite from pegmatites of the Kawadgaon-Challanpara area, Bastar Craton, Central India[J].Journal of the Geological Society of India, 2018, 92(1):7-10. doi: 10.1007/s12594-018-0946-2
[18] Zhang R Q, Lu J J, Lehmann B, et al.Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China[J].Ore Geology Reviews, 2017, 82:268-284. doi: 10.1016/j.oregeorev.2016.10.039
[19] 王倩, 侯克军, 邹天人.适合于稀有金属矿床的同位素定年方法及其应用[J].地质学报, 2019, 93(6):1523-1532. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2019202&flag=1
Wang Q, Hou K J, Zou T R.Isotopic dating method suitable for rare-metal deposits and its application[J].Acta Geologica Sinica, 2019, 93(6):1523-1532. http://www.geojournals.cn/dzxbe/ch/reader/view_abstract.aspx?file_no=2019202&flag=1
[20] 杨富全, 张忠利, 王蕊, 等.新疆阿尔泰稀有金属矿地质特征及成矿作用[J].大地构造与成矿学, 2018, 42(6):1010-1026. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201806007.htm
Yang F Q, Zhang Z L, Wang R, et al.Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang[J].Geotectonica et Metallogenia, 2018, 42(6):1010-1026. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201806007.htm
[21] 王瑞江, 王登红, 李建康, 等.稀有稀土稀散矿产资源及其开发利用[M].北京:地质出版社, 2015:1-425.
Wang R J, Wang D H, Li J K, et al.The development and utilization of rare metals, rare earth scattered mineral resources[M].Beijing:Geological Publishing House, 2015:1-425.
[22] 王登红, 王瑞江, 李建康, 等.中国三稀矿产资源战略调查研究进展综述[J].中国地质, 2013, 40(2):361-371. http://qikan.cqvip.com/Qikan/Article/Detail?id=45861643
Wang D H, Wang R J, Li K J, et al.The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J].Geology in China, 2013, 40(2):361-371. http://qikan.cqvip.com/Qikan/Article/Detail?id=45861643
[23] 丁建刚, 杨成栋, 杨富全, 等.新疆阿尔泰别也萨麻斯稀有金属矿床含矿伟晶岩与花岗岩围岩成因关系[J].地球科学院与环境学报, 2020, 42(1):71-85. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX20191212000.htm
Ding J G, Yang C D, Yang F Q, et al.Genetic relationship between ore-forming pegmatite and the surrounding granite of Bieyesamasi rare metal deposit in Altay of Xinjiang, China[J].Journal of Earth Sciences and Environment, 2020, 42(1):71-85. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX20191212000.htm
[24] 沈曹军.新疆富蕴县别也萨麻斯一带稀有金属矿地质特征[J].新疆有色金属, 2018(6):15-16. http://www.cnki.com.cn/Article/CJFDTotal-XJYS201806005.htm
Shen C J.Geological characteristics of rare metal deposits in Bieyesamasi area, Fuyun County, Xinjiang[J].Xinjiang Nonferrous Metal, 2018(6):15-16. http://www.cnki.com.cn/Article/CJFDTotal-XJYS201806005.htm
[25] Ludwig K R.PBDAT for MS-DOS.A computer program for IBM PC compatibles for processing raw Pb-U-Th isotope data, version 1.24[R].US Geological Survey, 1995.
[26] Ludwig K R.Isoplot-aplotting and regression program for radiogenic-isotope data, version 2.95[R].US Geological Survey, 1997.
[27] Stacey J S, Kramers J D.Approximation of terrestrial lead isotope evolution by a two-stage model[J].Earth and Planetary Science Letters, 1975, 26:207-221. doi: 10.1016/0012-821X(75)90088-6
[28] 周红英, 李惠民.金红石U-Pb同位素稀释法定年技术的改进[J].岩石矿物学杂志, 2008, 27(1):77-80. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200801014.htm
Zhou H Y, Li H M.The improvement of the rutile isotope dilution U-Pb dating methodology[J].Acta Petrologica et Mineralogica, 2008, 27(1):77-80. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200801014.htm
[29] Tadesse S, Zerihun D.Composition, fractionation trend and zoning accretion of the columbite-tantalite group of minerals in the Kenticha rare-metal field (Adola, southern Ethiopia)[J].Journal of African Earth Sciences, 1996, 23(3):411-431. http://cn.bing.com/academic/profile?id=b204dc587dbd0966edcef5e44a7c9d58&encoded=0&v=paper_preview&mkt=zh-cn
[30] Tindle A G, Breaks F W.Columbite-tantalite mineral chemistry from rare-element granitic pegmatites:Separation Lake area, N.W.Ontario, Canada[J].Mineralogy and Petrology, 2000, 70:165-198. doi: 10.1007/s007100070002
[31] 杨富全, 毛景文, 闫升好, 等.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J].地质学报, 2008, 82(4):485-499. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200804006.htm
Yang F Q, Mao J W, Yan S H, et al.Geochronology, geochemistry and geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang[J].Acta Geologica Sinica, 2008, 82(4):485-499. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200804006.htm
[32] 王登红, 陈毓川.新疆阿尔泰阿祖拜稀有金属-宝石矿床的成矿时代:燕山期稀有金属[J].地质论评, 2000, 46(3):307-311. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003014.htm
Wang D H, Chen Y C.40Ar/39Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang-New evidence for Yanshanian[J].Geological Review, 2000, 46(3):307-311. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003014.htm
[33] 王登红, 陈毓川, 徐志刚.阿尔泰加里东期变质成因伟晶岩型白云母矿床的成矿年代证据及其意义[J].地质学报, 2001, 75(3):419-425. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200103025.htm
Wang D H, Chen Y C, Xu Z G.Chronological study of Caledonian metamorphic pegmatite muscovite deposits in the Altay Mountains, northwestern China, and its significance[J].Acta Geologica Sinica, 2001, 75(3):419-425. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200103025.htm
[34] 王登红, 陈毓川, 徐志刚.阿尔泰造山带岩石和矿石的氩同位素研究[J].长春科技大学学报, 2001, 31(2):110-115. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ200102001.htm
Wang D H, Chen Y C, Xu Z G.Argon isotopic study of rock and ore from the Altay orogenic belt[J].Journal of Changchun University of Science and Technology, 2001, 31(2):110-115. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ200102001.htm
-