Detection of Heavy Metals Mobile Fraction in Lagoonal Wetland Sediment Using Near-Infrared Spectroscopy and Ecological Risk Assessment
-
摘要: 沉积物中的重金属元素经自然作用下可以活动态进行迁移,具有潜在生物可利用性及潜在的区域生态风险。利用近红外光谱(NIRS)技术开展不同基体类型样品响应机理研究,可为评估重金属活动态提供无损、快速的分析方法,为生态风险研究提供依据。天津七里海泻湖湿地沉积物具有低有机质-高黏土含量的特征,本文基于近红外光谱分析技术,建立了沉积物中Co、Ni、Cu、Zn、Cd、Pb重金属活动态组分含量近红外光谱-偏最小二乘回归预测模型。实验结果表明:样品在7290~6390cm-1和4683~4000cm-1波段存在的双羟基O-H伸缩振动、AlAl-OH及Al(Mg)-OH弯曲振动特征吸收,间接指示了重金属元素活动态含量。光谱预测结果显示,近百年来七里海沉积物中Co、Ni、Cu、Zn、Cd、Pb活动态组分的变化特征对应了当地1934-1948年、1956-1963年、1976年至今三次较明显的升温过程,也对应了1980年七里海水库建设等大型人为扰动。本研究样品中Co、Ni、Cu、Zn、Cd、Pb总量及活动态均低于国家标准中规定的生态风险阈值,七里海内村镇及周边农田来自湿地释放的重金属生态风险极低。Abstract:
BACKGROUNDHeavy metal elements in sediment can migrate in an active state under natural action, which has potential bioavailability and potential regional ecological risks. The use of near-infrared spectroscopy (NIRS) technology to study the response mechanism of samples of different matrices can provide a non-destructive and rapid analysis method for evaluating the active state of heavy metals and provide a basis for ecological risk research. OBJECTIVESTo reveal the characteristics of active metal elements in lagoonal wetland sediment and evaluate their ecological risk. METHODSSediment core and soil samples near by the drilling site were analyzed using both spectral and chemical method. NIR spectra of dry-freezed sample were collected by infrared spectrometer with integrating sphere. Based on the near infrared spectroscopy analysis technique, near infrared spectrum were collected by the integrating device within range of 4000-10000cm-1 (1000-2500nm), at the resolution of 2cm-1. Meanwhile the chemical mobile fractions of heavy metal elements were extracted from soil and sediment samples by diluted nitric acid, the dissolved concentrations of Co, Ni, Cu, Zn, Cd, Pb were determined by inductively coupled plasma-mass spectrometry (ICP-MS). With both chemical and spectral predicted value, the partial least squares regression prediction model had been developed and applied to determine mobile fraction of Co, Ni, Cu, Zn, Cd and Pb. RESULTSArea of absorption peaks at 7290-6390cm-1 and 4683-4000cm-1 related to O-H strentching along with AlAl-OH and Al(Mg)-OH bending indirectly indicate the active content of heavy metals. Spectral prediction results show that the changes in the active components of Co, Ni, Cu, Zn, Cd and Pb in the sediments of the Qilihai in the past 100 years corresponded to the three obvious changes from 1934 to 1948, 1956 to 1963, and 1976 to the present. The temperature increase also corresponded to large-scale human disturbances such as the construction of the Qilihai Reservoir in 1980. CONCLUSIONSThe total and mobile fractions of Co, Ni, Cu, Zn, Cd and Pb in Qilihai sediments were lower than the ecological risk threshold specified in the national standard. The ecological risk of heavy metals released from wetlands towards nearby villages and farmland in the Qilihai catchment area was extremely low. -
-
表 1 校正模型各组分拟合结果
Table 1. Fitting results of each component in correction model
组分 样品数量 最低值(μg/g) 最高值(μg/g) 平均值(μg/g) 相关系数Rc2 校正误差(μg/g) 总量Co 86 11.98 17.48 15.36 0.72 1.21 活动态Co 86 4.01 7.55 5.52 0.98 0.01 总量Ni 86 31.17 52.93 41.48 0.69 3.46 活动态Ni 86 8.31 15.80 11.96 0.98 0.27 总量Cu 86 26.13 59.48 40.32 0.71 4.02 活动态Cu 86 14.76 29.49 22.20 0.98 0.52 总量Zn 86 109.66 185.70 151.12 0.64 14.86 活动态Zn 86 27.23 63.89 42.11 0.98 0.59 总量Cd 86 0.26 0.58 0.40 0.80 0.11 活动态Cd 86 0.08 0.27 0.17 0.98 0.01 总量Pb 86 21.41 31.63 26.10 0.72 1.80 活动态Pb 86 11.30 21.91 16.75 0.99 0.16 表 2 七里海样品中重金属活动态含量与国家标准中最低筛选值对比
Table 2. Comparison of heavy metals mobile fraction concentration in Qilihai samples and their minimum filter values in national standard
重金属 最低值(μg/g) 最高值(μg/g) 平均值(μg/g) 标准中规定的最低筛选值(μg/g) 总量Co 11.98 17.48 15.36 20 活动态Co 4.01 7.55 5.52 总量Ni 31.17 52.93 41.48 150 活动态Ni 8.31 15.80 11.96 总量Cu 26.13 59.48 40.32 100 活动态Cu 14.76 29.49 22.20 总量Zn 109.66 185.70 151.12 300 活动态Zn 27.23 63.89 42.11 总量Cd 0.26 0.58 0.40 0.8 活动态Cd 0.08 0.27 0.17 总量Pb 21.41 31.63 26.10 170 活动态Pb 11.30 21.91 16.75 -
[1] Zhan H, Jiang Y, Yuan J, et al.Trace metal pollution in soil and wild plants from lead-zinc smelting areas in Huixian County, Northwest China[J].Journal of Geochemical Exploration, 2014.147:182-188. doi: 10.1016/j.gexplo.2014.10.007
[2] Yıldırım G, Tokalıoǧlu Ş. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis[J].Ecotoxicology and Environmental Safety, 2016, 124:369-376. doi: 10.1016/j.ecoenv.2015.11.006
[3] Sungur A, Soylak M, Yilmaz E, et al.Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure:The relationship between soil properties and heavy metal fractions[J].Soil and Sediment Contamination:An International Journal, 2015, 24(1):1-15. doi: 10.1080/15320383.2014.907238
[4] Nolan A L, Baltpurvins K A, Hamilton I C, et al.Chemostat-controlled selective leaches of model soil phases-The hydrous manganese and iron oxides.Part 2:Re-adsorption studies[J].Geochemistry-Exploration Environment Analysis, 2003, 3(4):313-320. doi: 10.1144/1467-7873/03-015
[5] la Colla N S, Domini C E, Marcovecchio J E, et al.Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater-A review[J].Journal of Environmental Management, 2015, 151:44-55. doi: 10.1016/j.jenvman.2014.11.030
[6] Concas S, Ardau C, di Bonito M, et al.Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy)[J].Journal of Geochemical Exploration, 2015, 158:82-94. doi: 10.1016/j.gexplo.2015.07.006
[7] 王畅, 郭鹏然, 陈杭亭, 等.土壤和沉积物中重金属生物可利用性的评估[J].岩矿测试, 2009, 28(2):108-112. http://www.ykcs.ac.cn/article/id/ykcs_20090204
Wang C, Guo P R, Chen H T, et al.Evaluation of bioavailability of heavy metals in soils and sediments[J].Rock and Mineral Analysis, 2009, 28(2):108-112. http://www.ykcs.ac.cn/article/id/ykcs_20090204
[8] Zhang W, Ming Q, Shi Z, et al.Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China[J].PLoS One, 2014, 9(7):e102167 doi: 10.1371/journal.pone.0102167
[9] Serrano O, Mateo M, Dueñas-Bohórquez A, et al.The Posidonia oceanica marine sedimentary record:A Holocene archive of heavy metal pollution[J].Science of the Total Environment, 2011, 409(22):4831-4840. doi: 10.1016/j.scitotenv.2011.08.001
[10] Moldenhauer K, Zielhofer C, Faust D, et al.Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia[J].Quaternary International, 2008, 189(1):129-134. doi: 10.1016/j.quaint.2007.09.006
[11] 王亚平, 鲍征宇.恬矿库周围土壤中重金属存在形态特征研究[J].岩矿测试, 2000, 19(1):7-13. http://www.ykcs.ac.cn/article/id/ykcs_20090204
Wang Y P, Bao Z Y.Study on characteristics of heavy metal species in the soils near the tailings[J].Rock and Mineral Analysis, 2000, 19(1):7-13. http://www.ykcs.ac.cn/article/id/ykcs_20090204
[12] 王晓春, 路国慧, 刘晓端, 等.沈阳细河沿岸土壤中重金属垂直分布特征与形态分析[J].岩矿测试, 2010, 29(2):97-103. http://www.ykcs.ac.cn/article/id/ykcs_20100202
Wang X C, Lu G H, Liu X D, et al.Vertical distribution characteristics and speciation analysis of heavy metals in top-soils around Xihe River of Shenyang[J].Rock and Mineral Analysis, 2010, 29(2):97-103. http://www.ykcs.ac.cn/article/id/ykcs_20100202
[13] 卢少勇, 焦伟, 金相灿, 等.滇池内湖滨带沉积物中重金属形态分析[J].中国环境科学, 2010, 30(4):487-492. http://www.cnki.com.cn/Article/CJFDTotal-ZGHJ201004014.htm
Lu S Y, Jiao W, Jin X C, et al.Speciation of heavy metals in sediments from inner lakeside belt of Lake Dianchi[J].China Environmental Science, 2010, 30(4):487-492. http://www.cnki.com.cn/Article/CJFDTotal-ZGHJ201004014.htm
[14] 张婷, 刘爽, 宋玉梅, 等.柘林湾海水养殖区底泥中重金属生物有效性及生态风险评价[J].环境科学学报, 2019, 39(3):60-69. http://www.cnki.com.cn/Article/CJFDTotal-HJXX201903008.htm
Zhang T, Liu S, Song Y M, et al.Bioavailability and ecological risk assessment of heavy metals in sediments of marine aquaculture in Zhelin Bay[J].Acta Scientiae Circumstantiae, 2019, 39(3):60-69. http://www.cnki.com.cn/Article/CJFDTotal-HJXX201903008.htm
[15] 孙丽娜, 李玉双, 李昕馨, 等.根际环境锌镉镍的形态变化与植物有效性[J].岩矿测试, 2007, 26(4):257-263. http://www.ykcs.ac.cn/article/id/ykcs_20070489
Sun L N, Li Y S, Li X X, et al.Speciation variation and zinc, cadmium, nickel phyto-availability of in rhizosphere soils[J].Rock and Mineral Analysis, 2007, 26(4):257-263. http://www.ykcs.ac.cn/article/id/ykcs_20070489
[16] Dalal R, Henry R.Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J].Soil Science Society of America Journal, 1986, 50(1):120-123. doi: 10.2136/sssaj1986.03615995005000010023x
[17] Grzegorz S, Mccarty G W, Stuczynski T I, et al.Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J]. Journal of Environmental Quality, 2004, 33(6):2056-2069. doi: 10.2134/jeq2004.2056
[18] Malley D, Williams P.Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J].Environmental Science & Technology, 1997, 31(12):3461-3467. http://cn.bing.com/academic/profile?id=3ead034c75819899edfb9d5c30a6d21d&encoded=0&v=paper_preview&mkt=zh-cn
[19] Malley D F.Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency[J].Water Science and Technology, 1998, 37(6-7):181-188. doi: 10.2166/wst.1998.0751
[20] Moros J, Barciela-Alonso M C, Pazos-Capeáns P, et al.Characterization of estuarine sediments by near infrared diffuse reflectance spectroscopy[J].Analytica Chimica Acta, 2008, 624(1):113-127. doi: 10.1016/j.aca.2008.06.030
[21] Ibrahim M, Hameed A J, Jalbout A.Molecular spectroscopic study of River Nile sediment in the greater Cairo region[J].Applied Spectroscopy, 2008, 62(3):306-311. doi: 10.1366/000370208783759795
[22] 李淑敏, 李红, 孙丹峰, 等.利用光谱技术分析北京地区农业土壤重金属光谱特征[J].土壤通报, 2011(3):224-229. http://www.cnki.com.cn/Article/CJFDTotal-TRTB201103043.htm
Li S M, Li H, Sun D F, et al.Characteristic and diagnostic bands of heavy metals in Beijing agricultural soils based on spectroscopy[J].Chinese Journal of Soil Science, 2011(3):224-229. http://www.cnki.com.cn/Article/CJFDTotal-TRTB201103043.htm
[23] 王哲, 聂亚光, 陈倩倩, 等.基于近红外光谱快速分析东南极湖泊沉积物化学元素含量[J].极地研究, 2016, 28(3):317-323. http://www.cnki.com.cn/Article/CJFDTotal-JDYZ201603002.htm
Wang Z, Nie Y G, Chen Q Q, et al.Rapid analysis on contents of chemical elements in pond sediments from East Antarctica using near-infrared spectroscopy[J]. Chinese Journal of Polar Research, 2016, 28(3):317-323. http://www.cnki.com.cn/Article/CJFDTotal-JDYZ201603002.htm
[24] 王冬, 马智宏, 王纪华, 等.土壤金属元素近红外光谱定量校正模型适应性初步研究[J].光谱学与光谱分析, 2017, 37(4):1086-1089. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704020.htm
Wang D, Ma Z H, Wang J H, et al.Preliminary research on the adaptability of NIR quantitative calibration models for metal elements in soil[J].Spectroscopy and Spectral Analysis, 2017, 37(4):1086-1089. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704020.htm
[25] Xia X Q, Chen J, Ma H R, et al.Assessment of cadmium contamination in the sediments of Changjiang (Yangtze) River by reflectance spectroscopy[J]. Chinese Journal of Geochemistry, 2006, 25(Supplement):226. http://cn.bing.com/academic/profile?id=023c24d38acdc1018b8f6ba8de1ec763&encoded=0&v=paper_preview&mkt=zh-cn
[26] Xia X Q, Mao Y Q, Ji J F, et al.Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang River, China[J].Environmental Science & Technology, 2007, 41(10):3449-3454. http://cn.bing.com/academic/profile?id=157017664e420a7e4d906fd6848f4d97&encoded=0&v=paper_preview&mkt=zh-cn
[27] 吕宪国, 王起超, 刘吉平.湿地生态环境影响评价初步探讨[J].生态学杂志, 2004, 23(1):83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200401017.htm
Lü X G, Wang Q C, Liu J P.Primary study on impact assessment of wetland ecological environment[J].Chinese Journal of Ecology, 2004, 23(1):83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200401017.htm
[28] Job T, Penny D, Hua Q.Metal enrichment in estuarine sediments proximal to acid sulfate soils as a novel palaeodrought proxy[J].Science of the Total Environment, 2018, 612:247-256. doi: 10.1016/j.scitotenv.2017.08.157
[29] Ghosh D, Routh J, Bhadury P.Sub-surface biogeochemical characteristics and its effect on arsenic cycling in the holocene gray sand aquifers of the Lower Bengal Basin[J].Frontiers in Environmental Science, 2017, 5:82. doi: 10.3389/fenvs.2017.00082
[30] 王苏民, 窦鸿身.中国湖泊志[M].北京:科学出版社, 1998.
Wang S M, Dou H S.Records of lakes in China[M].Beijing:Science Press, 1998.
[31] Kooistra L, Wehrens R, Leuven R, et al.Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river flood plains[J].Analytica Chimica Acta, 2001, 446(1-2):97-105. doi: 10.1016/S0003-2670(01)01265-X
[32] Groenenberg J E, Römkens P F, Zomeren A V, et al.Evaluation of the single dilute (0.43M) nitric acid extraction to determine geochemically reactive elements in soil[J].Environmental Science & Technology, 2017, 51(4):2246-2253. https://pubmed.ncbi.nlm.nih.gov/28164700/
[33] Stenberg B, Rossel R A V, Mouazen A M, et al.Visible and near infrared spectroscopy in soil science in advances in agronomy[M].Elsevier, 2010:163-215.
[34] Awiti A O, Walsh M G, Shepherd K D, et al.Soil condition classification using infrared spectroscopy:A proposition for assessment of soil condition along a tropical forest-cropland chronosequence[J].Geoderma, 2008, 143(1-2):73-84. doi: 10.1016/j.geoderma.2007.08.021
[35] Chang C W, Laird D A, Mausbach M J, et al.Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J].Soil Science Society of America Journal, 2001, 65(2):480-490. doi: 10.2136/sssaj2001.652480x
[36] Luce M S, Ziadi N, Gagnon B, et al.Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils[J].Geoderma, 2017, 288:23-36. doi: 10.1016/j.geoderma.2016.10.037
[37] Moros J, Cassella R J, Barciela-Alonso M C, et al.Estuarine sediment quality assessment by Fourier-transform infrared spectroscopy[J].Vibrational Spectroscopy, 2010, 53(2):204-213. doi: 10.1016/j.vibspec.2010.03.001
[38] Hawkins D M.The problem of overfitting[J].Journal of Chemical Information and Computer Sciences, 2004, 44(1):1-12. http://cn.bing.com/academic/profile?id=cd2d5e733bba2f60b46fa186dac6d9d5&encoded=0&v=paper_preview&mkt=zh-cn
[39] Gowen A, Downey G, Esquerre C, et al.Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients[J].Journal of Chemometrics, 2011, 25(7):375-381. doi: 10.1002/cem.1349
[40] Faber N, Rajko R.How to avoid over-fitting in multi-variate calibration-The conventional validation approach and an alternative[J].Analytica Chimica Acta, 2007, 595(1-2):98-106. doi: 10.1016/j.aca.2007.05.030
[41] Echeverria J, Morera M, Mazkiaran C, et al.Competitive sorption of heavy metal by soils.Isotherms and fractional factorial experiments[J].Environmental Pollution, 1998, 101(2):275-284. doi: 10.1016/S0269-7491(98)00038-4
[42] Uddin M K.A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J].Chemical Engineering Journal, 2017, 308:438-462. doi: 10.1016/j.cej.2016.09.029
[43] 张金池, 姜姜, 朱丽珺, 等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007, 27(9):273-281. http://www.cnki.com.cn/Article/CJFDTotal-STXB200709033.htm
Zhang J C, Jiang J, Zhu L J, et al.Adsorption and competitive adsorption of heavy metal ion by clay mineral[J].Acta Ecologica Sinica, 2007, 27(9):273-281. http://www.cnki.com.cn/Article/CJFDTotal-STXB200709033.htm
[44] Wu C Y, Jacobson A R, Laba M, et al.Surrogate correlations and near-infrared diffuse reflectance sensing of trace metal content in soils[J].Water, Air, & Soil Pollution, 2010, 209(1-4):377-390. http://cn.bing.com/academic/profile?id=2a45a02e40802e4e9b208b75a8626e8a&encoded=0&v=paper_preview&mkt=zh-cn
[45] Li X X, Zhang P X, Bo S.Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter[J].Pedosphere, 2012, 22(3):351-366. doi: 10.1016/S1002-0160(12)60022-8
[46] Gholizadeh A, Boruvka L, Vašát R, et al.Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy:A case study[J].PloS One, 2015, 10(2):e0117457. doi: 10.1371/journal.pone.0117457
[47] Vávrová P, Stenberg B, Karsisto M, et al.Near infrared reflectance spectroscopy for characterization of plant litter quality: Towards a simpler way of predicting carbon turnover in Peatlands?[M]//Wastewater treatment, plant dynamics and management in constructed and natural wetlands.Springer, 2008: 65-87.
[48] Clark R N.Spectroscopy of rocks and minerals, and prin-ciples of spectroscopy[J].Manual of Remote Sensing, 1999, 3:3-58.
[49] Rossel R V, Behrens T.Using data mining to model and interpret soil diffuse reflectance spectra[J].Geoderma, 2010, 158(1-2):46-54. doi: 10.1016/j.geoderma.2009.12.025
[50] Todorova M, Mouazen A M, Lange H, et al.Potential of near-infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size[J].Water Air and Soil Pollution, 2014, 225(8):2036-2054. doi: 10.1007/s11270-014-2036-4
[51] Chattoraj S L, Banerjee S, van der Meer F, et al.Application of visible and infrared spectroscopy for the evaluation of evolved glauconite[J].International Journal of Applied Earth Observation and Geoinformation, 2018, 64:301-310. doi: 10.1016/j.jag.2017.02.007
[52] Hubbard A T.Encyclopedia of surface and colloid science[M].CRC Press, 2002.
[53] 王锐, 张风雷, 徐姝姝, 等.土壤重金属污染风险筛选值划分方法:以Cd为例[J].环境科学, 2019, 40(11):5082-5089. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201911039.htm
Wang R, Zhang F L, Xu S S, et al.Method of dividing the value of soil heavy metal pollution risk screening:Using Cd as an example[J].Environmental Science, 2019, 40(11):5082-5089. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ201911039.htm
[54] 冯小平, 王义东, 郭长城, 等.长期垦殖与退化对七里海芦苇沼泽土壤盐分的影响[J].湿地科学, 2014, 12(3):388-394. http://www.cnki.com.cn/Article/CJFDTotal-KXSD201403018.htm
Feng X P, Wang Y D, Guo C C, et al.Effects of long-term reclamation and degradation on soil salinity of phragraites australis marshes in Qilihai wetlands[J].Wetland Science, 2014, 12(3):388-394. http://www.cnki.com.cn/Article/CJFDTotal-KXSD201403018.htm
[55] 李金辉, 丁薇, 翁贵英, 等.明湖国家湿地公园10种水生植物的重金属富集特征[J].水生态学杂志, 2020, 41(1):86-91. http://sstxzz.ihe.ac.cn/ch/reader/view_abstract.aspx?file_no=201803190062
Li J H, Ding W, Weng G Y, et al.Heavy metal accumulation by ten aquatic plant species in Minghu national wetland park[J].Journal of Hydroecology, 2020, 41(1):86-91. http://sstxzz.ihe.ac.cn/ch/reader/view_abstract.aspx?file_no=201803190062
-