中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成

周帆, 李明, 柴辛娜, 胡兆初, 罗涛, 胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成[J]. 岩矿测试, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075
引用本文: 周帆, 李明, 柴辛娜, 胡兆初, 罗涛, 胡圣虹. 非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成[J]. 岩矿测试, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075
ZHOU Fan, LI Ming, CHAI Xin-na, HU Zhao-chu, LUO Tao, HU Sheng-hong. In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075
Citation: ZHOU Fan, LI Ming, CHAI Xin-na, HU Zhao-chu, LUO Tao, HU Sheng-hong. In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075

非破坏性开放式激光剥蚀电感耦合等离子体质谱法原位测定大尺寸陶瓷样品主微量元素组成

  • 基金项目:
    国家自然科学基金青年基金项目(41103014,41203007);地质过程与矿产资源国家重点实验室基金项目(MSFGPMR02)
详细信息
    作者简介: 周帆, 硕士研究生, 分析化学专业。E-mail: 1294757849@qq.com
    通讯作者: 柴辛娜, 博士, 讲师, 主要从事分析地球化学研究。E-mail: chaixinna2233@163.com
  • 中图分类号: O657.63;TQ174.73

In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

More Information
  • 激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)通常采用体积固定的封闭剥蚀池,大尺寸样品要经过切割或破碎,能够放入剥蚀池后才可以再进行LA-ICP-MS分析,因此,这种常规密闭式LA-ICP-MS难以应用于无法破碎的珍稀大尺寸样品分析。为实现大尺寸样品的非破坏性微区原位主微量元素分析,本文基于自行设计的开放式样品采集口,结合气体交换装置,建立了开放式LA-ICP-MS分析方法,以大尺寸陶瓷圆盘样品为例,实现了其未经破碎即可直接在敞开的空气环境中进行微区原位主微量元素含量分析。最佳气流速下的氦气作为屏蔽气,在开放式样品采集口周围形成屏障,将激光剥蚀点与空气隔开,同时激光剥蚀产生的分析物气溶胶被屏蔽气聚拢并携带,在样品采集口负压的作用下进入传输管路,通过气体交换装置,高纯氩气置换掉气溶胶中混入的空气,最后进入等离子体质谱被检测。为验证该方法的准确性,将大尺寸陶瓷样品破碎后对开放式LA-ICP-MS分析点邻近区域进行常规密闭式LA-ICP-MS分析,两种方法所检测的51个元素中大部分元素相对误差小于10%,仅部分元素(如磷铍钪钇镧钐铕镝铪钨等)因含量极低相对误差高于20%,显示开放式LA-ICP-MS法具有较好的分析准确度,适用于对大尺寸样品的非破坏性微区原位主微量元素分析。

  • 加载中
  • 图 1  开放式LA-ICP-MS装置示意图

    Figure 1. 

    图 2  均匀标准样品NIST610表面线扫描开放式LA-ICP-MS分析代表元素信号图

    Figure 2. 

    图 3  屏蔽气(氦气)流速对氧化物产率的影响

    Figure 3. 

    图 4  屏蔽气(氦气)流速对分析物信号强度的影响

    Figure 4. 

    图 5  开放式LA-ICP-MS分析陶瓷样品结果与常规LA-ICP-MS分析结果对比

    Figure 5. 

    表 1  开放式LA-ICP-MS仪器工作参数

    Table 1.  Working conditions of open LA-ICP-MS

    ICP-MS仪器参数 工作条件
    仪器 Agilent 7500a
    ICP射频功率 1350W
    雾化气(氩气)流速 0.89L/min
    等离子体气(氩气)流速 14L/min
    辅助气(氩气)流速 1L/min
    采样深度 5.0mm
    检测器模式 脉冲、模拟自动切换
    每个质量数停留时间 6ms
    激光剥蚀系统 工作条件
    仪器 GeoLas Plus,ArF准分子激光
    波长 193nm
    载气(氦气)流速 250mL/min
    能量密度 4.4J/cm2
    激光脉冲频率 6Hz
    剥蚀点直径 90μm
    剥蚀方式 点剥蚀/线扫描
    线扫描速率 20μm/s
    屏蔽气(氦气)流速 250mL/min
    气体交换装置 工作条件
    孔径 0.1μm
    膜管规格 外径10mm,管壁厚0.6mm,长50mm
    内管气(氩气)流速 0.25L/min
    薄膜泵电压 DC 12V
    外管气(氩气)流速 0.21L/min
    吹扫气(氩气)流速 3.0L/min
    辅助气(氩气)流速 1.0L/min
    下载: 导出CSV
  • [1]

    Detlef G, Hattendorf B. Solid sample analysis using laser ablation inductively coupled mass spectrometry[J]. Trends in Analytical Chemistry, 2005, 24(3): 255-265. doi: 10.1016/j.trac.2004.11.017

    [2]

    Sylvester P J, Jackson S E. A brief history of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Elements, 2016, 12(5): 307-310. doi: 10.2113/gselements.12.5.307

    [3]

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

    [4]

    杨文武, 史光宇, 商琦, 等. 飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J]. 光谱学与光谱分析, 2017, 37(7): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201707039.htm

    Yang W W, Shi G Y, Shang Q, et al. Application of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J]. Apectroscopy and Spectral Analysis, 2017, 37(7): 208-214. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201707039.htm

    [5]

    吴石头, 许春雪, Klaus S, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [6]

    王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [7]

    Zhang W, Hu Z C, Liu Y S, et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 522: 16-25. doi: 10.1016/j.chemgeo.2019.04.027

    [8]

    宗克清, 陈金勇, 胡兆初, 等. 铀矿fs-LA-ICP-MS原位微区U-Pb定年[J]. 中国科学(地球科学), 2015, 45(9): 1304-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509005.htm

    Zong K Q, Chen J Y, Hu Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China (Earth Sciences), 2015, 45(9): 1304-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509005.htm

    [9]

    Liao X H, Luo T, Zhang S H, et al. Direct and rapid multi-element analysis of wine samples in their natural liquid state by laser ablation ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 1071-1079. doi: 10.1039/C9JA00404A

    [10]

    Pozebon D, Scheffler G L, Dressler V L, et al. Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2204-2228. doi: 10.1039/C4JA00250D

    [11]

    Limbeck A, Bonta M, Nischkauer W. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 212-232. doi: 10.1039/C6JA00335D

    [12]

    Orellana F A, Gálvez C G, Roldán M T, et al. Applications of laser-ablation inductively-coupled plasma-mass spectrometry in chemical analysis of forensic evidence[J]. Trends in Analytical Chemistry, 2013, 42: 1-34. doi: 10.1016/j.trac.2012.09.015

    [13]

    Mueller W, Fietzke J. The role of LA-ICP-MS in palaeoclimate research[J]. Elements, 2016, 12(5): 329-334. doi: 10.2113/gselements.12.5.329

    [14]

    Degryse P, Vanhaecke F. Status and prospects for quasi-non-destructive analysis of ancient artefacts via LA-ICP-MS[J]. Elements, 2016, 12(5): 341-346. doi: 10.2113/gselements.12.5.341

    [15]

    Bi M, Ruiz A M, Gornushkin I, et al. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Applied Surface Science, 2000, 158(3-4): 197-204. doi: 10.1016/S0169-4332(00)00027-1

    [16]

    Feldmann I, Koehler C U, Roos P H, et al. Optimisation of a laser ablation cell for detection of hetero-elements in proteins blotted onto membranes by use of inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(10): 1006-1015. doi: 10.1039/b606773e

    [17]

    Liu Y S, Hu Z C, Yuan H L, et al. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a

    [18]

    Li M, Hu Z C, Gao S, et al. Direct quantitative determin-ations of trace elements in fine-grained whole rocks by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 2011, 35: 7-22. doi: 10.1111/j.1751-908X.2010.00028.x

    [19]

    Devos W, Moor C, Lienemann P. Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(4): 621-626. doi: 10.1039/a900073i

    [20]

    Asogan D, Sharp B L, O'Connor C J P, et al. An open, non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(7): 917-923. doi: 10.1039/b904850b

    [21]

    Asogan D, Sharp B L, O'Connor C J P, et al. Numerical simulations of gas flows through an open, non-contact cell for LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 631-634. doi: 10.1039/C0JA00166J

    [22]

    Wagner B, Wojciech J. Open ablation cell for LA-ICP-MS investigations of historic objects[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(10): 2058-2063. doi: 10.1039/c1ja10137d

    [23]

    Glaus R, Koch J, Günther D. Portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2012, 84(12): 5358-5364. doi: 10.1021/ac3008626

    [24]

    Kantor T, Kiraly E, Bertalan E, et al. Gas-flow optimization studies on brass samples using closed and open types of laser ablation cells in inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 68: 46-57. doi: 10.1016/j.sab.2012.01.012

    [25]

    Nishiguchi K, Utani K, Fujimori E. Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1125-1129. doi: 10.1039/b802302f

    [26]

    Ohata M, Nishiguchi K. Direct analysis of gaseous mercury in ambient air by gas to particle conversion-gas exchange ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 717-722. doi: 10.1039/C6JA00292G

    [27]

    Ohata M, Nishiguchi K. Research progress on gas to particle conversion-gas exchange ICP-MS for direct analysis of ultra-trace metallic compound gas[J]. Analytical Sciences, 2018, 34(6): 657-666. doi: 10.2116/analsci.18SBR01

    [28]

    Kovacs R, Nishiguchi K, Utani K, et al. Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(2): 142-147. doi: 10.1039/b924425e

    [29]

    Tabersky D, Nishiguchi K, Utani K, et al. Aerosol entrain-ment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 831-842. doi: 10.1039/c3ja50044f

    [30]

    Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54-61. doi: 10.1016/j.aca.2018.02.021

    [31]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [32]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    [33]

    孟郁苗, 黄小文, 高剑峰, 等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Meng Y M, Huang X W, Gao J F, et al. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [34]

    Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J]. Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0

    [35]

    Günther D, Heinrich C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368. doi: 10.1039/A901648A

    [36]

    Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144-157. doi: 10.1016/S0169-4332(02)01324-7

    [37]

    Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases he and ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663. doi: 10.1039/C8JA00163D

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1632
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2020-05-24
修回日期:  2020-07-06
录用日期:  2020-11-11
刊出日期:  2021-01-28

目录