中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

环境水样中农药污染分析技术研究进展

郭婕, 张燕, 胡振国, 刘菲. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32. doi: 10.15898/j.cnki.11-2131/td.202008110111
引用本文: 郭婕, 张燕, 胡振国, 刘菲. 环境水样中农药污染分析技术研究进展[J]. 岩矿测试, 2021, 40(1): 16-32. doi: 10.15898/j.cnki.11-2131/td.202008110111
GUO Jie, ZHANG Yan, HU Zhen-guo, LIU Fei. A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32. doi: 10.15898/j.cnki.11-2131/td.202008110111
Citation: GUO Jie, ZHANG Yan, HU Zhen-guo, LIU Fei. A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples[J]. Rock and Mineral Analysis, 2021, 40(1): 16-32. doi: 10.15898/j.cnki.11-2131/td.202008110111

环境水样中农药污染分析技术研究进展

  • 基金项目:
    国家自然科学基金项目(41731282);中国地质调查局地质调查项目“地下水中有机污染组分对补给方式的响应——水样测试分析质量控制”(DD20190323)
详细信息
    作者简介: 郭婕, 硕士研究生, 环境工程专业。E-mail: 1085245060@qq.com
    通讯作者: 刘菲, 博士, 教授, 从事有机物污染监测与地下水污染治理研究。E-mail: feiliu@cugb.edu.cn
  • 中图分类号: P641;S482;O657.63

A Review of Pesticide Pollution Analysis Techniques for Environmental Water Samples

More Information
  • 随着农业集约化和城市化的推进,世界上大量水环境中农药残留量已超过规定的限值,水环境中农药污染问题受到社会各界的广泛关注。作为世界上最大的农药生产国和使用国,中国水环境中农药残留量远高于其他发达国家,已有研究表明在我国七个典型流域(长江、太湖、黄河、松花江、黑龙江、大运河和东江)中检测到19种农药,平均浓度范围为0.02~332.75ng/L。农药及其转化产物对生态环境和人体健康具有潜在威胁,水环境中农药残留的研究是水质评估中必不可少的组成部分,而靶向筛查难以检测未知农药及其转化产物。因此,环境中农药残留及其转化产物的非靶向筛查亟需完善。本文依据农药组分非靶向筛查的分析流程,对近五年水质样品中农药残留靶向及非靶向筛查方法进行综述,梳理了近年来国内外食品与水环境中农药残留限量的相关法律法规,对水环境中农药残留分析方法的研究进展进行概述;总结了液液萃取(LLE)、固相萃取(SPE)、固相微萃取(SPME)等样品前处理方法的特点,在这些方法中,固相萃取是农药非靶向筛查的主要前处理方法,具有良好应用前景。本文还探讨了分析仪器从色谱检测到色谱-质谱联用的发展趋势,多种高分辨率质谱的产生为农药非靶向筛查提供了多层次的分析需求;同时通过总结近年来农药筛查确证相关的指导标准、质谱数据库与多种鉴定方法,指出水环境中农药污染分析技术的发展趋势。

  • 加载中
  • 表 1  基于高分辨率质谱(HRMS)不同分析方法的应用

    Table 1.  Application of different analysis methods based on high-resolution mass spectrometry (HRMS)

    方法应用 发表时间 筛查策略 样品基质 检测物质 样品前处理方法 检测仪器 数据分析软件 数据库 参考文献
    非靶向筛查涪陵地区有机污染物 2020 非靶向筛查 表层水、土壤及沉积物 农药、药物及个人护理产品、塑料添加剂 固相萃取(HLB柱) 超高效液相色谱- 四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 3.0 mzCloud数据库 [14]
    检测青菜中214种农药残留 2020 靶向筛查 青菜样品 农药 QuEChERS方法 超高效液相色谱- 四极杆飞行时间质谱 - - [29]
    婴儿配方食品中兽药和农药的多残留筛选 2020 靶向筛查 婴儿配方奶粉 兽药、农药 分散固相萃取(CleanertLipoNo管) 超高效液相色谱- 四极杆/静电场轨道阱高分辨质谱联用 TraceFinder 4.0、MZvault 2.0 - [30]
    非靶向筛查谷物中农药残留 2020 非靶向筛查 谷物 农药 QuEChERS方法 超高效液相色谱串联三重四极杆质谱、液相色谱-四极杆飞行时间质谱 - - [31]
    定量检测加工水果中的250种农药 2020 靶向筛查 加工水果 农药 QuEChERS方法 超高效液相色谱- 串联质谱 - - [3]
    可疑和非靶向筛查表征普吉特海湾近海海洋环境中新兴污染物 2020 可疑和非靶向筛查 除草剂、药物、增塑剂、阻燃剂等 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 MassHunterProfinder (B.08.00)、Profiler Professional (B.13.00,MPP)、MassHunter定性分析(B.08.00)、XCMS Online NORMAN数据库、内部数据库、mzCloud数据库、EU MassBank数据库 [1]
    中国淀山湖潜在污染物的非目标和目标分析 2020 靶向和非靶向筛查 农药、药物、表面活性剂、塑料添加剂 固相萃取(Oasis WAX,MCX、HLB) 超高效液相色谱- 四极杆/轨道阱质谱 Composite Discoverer 3.0 mzCloud数据库 [2]
    水中2316种新兴污染物的综合定量分析方法 2020 靶向筛查 农药、药物、工业化学品等 固相萃取(Oasis HLB、Isolute ENV+、Strata-X-AW、Strata-X-CV) 超高效液相色谱- 四极杆飞行时间质谱 - - [6]
    食品样品中农药多残留综合筛选和鉴定 2020 靶向和非靶向筛查 食品 农药 QuEChERS方法 气相色谱-串联质谱、超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 在线数据库(ChemSpider、Massbank和mzCloud等) [32]
    可疑和非目标筛查评估德涅斯特河流域的化学污染状况 2020 可疑和非靶向筛查 农药、药物、兴奋剂等 固相萃取(HLB圆盘) 超高效液相色谱- 四极杆飞行时间质谱 TASQ Client 2.1、DataAnalysis 5.1 内部数据库 [12]
    可疑筛查分析废水处理过程中的微量污染物 2019 可疑筛查 阻燃剂、农药、抗氧化剂、多环芳烃 固相萃取(Elut-Bond C18滤筒) 气相色谱-四极杆飞行时间质谱 Agilent Unknown Analysis software (B.08.00) NIST 14、大型个人化合物数据库(PCDL) [33]
    茶叶中农药的非靶向筛选和靶向测定 2019 靶向和非靶向筛查 茶叶 农药 分散固相萃取 液相色谱-四极杆/静电场轨道阱高分辨质谱仪 - 内部数据库 [24]
    可疑筛查表征受污染的地下水和径流中的新兴污染物 2019 可疑筛查 杀真菌剂、除草剂、抗生素等 固相膜萃取(SDB-RPS、SDB-XC) 液相色谱-四极杆飞行时间质谱联用 Data Analysis4.4、TASQ 1.4 Pesticide Screener 2.1、ToxScreener 2.1 [13]
    海洋环境中的新兴有机污染物的靶向和非靶向筛查 2019 靶向和非靶向筛查 药物个人护理产品农药 固相萃取 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 Compound Discoverer 2.1、SIMCA 2.2 ChemSpider数据库 [11]
    目标和可疑筛查表征瑞士地下水样中的农药及农药转化产物 2019 靶向和可疑筛查 农药及农药转化产物 真空辅助蒸发浓缩 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱 MetFrag ChemSpider数据库 [8]
    宽范围筛选地表水及地下水中农药 2019 非靶向筛查 农药及农药转化产物 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 MassLynx v4.1 自制数据库 [34]
    宽范围筛选和定量分析综合调查巴西地表水中的农药 2019 靶向和非靶向筛查 农药及农药转化产物 固相萃取 气相色谱-四极杆飞行时间质谱、液相色谱-四极杆飞行时间质谱 商业软件 气相、液相色谱专用数据库 [35]
    目标分析和可疑分析评估农业食品工业废水中农药水平 2019 靶向和可疑筛查 农药及农药转化产物 固相萃取(HLB柱) 液相色谱-四极杆线性离子阱串联质谱、液相色谱-四极杆飞行时间质谱 MasterViewTM1.1、PeakViewTM、AnalystTMTF 1.5、PathPred、EAWAG-BBD MassBank数据库 [36]
    可疑、非目标和目标筛查评估地中海流域中新兴污染物 2019 靶向、可疑和非靶向筛查 农药、药物、个人护理产品及其他毒素 固相萃取(HLB柱) 液相色谱-四极杆飞行时间质谱 Waters UNIFI软件 ChemSpider数据库 [10]
    非靶向快速筛查茶饮料中未知农药残留 2019 非靶向筛查 茶饮料 农药 分散液液微萃取 超高效液相色谱-四极杆飞行时间质谱 PeakView2.0、ChemDraw Ultra 14.0 - [37]
    利用果蔬中485种农药的精确质量数据库和光谱库直接进行定性鉴定的新方法 2018 非靶向筛查 水果 农药 固相萃取 液相色谱-四极杆飞行时间质谱 Agilent MassHunter PCDL Manager (B.04.00)、Qualitative MassHunter 自制数据库 [17]
    圣华金河三角洲的目标化合物和可疑化合物筛查 2017 靶向和可疑筛查 药物、阻燃剂、转化产物等 固相萃取(HLB、Strata XAW,Strata XCW、Isolute ENV+) 液相色谱-飞行时间质谱、气相色谱-飞行时间质谱 Agilent MassHunter定性分析B.07、Eawag途径预测系统(EAWAG-PPS25)、安捷伦分子结构关联器(MSC,B.07) Agilent LC/MS农药PCDL、Agilent GC/Q- TOF-农药PCDL [38]
    快速筛查和识别地表和饮用水中的化学危害 2017 靶向、可疑和非靶向筛查 农药、药品、个人护理产品 直接进样/ 固相萃取(HLB柱) 液相色谱-四极杆飞行时间串联质谱 PeakView、MultiQuant ChemSpider数据库 [39]
    综合分析水样中符合LC-MS要求且具有广泛理化性质的有机化学品 2017 靶向筛查 农药 固相萃取 液相色谱-飞行时间质谱 - - [40]
    非靶向快速筛查进口粮谷中未知的农药残留 2017 非靶向筛查 粮谷 农药 快速提取农药 超高效液相色谱-四极杆飞行时间质谱 Agilent MassHunter定性软件、PCDL (Personal Compound Database & Library) 自制数据库 [41]
    废水样品的非目标分析 2016 非靶向筛查 农药、药物等 固相萃取(Oasis MAX和Oasis MCX柱) 超高效液相色谱-离子淌度-四极杆串联飞行时间质谱仪、二维液相色谱-离子淌度-四极杆串联飞行时间质谱仪 Agilent IMMS Browser B.07.01 software CCS数据库 [7]
    华北地区北京和天津地下水中1300种有机污染物的筛选 2016 靶向筛查 农药、多环芳烃、香料等 固相萃膜取(玻璃膜纤维盘、苯乙烯二乙烯基苯圆盘、活性炭圆盘) 液相色谱-飞行时间质谱 - - [42]
    非目标筛查方法检测合法和非法药物以及个人护理产品 2016 非靶向筛查 药物、农药、多酚等 固相萃取 超高效液相色谱- 四极杆飞行时间二级质谱 Analyst、Peak View 1.0、XICmanager、MultiQuant 2.0 - [43]
    水果、蔬菜中208种农药残留筛查确证能力的对比 2015 靶向和非靶向筛查 蔬菜、水果 农药 QuEChERS方法 气相色谱-三重四极杆质谱仪、气相色谱-四极杆飞行时间质谱仪 - NIST数据库 [26]
    下载: 导出CSV

    表 2  质谱数据确认化学残留物的验收标准

    Table 2.  Acceptance criteria for confirmation of identification of chemical residues using exact mass data

    MS模式 MS数据验收标准 MS/MS数据验收标准 MS和MS/MS数据验收标准
    信噪比 S/N≥3 S/N≥3 S/N≥3
    保留时间 ≤0.2min,或2.5%以内(不超过0.5min),或在建立的误差范围内(不超过0.5min)
    具有结构意义的离子数 2 2 2
    质量精度 ≤5ppm ≤10ppm MS≤5ppm; MS/MS≤10ppm
    下载: 导出CSV
  • [1]

    Tian Z, Peter K T, Gipe A D, et al. Suspect and nontarget screening for contaminants of emerging concern in an Urban Estuary[J]. Environmental Science & Technology, 2020, 54(2): 889-901. http://pubs.acs.org/doi/10.1021/acs.est.9b06126

    [2]

    Meng D, Fan D L, Gu W, et al. Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: A case study of Dianshan Lake, China[J]. Chemosphere, 2020, 243: 125367. doi: 10.1016/j.chemosphere.2019.125367

    [3]

    Valera-Tarifa N M, Santiago-Valverde R, Hernandez-Torres E, et al. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS[J]. Food Chemistry, 2020, 315: 126304. doi: 10.1016/j.foodchem.2020.126304

    [4]

    Salvador A, Romain Carrière, Ayciriex S, et al. Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling[J]. Journal of Chromatography A, 2020, 1621: 461046. doi: 10.1016/j.chroma.2020.461046

    [5]

    Zhang H, Watts S, Philix M C, et al. Occurrence and distribution of pesticides in precipitation as revealed by targeted screening through GC-MS/MS[J]. Chemosphere, 2018, 211: 210-217. doi: 10.1016/j.chemosphere.2018.07.151

    [6]

    Gago-Ferrero P, Bletsou A A, Damalas D E, et al. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRIVIS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes[J]. Journal of Hazardous Materials, 2020, 387: 121712. doi: 10.1016/j.jhazmat.2019.121712

    [7]

    Stephan S, Hippler J, Koehler T, et al. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC plus LC-IM-qTOF-MS using a CCS database[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24): 6545-6555. doi: 10.1007/s00216-016-9820-5

    [8]

    Kiefer K, Mueller A, Singer H, et al. New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS[J]. Water Research, 2019, 165(15): 114972. http://www.sciencedirect.com/science/article/pii/S0043135419307468

    [9]

    Shao B, Li H, Shen J, et al. Nontargeted detection methods for food safety and integrity[J]. Annual Review of Food Science and Technology, 2019, 10(1): 429-455. doi: 10.1146/annurev-food-032818-121233

    [10]

    Canccapa C A, Pico Y, Ortiz X, et al. Suspect, non-target and target screening of emerging pollutants using data independent acquisition: Assessment of a Mediterranean River Basin[J]. Science of the Total Environment, 2019, 687: 355-368. doi: 10.1016/j.scitotenv.2019.06.057

    [11]

    Vanryckeghem F, Huysman S, van Langenhove H, et al. Multi-residue quantification and screening of emerging organic micropollutants in the Belgian Part of the North Sea by use of speedisk extraction and Q-orbitrap HRMS[J]. Marine Pollution Bulletin, 2019, 142: 350-360. doi: 10.1016/j.marpolbul.2019.03.049

    [12]

    DiarnantiI K S, Alygizakis N A, Nika M C, et al. Assessment of the chemical pollution status of the Dniester River Basin by wide-scope target and suspect screening using mass spectrometric techniques[J]. Analytical and Bioanalytical Chemistry, 2020, 412(20): 4893-4907. doi: 10.1007/s00216-020-02648-y

    [13]

    Pinasseau L, Wiest L, Fildier A, et al. Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff[J]. Science of the Total Environment, 2019, 672: 253-263. doi: 10.1016/j.scitotenv.2019.03.489

    [14]

    许惠, 汪贞, 古文, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱技术非靶向筛查涪陵地区有机污染物[J]. 生态与农村环境学报, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm

    Xu H, Wang Z, Gu W. Non-target analysis of organic pollutants based on ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (UPLC-Q Orbitrap HRMS) at Fuling City[J]. Journal of Ecology and Rural Environment, 2020, 36(3): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST202003019.htm

    [15]

    简秋, 朱光艳. 欧盟农药残留立法管理的制度简介和启示[J]. 农药科学与管理, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm

    Jian Q, Zhu G Y. Introduction and enlightenment of the EU pesticide residue legislation management system[J]. Pesticide Science and Administration, 2011, 32(1): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-NYKG201101015.htm

    [16]

    张志恒, 陈丽萍. 欧盟农药MRL标准及中国的主要差距[J]. 世界农业, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm

    Zhang Z H, Chen L P. EU pesticide MRL standards and the main gaps in China[J]. World Agriculture, 2004(10): 47-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SJNY200410014.htm

    [17]

    Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. Journal of AOAC International, 2018, 101(4): 1156-1182. doi: 10.5740/jaoacint.17-0125

    [18]

    Campo J, Masi A, Blasco C, et al. Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River basins[J]. Journal of Hazardous Materials, 2013, 263: 146-157. doi: 10.1016/j.jhazmat.2013.09.061

    [19]

    Koeck S M, Villagrasa M, Alda M L D, et al. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact[J]. Science of the Total Environment, 2013, 458-460: 466-476. doi: 10.1016/j.scitotenv.2013.04.010

    [20]

    Shamsipur M, Yazdanfar N, Ghambarian M. Combination of solid-phase extraction with dispersive liquid-liquid microextraction followed by GC-MS for determination of pesticide residues from water, milk, honey and fruit juice[J]. Food Chemistry, 2016, 204: 289-297. doi: 10.1016/j.foodchem.2016.02.090

    [21]

    Caldas S S, Rombaldi C, de Oliveira A J L, et al. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry[J]. Talanta, 2016, 146: 676-688. doi: 10.1016/j.talanta.2015.06.047

    [22]

    吴春英, 谷风, 白鹭, 等. 固相萃取-超高效液相色谱-三重四极杆质谱联用同时测定水中菊酯类农药多残留[J]. 分析科学学报, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm

    Wu C Y, Gu F, Bai L, et al. Simultaneous determination of pyrethroid pesticides rresidues in water using solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science, 2017, 33(1): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX201701012.htm

    [23]

    Wu J, Mei M, Huang X. Fabrication of boron-rich multiple monolithic fibers for the solid-phase microextraction of carbamate pesticide residues in complex samples[J]. Journal of Separation Science, 2019, 42(4): 878-887. doi: 10.1002/jssc.201800996

    [24]

    Wang F, Li S, Feng H, et al. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry[J]. Food Chemistry, 2019, 275: 530-538. doi: 10.1016/j.foodchem.2018.09.142

    [25]

    Li J X, Li X Y, Chang Q Y, et al. Screening of 439 pesti-cide residues in fruits and vegetables by gas chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library[J]. Journal of AOAC International, 2018, 101(5): 1631-1638. doi: 10.5740/jaoacint.17-0105

    [26]

    曹新悦, 庞国芳, 金铃和, 等. 气相色谱-四极杆-飞行时间质谱和气相色谱-串联质谱对水果、蔬菜中208种农药残留筛查确证能力的对比[J]. 色谱, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm

    Cao X Y, Pang G F, Jin L H, et al. Comparison of the performances of gas chromatography quadrupole time of flight mass spectrometry and gas chromatography-tandem mass spectrometry in rapid screening and confirmation of 208 pesticide residues in fruits and vegetables[J]. Chinese Journal of Chromatography, 2015, 33(4): 389-396. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201504010.htm

    [27]

    Gago-Ferrero P, Krettek A, Fischer S, et al. Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants[J]. Environmental Science & Technology, 2018, 52(12): 6881-6894. http://pubs.acs.org/doi/10.1021/acs.est.7b06598

    [28]

    Gago-Ferrero P, Schymanski E L, Bletsou A A, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS[J]. Environmental Science & Technology, 2015, 49(20): 12333-12341. http://europepmc.org/abstract/MED/26418421

    [29]

    朱峰, 于洁, 霍宗利, 等. QuEChERS-超高效液相色谱-四极杆飞行时间质谱法检测青菜中214种农药残留[J]. 中国食品卫生杂志, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm

    Zhu F, Yu J, Huo Z L, et al. Determination of 214 pesticide residues in green vegetables using QuEChERS-ultrahigh performance liquid chromatography coupled with quadrupole time of fligh tmasss pectrometry[J]. Chinese Journals of Food Hygiene, 2020, 32(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202001007.htm

    [30]

    Zhang L Q, Zhang X M, Zhang H W, et al. Multiclass and multiresidue screening of veterinary drugs and pesticides in infant formula using quadrupole-orbitrap MS with PRM scan mode[J]. Journal of Mass Spectrometry, 2020, 55(3): e4497. doi: 10.1002/jms.4497

    [31]

    Wang T, Liigand J, Frandsen H L, et al. Standard substances free quantification makes LC/ESI/MS non-targeted screening of pesticides in cereals comparable between labs[J]. Food Chemistry, 2020, 318: 126460. doi: 10.1016/j.foodchem.2020.126460

    [32]

    Feng C, Xu Q, Qiu X, et al. Comprehensive strategy for analysis of pesticide multi-residues in food by GC-MS/MS and UPLC-Q-orbitrap[J]. Food Chemistry, 2020, 320: 126576. doi: 10.1016/j.foodchem.2020.126576

    [33]

    Wang Y, Gao W, Wang Y, et al. Suspect screening analysis of the occurrence and removal of micropollutants by GC-QTOF×MS during wastewater treatment processes[J]. Journal of Hazardous Materials, 2019, 376: 153-159. doi: 10.1016/j.jhazmat.2019.05.031

    [34]

    Fonseca E, Renau P A, Ibanez M, et al. Investigation of pesticides and their transformation products in the Jucar River hydrographical basin (Spain) by wide-scope high-resolution mass spectrometry screening[J]. Environmental Research, 2019, 177: 108570. doi: 10.1016/j.envres.2019.108570

    [35]

    Della F A, Wielens B R, Frederigi B S, et al. Comprehensive investigation of pesticides in Brazilian surface water by high resolution mass spectrometry screening and gas chromatography-mass spectrometry quantitative analysis[J]. Science of the Total Environment, 2019, 669: 248-257. doi: 10.1016/j.scitotenv.2019.02.354

    [36]

    Campos-Mañas M C, Plaza B P, Belen M A, et al. Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis[J]. Chemosphere, 2019, 232: 152-163. doi: 10.1016/j.chemosphere.2019.05.147

    [37]

    伍颖仪, 陈中, 张思群, 等. 非靶向快速筛查茶饮料中未知农药残留[J]. 食品工业科技, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm

    Wu Y Y, Chen Z, Zhang S Q, et al. Non-target rapid screening of unknown pesticide residues in tea beverage[J]. Science and Technology of Food Industry, 2019, 40(15): 188-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915031.htm

    [38]

    Moschet C, Lew B M, Hasenbein S, et al. LC- and GC-QTOF-MS as complementary tools for a comprehensive micropollutant analysis in aquatic systems[J]. Environmental Science & Technology, 2017, 51(3): 1553-1561. http://pubs.acs.org/doi/abs/10.1021/acs.est.6b05352

    [39]

    Kaserzon S L, Heffernan A L, Thompson K, et al. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter[J]. Chemosphere, 2017, 182: 656-664. doi: 10.1016/j.chemosphere.2017.05.071

    [40]

    Chau H T C, Kadokami K, Ifuku T, et al. Development of a comprehensive screening method for more than 300 organic chemicals in water samples using a combination of solid-phase extraction and liquid chromatography-time-of-flight-mass spectrometry[J]. Environmental Science and Pollution Research, 2017, 24(34): 26396-26409. doi: 10.1007/s11356-017-9929-x

    [41]

    周秀锦, 陈宇, 杨赛军, 等. 超高效液相色谱-四极杆飞行时间质谱法非靶向快速筛查进口粮谷中未知的农药残留[J]. 色谱, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm

    Zhou X J, Chen Y, Yang S J, et al. Rapid screening of pesticide residues in imported grains by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(8): 787-793. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201708001.htm

    [42]

    Kong L, Kadokami K, Hanh T D, et al. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China[J]. Chemosphere, 2016, 165: 221-230. doi: 10.1016/j.chemosphere.2016.08.084

    [43]

    Andr C M J, Carmona E, Pico Y. Universal method to determine acidic licit and illicit drugs and personal care products in water by liquid chromatography quadrupole time-of-flight[J]. Methods, 2016, 3: 307-314. http://pubmedcentralcanada.ca/pmcc/articles/PMC4840423/

    [44]

    Omar T F T, Ahmad A, Aris A Z, et al. Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds[J]. Trends in Analytical Chemistry, 2016, 85: 241-259. doi: 10.1016/j.trac.2016.08.004

    [45]

    刘慧杰, 张平允, 姜蕾, 等. 液液萃取气相色谱-ECD法同时测定饮用水中的13种农药[J]. 净水技术, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm

    Liu H, Zhang P Y, Jiang L, et al. Simultaneous determination of 13 pesticides in drinking water by liquid liquid extraction gas chromatography-ECD method[J]. Water Purification Technology, 2018, 37(6): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201806010.htm

    [46]

    罗晓飞, 吴凌, 孙成均, 等. 固相膜萃取-气相色谱-串联质谱法测定饮用水中67种农药残留[J]. 卫生研究, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm

    Luo X F, Wu L, Sun C J, et al. Determination of 67 pesticides in drinking water by solid phase extration disk extraction-gas chromatography-tandem mass spectrometry[J]. Journal of Hygiene Research, 2019, 48(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ201901021.htm

    [47]

    许小茜. 固相膜萃取-高效液相色谱法对饮用水中农药残留的检测分析[J]. 山东工业技术, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm

    Xu X Q. Detection and analysis of pesticide residues in drinking water by solid phase extration disk extraction-high performance liquid chromatography[J]. Shandong Industrial Technology, 2015(11): 240-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201511207.htm

    [48]

    王雷, 张艳霞. 分散液液微萃取-气相色谱法快速测定水中十五种有机磷类农残[J]. 能源环境保护, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm

    Wang L, Zhang Y X. Ananlysis of fifteen organophosphorus pesticide residues in water samples by dispersive liquid-liquid microextraction coupled with gas chromatography[J]. Energy Environmental Protection, 2016, 30(2): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NYBH201602016.htm

    [49]

    Albishri H M, Aldawsari N A M, Abd E D. Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples[J]. Electrophoresis, 2016, 37(19): 2462-2469. doi: 10.1002/elps.201600107

    [50]

    于佩, 甘志永, 徐蕾. 固相微萃取-气相色谱-三重四极杆质谱法同时测定饮用水中8种有机氯[J]. 环境科技, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm

    Yu P, Gan Z Y, Xu L. Simultaneous determination of 8 kinds of OCPs in water by automated solid-phase microextraction coupled with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Science and Technology, 2020, 33(1): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ202001015.htm

    [51]

    王国强, 张婷, 孙桂进, 等. 分散固相萃取净化-GPC-GC/MS快速分析鱼塘水中21种农药[J]. 中国刑警学院学报, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm

    Wang G Q, Zhang T, Sun G J, et al. Dispersive solid phase extraction purification-GPC-GC/MS rapid analysis of 21 pesticides in fish pond water[J]. Journal of Criminal Investigation Police University of China, 2016(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-XING201603020.htm

    [52]

    Aladaghlo Z, Fakhari A R, Alvaioon S I, et al. A mesoporous nanosorbent composed of silica, graphene, and palladium (Ⅱ) for ultrasound-assisted dispersive solid-phase extraction of organophosphorus pesticides prior to their quantitation by ion mobility spectrometry[J]. Microchimica Acta, 2020, 187(4): 209. doi: 10.1007/s00604-020-4174-2

    [53]

    Akbarzade S, Chamsaz M, Rounaghi G H, et al. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2018, 410(2): 429-439. doi: 10.1007/s00216-017-0732-9

    [54]

    邵阳, 杨国胜, 韩深, 等. 加速溶剂萃取-硅胶萃取净化-气相色谱/质谱法检测地表水中有机氯农药和多氯联苯[J]. 分析化学, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm

    Shao Y, Yang G S, Han S, et al. Determination of organochlorine pesticides and polychlorinated biphenyls in surface water using accelerate solvent extraction coupling with gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605006.htm

    [55]

    Aparicio I, Martin J, Luis S J, et al. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters[J]. Journal of Chromatography A, 2017, 1500: 43-52. doi: 10.1016/j.chroma.2017.04.007

    [56]

    陈峰, 张宝锋, 何平, 等. 液液萃取-程序升温大体积进样-气相色谱串联质谱法测定地表水中25种痕量有机氯农药[J]. 分析试验室, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm

    Chen F, Zhang B F, He P, et al. Trace analysis of 25 organochlorine pesticides in surface water by liquid liquid extraction-programmed temperature vaponization and large volume injection gas chromatography tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(8): 969-973. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY202008020.htm

    [57]

    Murrell K, Dorman F. A suspect screening analysis for contaminants of emerging concern in municipal wastewater and surface water using liquid-liquid extraction and stir bar sorptive extraction[J]. Analytical Methods, 2020, 12(36): 4487-4495. doi: 10.1039/D0AY01179G

    [58]

    白雪媛. 地下水中82种农药测试方法开发与应用[D]. 北京: 中国地质大学(北京), 2017.

    Bai X Y.Development and application for test method of 82 kinds of pesticides in groundwater[D].Beijing: China University of Geosciences (Beijing), 2017.

    [59]

    Amini N, Shariatgorji M, Crescenzi C, et al. Screening and quantification of pesticides in water using a dual-function graphitized carbon black disk[J]. Analytical Chemistry, 2010, 82(1): 290-296. doi: 10.1021/ac901946b

    [60]

    张洋阳, 邵娟, 杨存满, 等. 顶空-固相微萃取-气相色谱三重四极杆质谱联用测定水中有机氯农药和氯苯类化合物[J]. 四川环境, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm

    Zhang Y Y, Shao J, Yang C M, et al. GC/MS/MS determination of organochlorine pesticides and chlorobenzene in water by headspace solid phase micro-extraction and gas chromatography-triple quadrupole mass spectrometry[J]. Sichuan Environment, 2020, 39(2): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ202002018.htm

    [61]

    Bade R, Rousis N I, Bijlsma L, et al. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30): 8979-8988. doi: 10.1007/s00216-015-9063-x

    [62]

    Casado J, Brigden K, Santillo D, et al. Screening of pesti-cides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry[J]. Science of the Total Environment, 2019, 670: 1204-1225. doi: 10.1016/j.scitotenv.2019.03.207

    [63]

    Gao L, Qin D, Huang X, et al. Determination of pesticides and pharmaceuticals from fish cultivation water by parallel solid-phase extraction (SPE) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS)[J]. Analytical Letters, 2019, 52(6): 1-15. http://www.tandfonline.com/doi/full/10.1080/00032719.2018.1509076

    [64]

    Vikrant K, Tsang D C W, Raza N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8797-8817. http://smartsearch.nstl.gov.cn/paper_detail.html?id=51912f254ec409c6b71705b31c06bbfc

    [65]

    Chun S L, Chun X S, Jia Y T, et al. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety[J]. Biosensors and Bioelectronics, 2017, 91: 804-810. doi: 10.1016/j.bios.2017.01.059

    [66]

    Ma J, Yao Z, Hou L, et al. Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination[J]. Talanta, 2016, 161: 686-692. doi: 10.1016/j.talanta.2016.09.035

    [67]

    Ren J, Ledwaba M, Musyoka N, et al. Structural defects in metal-organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169-197. doi: 10.1016/j.ccr.2017.08.017

    [68]

    Bulgurcuoglu A E, Yilmaz B, Chormey D S, et al. Simul-taneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy[J]. Environmental Monitoring and Assessment, 2018, 190(4): 252. doi: 10.1007/s10661-018-6625-3

    [69]

    Chullasat K, Huang Z, Bunkoed O, et al. Bubble-in-drop microextraction of carbamate pesticides followed by gas chromatography-mass spectrometric analysis[J]. Microchemical Journal, 2020, 155: 104666. doi: 10.1016/j.microc.2020.104666

    [70]

    黄伟华, 胡美华. 全自动固相萃取-气质联用法测定水中14种农药残留[J]. 现代预防医学, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm

    Hang W H, Hu M H. Simultaneous determination of 14 pesticides in water by automatic solid-phase extraction-gas chromatography-mass spectrometry[J]. Modern Preventive Medicine, 2015, 42(21): 3965-3968. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201521044.htm

    [71]

    Cacho J I, Campillo N, Vinas P, et al. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides[J]. Journal of Chromatography A, 2018, 1559: 95-101. doi: 10.1016/j.chroma.2017.12.059

    [72]

    单晓梅. MS/MS原理及GC/MS/MS技术在农残检测中应用[J]. 安徽预防医学杂志, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm

    Shan X M. MS/MS principle and application of GC/MS/MS technology in pesticide residue detection[J]. Anhui Journal of Preventive Medicine, 2008, 14(6): 425-428. https://www.cnki.com.cn/Article/CJFDTOTAL-AHYF200806011.htm

    [73]

    王乙震, 孟宪智, 罗阳, 等. SPE-GC/MS/MS测定地表水中有机磷农药[J]. 环境科学与技术, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm

    Wang Y Z, Meng X Z, Luo Y. Determination of organophosphorous pesticides in surface water by SPE-GC/MS/MS[J]. Environmental Science & Technology, 2016, 39(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201608016.htm

    [74]

    Issa M M, Taha S, El M A M, et al. Acetonitrile-ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC-MS/MS[J]. Journal of Chromatography B, 2020, 1145: 122106. doi: 10.1016/j.jchromb.2020.122106

    [75]

    Masi A, Blasco C, Pic Y. Last trends in pesticide residue determination by liquid chromatography-mass spectrometry[J]. Trends in Environmental Analytical Chemistry, 2014, 2: 11-24. doi: 10.1016/j.teac.2014.03.002

    [76]

    杨敏娜, 高翔云, 汤志云. UPLC-串联质谱法快速测定地表水中多种农药残留[J]. 环境监测管理与技术, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm

    Yang M N, Gao X Y, Tang Z Y. Rapid determination of pesticide residues in surface water by ultra performance liquid chromatography-tandem mass spectrometry[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJS201901013.htm

    [77]

    Hernandez F, Sancho J V, Pozo O, et al. Rapid direct determination of pesticides and metabolites in environmental water samples at sub-μg/L level by on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2001, 939(1): 1-11. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11806539

    [78]

    Hern N F, Pozo Ó J, Sancho J V, et al. Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers[J]. Trends in Analytical Chemistry, 2005, 24(7): 596-612. doi: 10.1016/j.trac.2005.04.007

    [79]

    Richardson S D. Environmental mass spectrometry: Emerging contaminants and current issues[J]. Analytical Chemistry, 2004, 76(12): 3337-3364. doi: 10.1021/ac040060d

    [80]

    Almeid M B, Madeira T B, Watanabe L S, et al. Pesticide determination in water samples from a rural area by multi-target method applying liquid chromatography-tandem mass spectrometry[J]. Journal of the Brazilian Chemical Society, 2019, 30(8): 1657-1666. http://www.researchgate.net/publication/332517324_Pesticide_Determination_in_Water_Samples_from_a_Rural_Area_by_Multi-Target_Method_Applying_Liquid_Chromatography-Tandem_Mass_Spectrometry

    [81]

    Amelin V G, Bolshakov D S, Andoralov A M. Screening and determination of pesticides from various classes in natural water without sample preparation by ultra HPLC-high-resolution quadrupole time-of-flight mass spectrometry[J]. Journal of Analytical Chemistry, 2018, 73(3): 257-265. doi: 10.1134/S1061934818030024

    [82]

    Arsand J B, Hoff R B, Jank L, et al. Wide-scope determination of pharmaceuticals and pesticides in water samples: Qualitative and confirmatory screening method using LC-qTOF-MS[J]. Water Air and Soil Pollution, 2018, 229(12): 1-20. doi: 10.1007/s11270-018-4036-2

    [83]

    Mart P A B, Plaza B P, Garc G E, et al. Determination of organic microcontaminants in agricultural soils irrigated with reclaimed wastewater: Target and suspect approaches[J]. Analytica Chimica Acta, 2018, 1030: 115-124. doi: 10.1016/j.aca.2018.05.049

    [84]

    王勇为. 确证定量分析新工具——ThermoScientific Q Exactive台式四极杆-轨道阱高分辨质谱仪[J]. 现代科学仪器, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm

    Wang Y W. Confirmation of a new tool for quantitative analysis-ThermoScientific Q Exactive benchtop quadrupole-orbitrap high resolution mass spectrometer[J]. Modern Scientific Instruments, 2011(5): 138-140. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ201105040.htm

    [85]

    Gosetti F, Mazzucco E, Ggennaro M C, et al. Contam-inants in water: Non-target UHPLC/MS analysis[J]. Environmental Chemistry Letters, 2016, 14(1): 51-65. doi: 10.1007/s10311-015-0527-1

    [86]

    孟志娟, 孙文毅, 赵丽敏, 等. 气相色谱-静电场轨道阱高分辨质谱快速筛查农产品中70种农药残留[J]. 分析化学, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm

    Meng Z J, Sun W Y, Zhao L M, et al. Gas chromatography-electrostatic field orbitrap high-resolution mass spectrometry for rapid screening of 70 pesticide residues in agricultural products[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1227-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201908014.htm

    [87]

    Cotton J, Leroux F, Broudin S, et al. Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry[J]. Water Research, 2016, 104: 20-27. doi: 10.1016/j.watres.2016.07.075

    [88]

    Ieda T, Hashimoto S, Isobe T, et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples[J]. Talanta, 2019, 194: 461-468. doi: 10.1016/j.talanta.2018.10.050

    [89]

    郭冬冬, 杨方, 李捷, 等. 气相色谱-四极杆/飞行时间质谱法快速筛查茶叶中350种农药残留[J]. 分析试验室, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm

    Guo D D, Yang F, Li J, et al. Rapid screening of 350 pesticide residues in tea by gas chromatagraphy coupled with quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2019, 38(10): 1177-1188. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201910009.htm

    [90]

    云莉芬. 液相色谱串联高分辨质谱筛查鉴定未知卤代有机物的策略及应用研究[D]. 北京: 中国地质大学(北京), 2018.

    Yun L F.Strategy for the screening and identification of unknown halogenated organic compounds based on liquid chromatography tandem high resolution mass spectrometry and the application[D].Beijing: China University of Geosciences (Beijing), 2018.

    [91]

    Lu D, Zhang S, Wang D, et al. Identification of flurochloridone metabolites in rat urine using liquid chromatography/high resolution mass spectrometry[J]. Journal of Chromatography A, 2016, 1445: 80-92. doi: 10.1016/j.chroma.2016.03.080

  • 加载中

(2)

计量
  • 文章访问数:  2282
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2020-08-11
修回日期:  2020-10-08
录用日期:  2020-11-11
刊出日期:  2021-01-28

目录