中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

镉稳定同位素研究进展

李海涛, 杨鑫, 雷华基, 杨艳, 靳兰兰, 胡圣虹. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160
引用本文: 李海涛, 杨鑫, 雷华基, 杨艳, 靳兰兰, 胡圣虹. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160
LI Hai-tao, YANG Xin, LEI Hua-ji, YANG Yan, JIN Lan-lan, HU Sheng-hong. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160
Citation: LI Hai-tao, YANG Xin, LEI Hua-ji, YANG Yan, JIN Lan-lan, HU Sheng-hong. Research Progress of Cadmium Stable Isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160

镉稳定同位素研究进展

  • 基金项目:
    国家自然科学基金项目(41773013);国家重点研发计划项目“农田地质高背景重金属污染机理研究”(2017YFD0800300)
详细信息
    作者简介: 李海涛, 博士研究生, 地球化学专业。E-mail: lht2020122020@163.com
    通讯作者: 胡圣虹, 教授, 博士生导师, 主要从事分析地球化学研究。E-mail: shhu@cug.edu.cn
  • 中图分类号: O614.242;O628

Research Progress of Cadmium Stable Isotopes

More Information
  • Cd具有挥发性和亲硫性,在海洋环境中Cd为微量营养元素,而在生态环境及农业土壤环境中Cd为有毒元素。因此,镉同位素被应用于海洋科学、地球科学、环境科学及农业科学研究,并展现出巨大的应用潜力。本文总结了近年来富含有机质的环境样品、植物样品和生物样品的消解方法,以及Cd分离纯化及双稀释剂校正方法的研究进展。采用微波、高压灰化和高氯酸消解等样品前处理方法均可消除有机质对镉同位素测定的影响;基于AG MP-1(M)树脂-盐酸淋洗体系可有效分离基体及干扰元素,不会导致镉同位素分馏;111Cd-113Cd同位素双稀释剂校正体系的测试精度高,可达0.1εCd/amu。同时,本文阐述了镉同位素在海洋科学、地球科学、环境科学及农业科学领域研究的最新进展和认识。镉同位素已成功应用于构建海洋生物地球化学Cd循环体系、反演古海洋环境及初级生产力变化,硫化物矿床成矿流体演化、成矿物质来源示踪及不同成因矿床类型判别研究,环境体系Cd污染源的源区判别、农田面源Cd来源及其运移、循环及储存机制研究。本文提出需要进一步开展镉同位素分馏机制及分馏模型的研究,构建Cd稳定同位素地球化学体系。

  • 加载中
  • 图 1  (a) 镉同位素每年发表的应用类文献量统计;(b)镉同位素每年在各领域发表的文献量统计

    Figure 1. 

    表 1  Cd分离纯化方法

    Table 1.  Separation and purification methods of Cd

    样品类型 树脂类型 依次加入的淋滤酸种类 流程空白(pg) Cd回收率(%) 文献来源
    陆地矿物 Dowex AG 50-X8 - 3000 50 DeLaeter等(1975)[43]
    陨石、地球样品和矿物 AG 1-X8 3/0.5/1/2/8mol/L盐酸, 0.5mol/L硝酸-0.1mol/L氢溴酸-2mol/L硝酸 20 98 Wombacher等(2003)[44]
    土壤、锰结核、工厂煅烧产物 AG MP-1 1.2/0.3/0.06/0.012/0.0012 mol/L盐酸 <20 <95 Cloquet等(2005) [45]
    水系沉积物 AG MP-1 1.2/0.3/0.06/0.012/ 0.0012mol/L盐酸 <200 >90 Gao等(2005)[46]
    硫化物、植物 AG MP-1M 2/0.3/0.06/0.012/0.0012 mol/L盐酸 <100 99.82 Zhu等(2013)[47] Wei等(2016)[28]
    富有机质环境样品 AG MP-1M 2/0.3/0.012/0.0012 mol/L盐酸 50~230 - Pallavicini等(2014)[39]
    土壤、水系沉积物 AG MP-1M 2/0.3/0.06/0.012/ 0.0012mol/L盐酸 <100 - Li等(2018)[27]
    土壤、水系沉积物 AG MP-1 2/0.3/0.06/0.012 /0.0012mol/L盐酸 - 94.8~99.3 Park等(2020)[42]
    基体复杂的低Cd含量地质样品 AG MP-1M 2/1/0.3/0.06/0.012/0.0012 mol/L盐酸, 两次 90~140 >90 Tan等(2020)[26]
    注:“-”表示文献中未给出数据。
    下载: 导出CSV

    表 2  镉同位素研究分析测试技术及精度

    Table 2.  Measurement methods of Cd isotope analysis and their accuracy

    文献来源 校正方法 仪器 ±2SD(εCd/amu)
    Wombacher等(2003)[44] Ag-, Sb-normalization MC-ICP-MS 0.2~0.8
    Wombacher等(2004)[17] SSB MC-ICP-MS 1.0~1.5
    Cloquet等(2005)[45] SSB MC-ICP-MS 0.1~0.5
    Schediwy等(2006)[53] 106Cd-111Cd DS TIMS 2.0
    Lacan等(2006)[54] Ag normalization MC-ICP-MS 0.8
    Ripperger and Ripperger(2007)[49] 110Cd-111Cd DS MC-ICP-MS 0.2~0.3
    Gao等(2008)[46] SSB MC-ICP-MS 0.2~0.3
    Schimitt等(2009)[55] 106Cd-108Cd DS TIMS 0.07
    Shiel等(2009)[56] Ag normalization MC-ICP-MS 0.2~0.8
    Horner等(2010)[24] 111Cd-113Cd DS MC-ICP-MS 0.2~0.3
    Xue等(2012)[50] 111Cd-113Cd DS MC-ICP-MS 0.13~0.2
    Pallavicini等(2014)[39] Ag normalization MC-ICP-MS 0.2~1
    Wen等(2015)[57] SSB MC-ICP-MS 0.2
    Chrastný等(2015)[52] 106Cd-116Cd DS MC-ICP-MS 0.05~0.2
    Martinkova等(2016)[51] 111Cd-113Cd DS MC-ICP-MS 0.15
    Zhang等(2018)[48] 111Cd-113Cd DS MC-ICP-MS 0.1
    Tan等(2020)[26] 111Cd-113Cd DS MC-ICP-MS 0.1
    注:Ag-、Sb-normalization为Ag或Sb外标法;SSB为样品标准交叉法;DS为双稀释剂法;2SD为多次测试得到重现性两倍的相对误差,统一换算成εCd/amu表示方式。
    下载: 导出CSV

    表 3  铅锌矿床镉同位素数据

    Table 3.  Cd isotope data of lead-zinc deposits

    铅锌矿床名称 成因类型 样品类型 ε114/110Cd 文献来源
    会泽矿床 类SEDEX型 闪锌矿方铅矿 -1.9~+2-16.4~-6.9 Zhu等(2013)[47]
    杉树林矿床 类SEDEX型 闪锌矿 -4.5~+0.1 Zhu等(2013)[47]
    富乐矿床 MVT型 闪锌矿 -4.1~+5.9 Zhu等(2013)[47];Zhu等(2016)[33];Wen等(2016)[21]
    牛角塘矿床 MVT型 闪锌矿 -7~+0.7 Zhu等(2013)[47]
    金顶矿床 MVT型 闪锌矿 -6.3~+5.7 Zhu等(2013)[47];Li等(2019)[29]
    天宝山矿床 MVT型 闪锌矿 -1.0~+4.6 Zhu等(2016)[79];Wen等(2016)[21]
    大硐喇矿床 MVT 闪锌矿 +1.6~+3.8 Wen等(2016)[21]
    白音诺尔矿床 矽卡岩型 闪锌矿 -2.5~0 Wen等(2016)[21]
    呷村矿床 VMS型 闪锌矿 -1.1~+0.5 Wen等(2016)[21]
    沙沟矿床 岩浆热液型 闪锌矿 -0.5~0 Wen等(2016)[21]
    大宝山矿床 斑岩型 闪锌矿 -0.7 Wen等(2016)[21]
    狼山矿床 SEDEX型 闪锌矿 -2.9~+2.2 Wen等(2016)[21]
    海洋硫化物 - 闪锌矿+黄铁矿 -4.9~+3.5 Wen等(2016)[21]
    下载: 导出CSV
  • [1]

    唐波, 王景腾, 付勇. 不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素[J]. 岩矿测试, 2020, 39(2): 162-173. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Tang B, Wang J T, Fu Y. Magnesium isotope composition of different geological reservoirs and controlling factors of magnesium isotope fractionation in the formation of carbonate minerals[J]. Rock and Mineral Analysis, 2020, 39(2): 162-173. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [2]

    王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm

    Wang Y, Zhu X Q. Fe isotope systematics and its implications in ore deposit geology[J]. Acta Petrologica Sinica, 2012, 28(11): 3638-3654. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211017.htm

    [3]

    Wang D, Sun X, Zheng Y, et al. Two pulses of mineralization and genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Constraints from Fe-Zn isotopes[J]. Ore Geology Reviews, 2017, 84: 347-363. doi: 10.1016/j.oregeorev.2016.12.030

    [4]

    Ding X, Ripley E M, Wang W, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327-341. doi: 10.1016/j.gca.2019.07.015

    [5]

    秦燕, 徐衍明, 侯可军, 等. 铁同位素分析测试技术研究进展[J]. 岩矿测试, 2020, 39(2): 151-161. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Qin Y, Xu Y M, Hou K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2): 151-161. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [6]

    Wu S, Zheng Y, Wang D, et al. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration[J]. Ore Geology Reviews, 2017, 90: 14-24. doi: 10.1016/j.oregeorev.2017.10.001

    [7]

    张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347-355. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347-355. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [8]

    何承真, 肖朝益, 温汉捷, 等. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源[J]. 岩石学报, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm

    He C Z, Xiao C Y, Wen H J, et al. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components[J]. Acta Petrologica Sinica, 2016, 32(11): 3394-3406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611012.htm

    [9]

    王中伟, 袁玮, 陈玖斌. 锌稳定同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm

    Wang Z W, Yuan W, Chen J B. Zn stable isotope geochemistry: A review[J]. Earth Science Frontiers, 2015, 22(5): 84-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505009.htm

    [10]

    王悦, 朱祥坤. 锌同位素在矿床学中的应用: 认识与进展[J]. 矿床地质, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm

    Wang Y, Zhu X K. Application of Zn isotopes to study of mineral deposits: A review[J]. Mineral Deposits, 2010, 29(5): 843-852. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201005008.htm

    [11]

    王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809090102

    [12]

    Zhong Q H, Zhou Y C, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 1-9. http://www.sciencedirect.com/science/article/pii/S0048969720331028

    [13]

    朱传威, 温汉捷, 张羽旭, 等. Cd稳定同位素测试技术进展及其应用[J]. 地学前缘, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm

    Zhu C W, Wen H J, Zhang Y X, et al. Analytical technique for cadmium stable isotopes and its applications[J]. Earth Science Frontiers, 2015, 22(5): 115-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505012.htm

    [14]

    刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmental tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    [15]

    魏荣菲, 郭庆军, 杨俊兴, 等. 镉同位素技术在环境科学研究中的应用进展[J]. 生态学杂志, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm

    Wei R F, Guo Q J, Yang J X, et al. Application and progress of Cd isotope technology in environmental science[J]. Chinese Journal of Ecology, 2014, 33(2): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201402038.htm

    [16]

    Fouskas F, Ma L, Engle M A, et al. Cadmium isotope fractionation during coal combustion: Insights from two U. S. coal-fired power plants[J]. Applied Geochemistry, 2018, 96: 100-112. doi: 10.1016/j.apgeochem.2018.06.007

    [17]

    Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013

    [18]

    魏荣菲. 植物镉同位素分析测试方法的优化及其分馏特征研究[D]. 北京: 中国科学院大学, 2015.

    Wei R F.Study on the method of Cd isotope analysis and the characteristics of Cd isotope fractionation in plants[D].Beijing: University of Chinese Academy of Sciences, 2015.

    [19]

    Abouchami W, Galer S J G, de Baar H J W, et al. Bio-geochemical cycling of cadmium isotopes in the southern ocean along the Zero Meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022

    [20]

    Ripperger S, Rehkäemper M, Porcelli D, et al. Cadmium isotope fractionation in seawater-A signature of biological activity[J]. Earth and Planetary Science Letters, 2007, 261(3): 670-684. http://www.sciencedirect.com/science/article/pii/S0012821X07004906

    [21]

    Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cad-mium isotope evidence for the classification of lead-zinc deposits[J]. Scientific Reports, 2016, 6(1): 25273. doi: 10.1038/srep25273

    [22]

    Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029

    [23]

    Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 243-253. doi: 10.1016/j.epsl.2011.10.004

    [24]

    Horner T J, Schönbächler M, Rehkämper M, et al. Ferro-manganese crusts as archives of deep water Cd isotope compositions[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4), doi:10.3390/geosciences10010036.

    [25]

    Schmitt A D, Galer S J G, Abouchami W. Mass-depen-dent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1-2): 262-272. doi: 10.1016/j.epsl.2008.10.025

    [26]

    Tan D, Zhu J M, Wang X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020: 1-33. http://pubs.rsc.org/en/content/articlelanding/2020/ja/c9ja00397e/unauth

    [27]

    Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236

    [28]

    Wei R, Guo Q, Wen H, et al. Fractionation of stable cad-mium isotopes in the cadmium Tolerant Ricinus communis and hyperaccumulator Solanum nigrum[J]. Scientific Reports, 2016, 6(1): 24309. doi: 10.1038/srep24309

    [29]

    Li M L, Liu S A, Xue C J, et al. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria[J]. Geochimica et Cosmochimica Acta, 2019, 265: 1-18. doi: 10.1016/j.gca.2019.08.018

    [30]

    Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. The Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127

    [31]

    Barraza F, Moore R E T, Rehkäemper M, et al. Cadmium isotope fractionation in the soil-cacao systems of Ecuador a pilot field study[J]. The Royal Society of Chemistry, 2019, 9: 34011-34022. http://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra05516a

    [32]

    Moore R E T, Ullah I, de Oliveira V H, et al. Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters[J]. Horticulture Research, 2020, 7(71): 1-11. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_horticulture-research_thesis/040006211928.html

    [33]

    Zhu C, Wen H, Zhang Y, et al. Cadmium isotope fractionation in the fule Mississippi Valley-type deposit, Southwest China[J]. Mineralium Deposita, 2016, 52(5): 675-686. http://link.springer.com/10.1007/s00126-016-0691-7

    [34]

    Wang D, Zheng Y Y, Mathur R, et al. Fractionation of cadmium isotope caused by vapour-liquid partitioning in hydrothermal ore-forming system: A case study of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet[J]. Ore Geology Reviews, 2020, 119: 1-14.

    [35]

    Xu C, Zhong H, Hu R Z, et al. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in southwest China: Implications of Pb-Zn-S-Cd isotopic compositions[J]. Mineralium Deposita, 2020, 55(3): 491-513. doi: 10.1007/s00126-019-00893-5

    [36]

    Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J]. Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005

    [37]

    Sweere T C, Dickson A J, Jenkyns H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during oceanic Anoxic Event 2(Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 1-11.

    [38]

    Sweere T C, Dickson A J, Jenkyns H C, et al. Controls on the Cd-isotope composition of Upper Cretaceous (Cenomanian-Turonian) organic-rich mudrocks from South Texas (Eagle Ford Group)[J]. Geochemical at Cosmochimica Acta, 2020, 287: 251-262. doi: 10.1016/j.gca.2020.02.019

    [39]

    Pallavicini N, Engstrom E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G

    [40]

    Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D

    [41]

    Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2020, doi:10.1111/ggr.12357.

    [42]

    Park J, Kim J, Lee K, et al. Comparison of acid extraction and total digestion methods for measuring Cd isotope Ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2020, 192, doi:10.1007/s10661-019-8017-8.

    [43]

    Rosman K J R, de Laeter J R. The isotopic composition of cadmium in terrestrial minerals[J]. International Journal of Mass Spectrometry and Ion Physics, 1975, 16: 385-394. doi: 10.1016/0020-7381(75)85027-3

    [44]

    Wombacher F, Rehkämper M, Mezger K, et al. Stable iso-tope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2

    [45]

    Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

    [46]

    Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

    [47]

    Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4

    [48]

    Zhang L, Li J, Xu Y G, et al. The influence of the double spike proportion effect on stable isotope (Zn, Mo, Cd, and Sn) measurements by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(4): 555-562. doi: 10.1039/C8JA00016F

    [49]

    Ripperger S, Rehkämper M. Precise determination of cad-mium isotope fractionation in seawater by double spike MC-ICPMS[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005

    [50]

    Xue Z, Rehkämper M, Schoenbaechler M, et al. A new methodology for precise cadmium isotope analyses of seawater[J]. Analytical and Bioanalytical Chemistry, 2012, 402(2): 883-893. doi: 10.1007/s00216-011-5487-0

    [51]

    Martinkova E, Chrastný V, Francova M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039

    [52]

    Chrastný V, Čadková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002

    [53]

    Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335. http://www.sciencedirect.com/science/article/pii/S0012821X06000343

    [54]

    Lacan F, Francois R, Ji Y, et al. Cadmium isotopic composition in the ocean[J]. Geochimica et Cosmochimica Acta, 2006, 70(20): 5104-5118. doi: 10.1016/j.gca.2006.07.036

    [55]

    Schmitt A D, Galer S J G, Abouchami W. High-pre-cision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(8): 1079-1088. doi: 10.1039/b821576f

    [56]

    Shiel A E, Barling J, Orians K J, et al. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios[J]. Analytica Chimica Acta, 2009, 633(1): 29-37. doi: 10.1016/j.aca.2008.11.026

    [57]

    Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

    [58]

    Xie R C, Rehkämper M, Grasse P, et al. Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific[J]. Earth and Planetary Science Letters, 2019, 512: 134-146. doi: 10.1016/j.epsl.2019.02.001

    [59]

    Sieber M, Conway T M, de Souza G F, et al. High-resolution Cd isotope systematics in multiple zones of the southern ocean from the Antarctic circumnavigation expedition[J]. Earth and Planetary Science Letters, 2019, 527, doi:10.1016/j.epsl.2019.115799.

    [60]

    Janssen D J, Abouchami W, Galer S J G, et al. Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific[J]. Earth and Planetary Science Letters, 2017, 472: 241-252. doi: 10.1016/j.epsl.2017.04.048

    [61]

    Yang S C, Lee D C, Ho T Y, et al. The isotopic composition of dissolved cadmium in the water column of the West Philippine Sea[J]. Frontiers in Marine Science, 2014, 1(61), doi:10.3389/fmars.2014.00061.

    [62]

    Yang S C, Zhang J, Sohrin Y, et al. Cadmium cycling in the water column of the Kuroshio-Oyashio Extension Region: Insights from dissolved and particulate isotopic composition[J]. Geochimica et Cosmochimica Acta, 2018, 233: 66-80. doi: 10.1016/j.gca.2018.05.001

    [63]

    Xie R C, Galer S J G, Abouchami W, et al. Non-rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic[J]. Earth and Planetary Science Letters, 2017, 471: 94-103. doi: 10.1016/j.epsl.2017.04.024

    [64]

    Lambelet M, Rehkämper M, de Flierdt T V, et al. Iso-topic analysis of Cd in the mixing zone of Siberian rivers with the arctic ocean-new constraints on marine Cd cycling and the isotope composition of riverine Cd[J]. Earth and Planetary Science Letters, 2013, 361: 64-73. doi: 10.1016/j.epsl.2012.11.034

    [65]

    Bridgestock L, Rehkämper M, van de Flierdt T, et al. The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean[J]. Geophysical Research Letters, 2017, 44(6): 2932-2940. doi: 10.1002/2017GL072748

    [66]

    Yang S C, Lee D C, Ho T Y. The isotopic composition of cadmium in the water column of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2012, 98: 66-77. doi: 10.1016/j.gca.2012.09.022

    [67]

    Janssen D J, Conway T M, John S G, et al. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 6888-6893. doi: 10.1073/pnas.1402388111

    [68]

    Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039

    [69]

    Janssen D J, Abouchami W, Galer S J G, et al. Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink[J]. Earth and Planetary Science Letters, 2019, 515: 67-78. doi: 10.1016/j.epsl.2019.03.006

    [70]

    George E, Stirling C H, Gault-Ringold M, et al. Determi-nation of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2019, 514: 84-95. doi: 10.1016/j.epsl.2019.02.031

    [71]

    John S G, Kunzmann M, Townsend E J, et al. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 466: 202-208. doi: 10.1016/j.palaeo.2016.11.003

    [72]

    Hohl S V, Galer S J G, Gamper A, et al. Cadmium isotope variations in Neoproterozoic carbonates-A tracer of biologic production?[J]. Geochemical Perspectives Letters, 2017, 3: 32-44. http://www.researchgate.net/publication/307994560_Cadmium_isotope_variations_in_Neoproterozoic_carbonates_-_A_tracer_of_biologic_production

    [73]

    Viehmann S, Hohl S V, Kraemer D, et al. Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites[J]. Gondwana Research, 2019, 67: 101-114. doi: 10.1016/j.gr.2018.10.014

    [74]

    Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the Basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (Bio)geochemical metal cycling in cryogenian seawater[J]. Geoscience, 2020, doi:10.3390/geosciences 10010036.

    [75]

    Dickson A J, Idiz E, Porcelli D, et al. The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks[J]. Geochimica et Cosmochimica Acta, 2020, 287: 205-220. doi: 10.1016/j.gca.2019.11.001

    [76]

    Georgiev S V, Horner T J, Stein H J, et al. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event[J]. Earth and Planetary Science Letters, 2015, 410: 84-96. doi: 10.1016/j.epsl.2014.11.010

    [77]

    Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J]. Geochimica et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036

    [78]

    王伟中, 张朝晖, 温汉捷, 等. 镉同位素在古环境重建中的应用: 以晚泥盆世弗拉期-法门期生物灭绝事件为例[J]. 矿物岩石地球化学通报, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm

    Wang W Z, Zhang C H, Wen H J, et al. The application of Cd isotopes in the paleo-environment reconstruction: A case study of the Frasnian-Famennian mass extinction event in the Late Devonian[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001015.htm

    [79]

    Zhu C, Wen H, Zhang Y, et al. Cadmium and sulfur iso-topic compositions of the Tianbaoshan Zn-Pb-Cd deposit, Sichuan Province, China[J]. Ore Geology Reviews, 2016, 76: 152-162. doi: 10.1016/j.oregeorev.2016.01.010

    [80]

    Deng L, Bi C J, Jia J P, et al. Effects of heating activities in winter on characteristics of PM2.5-bound Pb, Cd and lead isotopes in cities of China[J]. Journal of Cleaner Production, 2020, 265: 1-10. http://www.sciencedirect.com/science/article/pii/S0959652620318734

    [81]

    Yang W J, Ding K B, Zhang P, et al. Cadmium stable iso-tope variation in a mountain area impacted by acid mine drainage[J]. The Science of the Total Environment, 2019, 646: 696-703. doi: 10.1016/j.scitotenv.2018.07.210

    [82]

    Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

    [83]

    Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science and Technology, 2017, 51(13): 7369-7377. doi: 10.1021/acs.est.7b00858

    [84]

    Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science and Technology, 2018, 52(4): 1919-1928. doi: 10.1021/acs.est.7b05439

    [85]

    Wiggenhauser M B, Moritz I M, Müller M, et al. Cad-mium isotope fractionation in soil-wheat systems[J]. Environmental Science and Technology, 2016, 50(17): 1-32. http://pubs.acs.org/doi/10.1021/acs.est.6b01568

  • 加载中

(1)

(3)

计量
  • 文章访问数:  2103
  • PDF下载数:  74
  • 施引文献:  0
出版历程
收稿日期:  2020-12-09
修回日期:  2020-12-30
录用日期:  2021-01-02
刊出日期:  2021-01-28

目录