中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
引用本文: 王佳翰, 李正鹤, 杨峰, 杨秀玖, 黄金松. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
Citation: WANG Jia-han, LI Zheng-he, YANG Feng, YANG Xiu-jiu, HUANG Jin-song. Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085

偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素

  • 基金项目:
    中国地质调查局地质调查项目(DD20191027)
详细信息
    作者简介: 王佳翰, 硕士, 工程师, 从事地质样品分析研究工作。E-mail: wangjiahanhao@163.com
  • 中图分类号: O657.63

Simultaneous Determination of 48 Elements in Marine Sediments by ICP-MS with Lithium Metaborate Fusion

  • 海洋沉积物常用的分析方法如敞开消解或高压密闭消解结合电感耦合等离子体质谱(ICP-MS)或电感耦合等离子体发射光谱(ICP-OES)测定,粉末压片或熔片结合X射线荧光光谱法(XRF)测定,分别存在消解不完全、速度慢、检出限高等缺点,导致样品前处理效率低、待测元素少。针对上述问题,本文采用偏硼酸锂为熔剂分解样品,5%硝酸浸取,用ICP-MS法进行测定,建立了一种快速分析海洋沉积物中48种元素的方法。使用海洋沉积物国家标准物质作为高点绘制标准工作曲线,确定了助熔剂偏硼酸锂用量、稀释倍数、各待测元素的分析同位素及内标元素、仪器测定模式及个别元素的干扰校正方程等,得到最佳分解条件及测定条件。结果表明:由于高温损失,P、As、Se、Cd、Hg等元素无法得到准确结果,可改用微波消解等方式前处理后再进行测定;Cu、Zn、Cr、Ni、Co等共计48种元素使用本法均能得到准确结果,各元素方法精密度(RSD)均小于9.7%。本方法应用于分析海洋沉积物国家标准物质GBW07333、GBW07314、GBW07335、GBW07336,测定值和认定值相符;分析海洋沉积物实际样品,各元素加标回收率介于83.6%~118.6%。本方法可测定元素多,极大提高了分析效率,适合大批量样品分析。

  • 加载中
  • 表 1  不同偏硼酸锂加入量对GBW07314中难溶元素分析结果的影响

    Table 1.  Effect of different LiBO2 addition on analysis results of refractory elements in GBW07314

    元素 认定值(μg/g) 测定值(μg/g)
    0.200g偏硼酸锂 0.300g偏硼酸锂 0.400g偏硼酸锂 0.500g偏硼酸锂
    Zr 229 111 172 225 209
    Hf 6.2 2.74 3.04 6.41 6.80
    Nb 19.1 4.25 6.83 18.6 17.2
    Ta 1.2 0.436 0.702 1.23 1.38
    W 2.1 1.24 1.69 2.02 2.14
    Mo 0.64 0.177 0.415 0.603 0.612
    下载: 导出CSV

    表 2  方法检出限

    Table 2.  Detection limit of the method

    待测元素 检出限(μg/g) 待测元素 检出限(μg/g)
    Cu 1.479 Tm 0.006
    Zn 11.452 Rb 0.549
    Cr 16.262 Sc 0.330
    Ni 0.995 Th 0.067
    Co 0.236 V 1.168
    Pb 2.955 Nb 0.137
    Sr 0.357 Ta 0.067
    Ba 3.616 Hf 0.021
    Ga 0.466 Cs 0.043
    Mo 0.113 W 0.064
    Zr 0.360 Sb 0.051
    La 0.391 U 0.098
    Ce 0.157 Tb 0.015
    Nd 0.267 Bi 1.096
    Sm 0.064 Be 0.430
    Eu 0.008 SiO2* 0.870
    Ho 0.007 Al2O3* 0.026
    Yb 0.074 Fe2O3* 0.033
    Lu 0.006 CaO* 0.051
    Y 0.442 MgO* 0.004
    Pr 0.025 K2O* 0.192
    Gd 0.077 Na2O* 0.080
    Dy 0.026 MnO* 0.001
    Er 0.113 TiO2* 0.001
    注:标注“*”的待测元素检出限单位为%。
    下载: 导出CSV

    表 3  国家标准物质测定结果及加标回收率

    Table 3.  Analytical results of national standard references and their spiked recovery

    待测元素 GBW07314 GBW07333 GBW07335 GBW07336 回收率(%)
    认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g) 认定值(μg/g) 测定值(μg/g)
    Cu 31 29.9 29.1 26.5 18 16.6 23 20.8 96.2
    Zn 87 85.5 114 112 79 75.4 100 95.5 91.4
    Cr 86 77.8 107 98.5 78 73.9 64 57.9 91.4
    Ni 34.3 32.7 46.1 42.0 36 35.7 44 42.5 87.8
    Co 14.2 13.3 18.9 18.6 15 14.9 13 12.3 83.6
    Pb 25 23.6 29 26.9 25 23.5 20 18.3 92.2
    Sr 150 142 130 124 193 184 507 463 96.0
    Ba 425 424 477 449 396 361 488 479 96.4
    Ga 16.1 16.0 - 19.2 16 14.8 15.1 14.1 114.6
    Mo 0.64 0.651 - 0.462 - 1.42 - 1.08 107.8
    Zr 229 227 144 132 184 171 134 128 105.2
    La 38 35.6 40.8 39.9 38 36.0 31 28.0 93.6
    Ce 78 70.4 77.4 75.9 78 71.5 64 62.8 86.6
    Nd 33 30.0 33.1 31.6 32.6 30.2 26 25.0 112.0
    Sm 6.7 6.48 6.28 6.18 6.2 6.03 5.2 4.77 89.8
    Eu 1.3 1.24 1.26 1.16 1.25 1.24 1.01 0.93 91.2
    Ho 1 0.965 0.96 0.952 0.92 0.839 0.8 0.744 110.0
    Yb 2.8 2.61 2.46 2.23 2.42 2.21 2.2 2.11 85.2
    Lu 0.45 0.425 0.37 0.355 0.38 0.374 0.31 0.318 86.2
    Y 27 25.2 24.9 23.7 25 25.0 23 20.7 109.4
    Pr 8.7 7.98 8.32 7.51 8.3 7.59 6.8 6.26 85.2
    Gd 5.6 5.46 5.44 4.98 5.4 5.09 4.5 4.08 86.2
    Dy 5.4 5.18 4.59 4.43 4.8 4.74 4.1 3.97 107.2
    Er 3 2.94 2.57 2.49 2.56 2.42 2.3 2.09 108.8
    Tm 0.44 0.442 0.38 0.355 0.39 0.364 0.29 0.285 109.6
    Rb 109.3 104 164 164 118 113 110 99.8 95.0
    Sc 12.5 11.6 16.1 15.1 12 11.9 11 10.8 118.6
    Th 10.2 9.52 14.2 13.2 13.6 12.6 12.6 12.0 93.4
    V 103.1 95.5 131 128 95 91.3 87 85.6 109.6
    Nb 19.1 18.3 17.1 16.3 13.7 13.2 12.9 12.4 116.5
    Ta 1.2 1.08 1.22 1.21 - 1.62 - 1.08 110.0
    Hf 6.2 6.09 5.2 4.83 5 4.91 5 4.80 97.2
    Cs 8.2 8.11 13.8 13.4 8 7.33 7.6 7.28 105.6
    W 2.1 1.97 1.93 1.82 - 2.11 - 1.97 104.8
    Sb 1.4 1.39 1.06 0.972 - 0.865 - 1.32 96.0
    U 2.7 2.66 4.5 4.45 2.7 2.61 2.8 2.54 113.2
    Tb 0.83 0.821 0.76 0.725 0.8 0.762 0.7 0.645 107.8
    Be - 2.42 - 1.61 - 1.72 - 1.71 99.2
    Bi - 0.621 0.45 0.431 - 0.515 - 1.46 110.2
    SiO2* 61.91 60.4 54 51.3 59.6 55.3 44.9 44.4 -
    Al2O3* 13.07 12.58 17.42 17.32 13.1 12.06 12.1 11.9 96.2
    Fe2O3* 5.36 5.14 6.77 6.17 5.28 5.23 4.65 4.57 91.0
    CaO* 4.31 4.27 1.47 1.34 4.8 4.51 4.8 4.62 112.5
    MgO* 2.5 2.43 3.08 2.84 2.51 2.4 2.51 2.31 87.5
    K2O* 2.48 2.44 3.53 3.36 2.71 2.63 2.71 2.65 93.5
    Na2O* 1.68 1.53 2.93 2.66 2.3 2.12 2.5 2.37 103.0
    MnO* 0.096 0.112 0.062 0.0641 0.073 0.0754 0.3 0.274 109.9
    TiO2* 0.825 0.824 0.775 0.711 0.72 0.654 0.61 0.595 101.2
    注:标注“*”的待测元素认定值和测定值的数据单位为%。
    下载: 导出CSV
  • [1]

    Guan Y, Sun X M, Shi G Y, et al. Rare earth elements composition and constraint on the genesis of the polymetallic crusts and nodules in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(5): 1751-1766. doi: 10.1111/1755-6724.13409

    [2]

    Wegorzewski A V, Grangeon S, Webb S M, et al. Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments[J]. Geochimica et Cosmochimica Acta, 2020, 282: 19-37. doi: 10.1016/j.gca.2020.04.012

    [3]

    Wang X H, Gao Y S, Wang Y M, et al. Three cobalt-rich seamount crust reference materials: GSMC-1 to 3[J]. Geostandards & Geoanalytical Research, 2003, 27(3): 251-257.

    [4]

    Levin L A, Mengerink K, Gjerde K M, et al. Defining "serious harm" to the marine environment in the context of deep-seabed mining[J]. Marine Policy, 2016, 74: 245-259. doi: 10.1016/j.marpol.2016.09.032

    [5]

    German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006

    [6]

    Monecke T, Petersen S, Hannington M, et al. The global rare element endowment of seafloor massive sulfide deposits[J]. 13th SGA Biennial Meeting, 2015, 3: 1261-1263.

    [7]

    Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763. doi: 10.1038/s41598-018-23948-5

    [8]

    Li J R, Lius F, Feng X L, et al. Major and trace element geochemistry of the mid-bay of Bengal surface sediments: Implications for provenance[J]. Acta Oceanologica Sinica, 2017, 36(3): 82-90. doi: 10.1007/s13131-017-1041-z

    [9]

    Pham D T, Gouramanis C, Switzer A D, et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits[J]. Marine Geology, 2017, 385: 274-292. doi: 10.1016/j.margeo.2017.01.004

    [10]

    冯利, 冯秀丽, 王晓明, 等. 末次盛冰期以来南海西北陆坡沉积物来源及其常微量元素对古气候变化的响应[J]. 中国海洋大学学报, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm

    Feng L, Feng X L, Wang X M, et al. Sediment provenance and climate change since the last glacial maximum record by major and trace elements in the northwestern slope of the South China Sea[J]. Periodical of Ocean University of China, 2020, 50(6): 88-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202006010.htm

    [11]

    Santos I R, Favaro D I, Schaefer C E, et al. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements[J]. Marine Chemistry, 2007, 107(4): 464-474. doi: 10.1016/j.marchem.2007.09.006

    [12]

    Xu F J, Hu B Q, Dou T G, et al. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene[J]. Continental Shelf Research, 2017, 144: 21-30. doi: 10.1016/j.csr.2017.06.013

    [13]

    贾福福, 沙龙滨, 李冬玲, 等. 西伯利亚极地海域第四纪以来古海洋环境研究进展[J]. 极地研究, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm

    Jia F F, Sha L B, Li D L, et al. Review of research on quaternary paleoceanography of the Siberian arctic seas[J]. Chinese Journal of Polar Research, 2020, 32(2): 250-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ202002012.htm

    [14]

    Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean[J]. Geochemical Journal, 2015, 49(6): 621-635. doi: 10.2343/geochemj.2.0361

    [15]

    Iijima K, Yasukawa K, Fujinaga K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean[J]. Geochemical Journal, 2016, 50(6): 557-573. doi: 10.2343/geochemj.2.0431

    [16]

    曾志刚, 陈祖兴, 张玉祥, 等. 海底热液活动的环境与产物[J]. 海洋科学, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm

    Zeng Z G, Chen Z X, Zhang Y X, et al. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences, 2020, 44(7): 143-155. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX202007013.htm

    [17]

    Begum Z, Balaram V, Ahmad S M, et al. Determination of trace and rare earth elements in marine sediment reference materials by ICP-MS: Comparison of open and closed acid digestion methods[J]. Atomic Spectroscopy, 2007, 28(2): 41-50.

    [18]

    高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007 http://www.ykcs.ac.cn/article/id/ykcs_20120307

    Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425-429. doi: 10.3969/j.issn.0254-5357.2012.03.007 http://www.ykcs.ac.cn/article/id/ykcs_20120307

    [19]

    王初丹, 罗盛旭. 硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J]. 桂林理工大学学报, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024

    Wang C D, Luo S X. Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J]. Journal of Guilin University of Technology, 2016, 36(2): 337-340. doi: 10.3969/j.issn.1674-9057.2016.02.024

    [20]

    孙友宝, 宋晓红, 孙媛媛, 等. 电感耦合等离子体原子发射光谱法(ICP-AES)测定海洋沉积物中的多种金属元素[J]. 中国无机分析化学, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm

    Sun Y B, Song X H, Sun Y Y, et al. Determination of multiple metallic elements in oceanic sediments by ICP-AES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(3): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201403011.htm

    [21]

    Ahmed A Y, Abdullah P, Wood A K, et al. Determination of some trace elements in marine sediment using ICP-MS and XRF (A comparative study)[J]. Oriental Journal of Chemistry, 2013, 29(2): 645-653.

    [22]

    张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm

    Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm

    [23]

    孙萱, 宋金明, 于颖, 等. 熔融制样XRF法测定海洋沉积物中10种主量元素的条件优化[J]. 海洋环境科学, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm

    Sun X, Song J M, Yu Y, et al. Optimum conditions for the determination of 10 main elements in marine sediments by the fused bead-X-ray fluorescence spectrometry[J]. Marine Environmental Science, 2020, 39(6): 902-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202006013.htm

    [24]

    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201904010043

    [25]

    王蕾, 何红蓼, 李冰. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225

    Wang L, He H L, Li B. Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J]. Rock and Mineral Analysis, 2003, 22(2): 86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225

    [26]

    罗磊, 付胜波, 肖洁, 等. 电感耦合等离子体发射光谱法测定含重晶石的银铅矿中的铅[J]. 岩矿测试, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d

    Luo L, Fu S B, Xiao J, et al. Determination of lead in argentalium ores containing barite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 203-207. http://www.ykcs.ac.cn/article/id/b2b8f425-60ab-4b67-8e4d-151c5e29622d

    [27]

    杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷重金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    [28]

    杨常青, 张双双, 吴楠, 等. 微波消解-氢化物发生原子荧光光谱法和质谱法测定高有机质无烟煤中汞砷的可行性研究[J]. 岩矿测试, 2016, 35(5): 481-487. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.006

    Yang C Q, Zhang S S, Wu N, et al. Feasibility study on content determination of mercury and arsenic in high organic anthracite by microwave digestion-hydride generation-atomic fluorescence spectrometry and mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(5): 481-487. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.05.006

    [29]

    苗雪雪, 苗莹, 龚浩如, 等. 不同消解方法测定植株中磷含量的比较研究[J]. 中国农学通报, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm

    Miao X X, Miao Y, Gong H R, et al. Digestion methods for determining phosphorus content in plants[J]. Chinese Agricultural Science Bulletin, 2019, 35(20): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201920024.htm

    [30]

    汪勇先, 秦俊法, 吉倩梅, 等. 不同的干燥和灰化过程中生物样品微量元素损失的放射性示踪研究——Ⅰ. 锌、钼、镉和硒[J]. 分析化学, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm

    Wang Y X, Qin J F, Ji Q M, et al. Investigation on the loss of trace elements in biological materials in different drying and ashing procedures by using radioactive tracers. Ⅰ: Zn, Mo, Cd and Se[J]. Chinese Journal of Analytical Chemistry, 1985, 13(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198503016.htm

    [31]

    冯婧. 重金属元素分析消解技术在镉、砷检测中的应用比较[J]. 食品研究与开发, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm

    Feng J. Comparison and application of digestion methods of heavy metals on cadmium and arsenic determination[J]. Food Research and Development, 2017, 38(16): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201716034.htm

    [32]

    任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm

    Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm

    [33]

    刘珂珂, 霍现宽, 褚艳红, 等. 超声辅助-王水提取法在测定土壤中重金属元素的应用[J]. 冶金分析, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm

    Liu K K, Huo X K, Chu Y H, et al. Application of ultrasonic-assisted aqua regia extraction in the determination of heavy metal elements in soil[J]. Metallurgical Analysis, 2019, 39(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201901008.htm

    [34]

    禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77-84. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906270094

    Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77-84. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906270094

    [35]

    董学林, 贾正勋, 汪慧平, 等. 共沉淀分离-电感耦合等离子体质谱法测定多金属矿石中硒和碲[J]. 冶金分析, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm

    Dong X L, Jia Z X, Wang H P, et al. Determination of selenium and tellurium in polymetallic ore by coprecipitation separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603002.htm

    [36]

    范爽, 郭超, 张百慧, 等. 基于实验室间协作实验评估土壤中重金属能量色散X射线荧光光谱分析方法性能[J]. 冶金分析, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm

    Fan S, Guo C, Zhang B H, et al. Evaluation of analytical method performance for determination of heavy metals in soils by energy dispersive X-ray fluorescence spectrometry based on inter-laboratory collaborative experiments[J]. Metallurgical Analysis, 2020, 40(8): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008002.htm

    [37]

    张瑞仙, 崔智勇, 王建绣, 等. 高压罐消解和湿法消解测定食品中铅的比较[J]. 中国卫生检验杂志, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm

    Zhang R X, Cui Z Y, Wang J X, et al. Comparison between high pressure tank digestion and wet digestion in the determination of lead in food[J]. Chinese Journal of Health Laboratory Technology, 2016, 26(17): 2468-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201617012.htm

    [38]

    徐浩然, 张瑞娜, 胡济民, 等. 硫和硫化物对垃圾焚烧过程中Pb迁移分布的影响[J]. 环境工程学报, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm

    Xu H R, Zhang R N, Hu J M, et al. Influence of sulfur and sulfide on migration and distribution of lead in waste incineration process[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201901022.htm

    [39]

    邱海鸥, 郑洪涛, 汤志勇. 岩石矿物分析[J]. 分析试验室, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm

    Qiu H O, Zheng H T, Tang Z Y. Analysis of rocks and minerals[J]. Chinese Journal of Analysis Laboratory, 2014, 33(11): 1349-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201411032.htm

    [40]

    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060

    [41]

    李占江. 金银及有色金属地勘矿冶分析手册[M]. 北京: 地质出版社, 2013: 490-495.

    Li Z J. Handbook for geological prospecting and metallurgy of gold, silver and nonferrous metals[M]. Beijing: Geological Publishing House, 2013: 490-495.

  • 加载中

(3)

计量
  • 文章访问数:  1293
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2020-06-05
修回日期:  2020-09-12
录用日期:  2020-12-07
刊出日期:  2021-03-28

目录