中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因

朱鑫祥, 刘琰. 四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因[J]. 岩矿测试, 2021, 40(2): 296-305. doi: 10.15898/j.cnki.11-2131/td.202101100006
引用本文: 朱鑫祥, 刘琰. 四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因[J]. 岩矿测试, 2021, 40(2): 296-305. doi: 10.15898/j.cnki.11-2131/td.202101100006
ZHU Xin-xiang, LIU Yan. Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis[J]. Rock and Mineral Analysis, 2021, 40(2): 296-305. doi: 10.15898/j.cnki.11-2131/td.202101100006
Citation: ZHU Xin-xiang, LIU Yan. Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis[J]. Rock and Mineral Analysis, 2021, 40(2): 296-305. doi: 10.15898/j.cnki.11-2131/td.202101100006

四川雪宝顶W-Sn-Be矿床中矿物化学组成及矿床成因

  • 基金项目:
    国家自然科学基金项目(41922014,41772044);中国地质调查局地质调查项目(DD20190060,DD20190629)
详细信息
    作者简介: 朱鑫祥, 硕士, 矿物学、岩石学、矿床学专业, 主要从事稀有金属矿床研究。E-mail: 2120180006@cugb.edu.cn
    通讯作者: 刘琰, 博士, 研究员, 矿物学、岩石学、矿床学专业, 主要从事碳酸岩型稀土矿床研究。E-mail: ly@cags.ac.cn
  • 中图分类号: O657.31;O657.63

Chemical Composition of Minerals in Xuebaoding W-Sn-Be Deposit, Sichuan Province: Constraints on Ore Genesis

More Information
  • 雪宝顶矿床位于四川省的松潘甘孜造山带中,以出产大颗粒含W-Sn-Be-F-P的矿物而闻名,前人对该矿床已经开展了大量的研究,但缺乏对粗粒矿物的主次痕量元素研究。本次研究采用X射线荧光光谱(XRF)、电子探针(EMPA)和电感耦合等离子体质谱(ICP-MS)技术对矿床中各矿物的主次痕量元素进行测试分析。结果显示,雪宝顶矿床中的绿柱石、白钨矿、锡石、白云母、萤石、磷灰石、电气石,除富含W、Sn、Be、Na、K、Ca等主要成矿元素外,还富集Li、Rb、Cs等碱金属元素和F、B、P等挥发份。其中,雪宝顶绿柱石中富含Li(3484~4243μg/g)、Rb(39.3~71.1μg/g)、Cs(2955~3526μg/g);白云母中Li、Rb和Cs元素含量分别高达4243μg/g、72.3μg/g和3526μg/g;磷灰石中除主量元素P外,F(4.48%~5.21%)含量相对较高;电气石中的B含量高达30990~32880μg/g。雪宝顶矿床中的花岗岩岩体W、Sn、Be、Li、Rb、Cs、F、B、P等元素相对富集,但CaO含量(0.46%~0.82%)相对较低。其中Li、F、B、P等元素对成矿元素在成矿流体内的富集起到了极大的促进作用。矿区内大理岩是一种富Ca的方解石大理岩,为成矿提供了大量的Ca元素,有利于粗粒矿物的大规模沉淀。因此,粗粒矿物中的W、Sn、Be、Li、Rb、Cs、F、B、P等元素主要来源于原始岩浆流体,大理岩地层为粗粒矿物提供了大量的Ca元素。

  • 加载中
  • 图 1  盘口、浦口岭花岗岩及上三叠统大理岩地层中的钨锡铍矿化脉简图(据文献[8])

    Figure 1. 

    表 1  板状绿柱石中主次痕量元素分析测定结果

    Table 1.  Analytical results of major and trace elements in tabular beryl

    主量元素 各样品元素含量(%)
    Beryl-11 Beryl-12 Beryl-13 Beryl-14 Beryl-15 Beryl-16
    SiO2 63.3 63.2 63.5 63.7 63.4 63.4
    TiO2 0.00 0.02 0.01 0.01 0.01 0.00
    Al2O3 17.8 17.6 17.9 17.9 17.8 17.8
    Fe2O3 1.00 0.97 0.98 0.96 1.02 1.02
    MnO 0.01 0.02 0.01 0.01 0.01 0.01
    MgO 0.08 0.10 0.05 0.06 0.08 0.08
    CaO 0.03 0.03 0.03 0.03 0.03 0.03
    Na2O 1.26 1.09 1.07 1.20 1.27 1.38
    K2O 0.04 0.08 0.05 0.06 0.09 0.06
    P2O5 0.01 0.01 0.01 0.01 0.01 0.01
    LOI 2.26 1.96 2.14 2.22 2.22 2.24
    总含量 85.8 85.1 85.7 86.2 85.9 86.0
    微量元素 各样品元素含量(μg/g)
    Beryl-11 Beryl-12 Beryl-13 Beryl-14 Beryl-15 Beryl-16
    Li 4135 3772 3484 4187 4243 3734
    Be 45983 47656 47322 47144 46871 44363
    Sc 0.96 2.20 2.68 2.52 2.48 1.84
    V 6.93 8.70 7.11 12.4 12.6 8.23
    Cr 695 784 573 790 784 739
    Co 5.01 6.31 4.70 5.97 6.25 5.66
    Ni 21.6 20.4 15.5 19.4 25.7 15.6
    Cu 5.80 4.50 4.01 4.08 9.04 9.73
    Zn 43.0 23.4 43.9 45.1 52.1 43.7
    Ga 15.5 6.77 11.4 18.1 24.2 17.2
    Rb 49.3 39.2 52.0 54.7 71.1 51.2
    Sr 0.25 0.71 0.43 0.30 0.41 0.27
    Y 1.27 1.29 1.29 1.26 1.28 1.26
    Nb 0.11 0.13 0.17 0.13 0.19 0.10
    Cs 2955 3023 3094 3412 3526 3072
    Ba 0.36 0.21 0.65 0.31 0.50 0.16
    Ta 0.07 0.13 1.93 0.05 0.15 0.05
    Tl 0.33 0.25 0.31 0.36 0.48 0.35
    Pb 0.61 0.22 0.15 0.07 0.63 0.10
    Bi 0.09 0.02 0.01 0.01 0.07 0.17
    Th 0.03 0.00 0.01 0.01 0.04 0.00
    U 0.03 0.01 0.03 0.01 0.01 0.00
    下载: 导出CSV

    表 2  白钨矿中主次痕量元素分析测定结果

    Table 2.  Analytical results of major and trace elements in scheelite

    主量元素 各样品元素含量(%)
    Scheelite-6 Scheelite-8 Scheelite-9
    Ca 13.6 13.4 13.5
    Al < 0.03 < 0.03 0.03
    TFe 0.03 0.03 0.04
    K < 0.05 < 0.05 < 0.05
    Mg < 0.01 < 0.01 0.01
    Na 0.04 0.03 0.04
    W 61.4 62.7 63.1
    Si 0.41 0.45 0.36
    总含量 75.5 76.6 77.1
    微量元素 各样品元素含量(μg/g)
    Scheelite-6 Scheelite-8 Scheelite-9
    Mn 29.1 18.6 18.6
    P < 50 < 50 < 50
    V < 5 < 5 < 5
    Li 0.69 0.85 1.12
    Be 0.06 0.04 0.18
    Sc 0.62 0.65 0.71
    Ti 2.35 1.72 1.83
    Cr 16.9 < 1 5.6
    Co 0.88 0.92 0.97
    Ni 14.2 1.9 3.9
    Cu 3.33 1.36 2.38
    Zn 42.7 7.2 8.6
    Rb 0.83 0.54 0.67
    Sr 394 150 537
    Mo 0.41 0.36 0.18
    Ag 0.05 0.21 0.04
    In 0.03 0.03 0.02
    Cs 0.02 0.01 0.01
    Ba 1.94 41.63 47.79
    Tl 0.01 0.00 0.00
    Pb 14.4 11.4 9.0
    Bi 0.88 0.96 1.48
    Th 0.39 0.28 0.19
    U 0.88 0.34 0.06
    Zr 16.1 7.1 12.1
    Nb 0.12 0.06 0.07
    Hf 0.75 0.33 1.36
    Ta 0.07 0.04 0.17
    Ga 3.71 2.42 9.54
    La 7.54 52.4 44.8
    Ce 30.4 171 111
    Pr 7.0 28.8 17.6
    Nd 43.3 128 71.1
    Sm 38.4 39.4 28.9
    Eu 6.90 8.16 4.34
    Gd 68.2 40.6 31.7
    Tb 18.7 8.00 7.74
    Dy 115 47.0 47.8
    Ho 17.6 8.31 7.75
    Er 42.7 21.1 22.2
    Tm 4.86 2.66 3.21
    Yb 23.6 13.0 18.6
    Lu 2.55 1.47 2.04
    Y 649 225 379
    ∑REE 427 570 419
    ∑REE+Y 1076 795 798
    下载: 导出CSV

    表 3  磷灰石中主次痕量元素分析测定结果

    Table 3.  Analytical results of major and trace elements in apatite

    主量元素 各样品元素含量(%)
    Apitite-1 Apitite-2 Apitite-3 Apitite-4 Apitite-5 Apitite-6 Apitite-7
    FeO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Na2O 0.01 0.00 0.02 0.00 0.00 0.00 0.00
    P2O5 41.6 41.8 41.9 41.6 42.5 42.0 41.6
    Cr2O3 0.00 0.00 0.03 0.00 0.00 0.02 0.00
    MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    CaO 55.3 55.4 55.6 55.5 55.7 55.4 55.8
    MnO 0.01 0.00 0.00 0.00 0.02 0.02 0.00
    Al2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    SO3 0.01 0.00 0.01 0.00 0.00 0.02 0.00
    NiO 0.03 0.02 0.02 0.00 0.00 0.02 0.01
    SiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.00
    TiO2 0.00 0.00 0.01 0.00 0.01 0.00 0.00
    F 5.21 4.85 4.66 4.90 5.01 4.48 4.62
    总含量 99.9 100.0 100.2 99.8 101.1 100.1 100.0
    微量元素 各样品元素含量(μg/g)
    Apitite-1 Apitite-2 Apitite-3 Apitite-4 Apitite-5 Apitite-6 Apitite-7
    Li 11.1 8.10 15.8 13.7 21.4 24.0 7.48
    Cr 8.59 44.9 3.50 3.80 5.97 4.84 2.37
    Co 2.48 3.09 2.63 2.72 2.81 2.64 2.44
    Ni 18.1 36.0 16.1 16.4 20.5 19.2 15.7
    Cu 6.01 4.08 4.50 3.36 3.37 3.06 2.32
    Zn 4.16 1.90 1.38 1.42 2.06 1.02 0.58
    Ga 5.80 5.82 6.36 5.25 19.3 6.75 7.94
    Rb 2.89 2.75 2.69 6.92 12.7 6.94 1.25
    Sr 756 1009 627 1994 1915 2237 2468
    Mo 0.20 0.71 0.20 0.16 0.19 0.09 0.12
    Cs 0.60 0.58 0.54 1.33 3.65 1.28 0.29
    Ba 2.87 3.30 2.39 4.28 10.75 2.23 3.88
    Pb 4.86 7.28 8.65 3.89 5.60 3.56 4.01
    Bi 0.07 0.17 0.47 0.07 0.06 0.04 0.17
    Th 8.23 1.46 4.04 3.01 31.05 4.55 5.64
    U 0.33 0.53 0.53 0.42 1.36 0.21 0.72
    Nb 0.21 3.88 0.44 0.54 1.24 0.30 0.15
    Ta 0.08 0.75 0.13 0.07 0.21 0.07 0.07
    Zr 0.61 0.69 0.35 1.15 1.57 0.41 0.43
    Hf 0.33 0.29 0.36 0.24 0.54 0.21 0.25
    V 0.38 0.56 0.30 0.68 1.08 0.36 0.31
    La 129 93.7 153 85.8 910 137 252
    Ce 294 246 334 232 1263 328 472
    Pr 34.9 30.9 39.8 29.1 116 40.0 52.0
    Nd 147 132 172 127 388 172 213
    Sm 49.4 43.0 56.4 39.8 90.2 43.3 56.3
    Eu 8.10 7.48 6.45 7.81 16.3 9.05 10.1
    Gd 58.3 51.7 66.8 44.3 99.1 44.6 60.7
    Tb 9.60 9.00 11.6 7.27 17.1 6.74 9.34
    Dy 51.3 48.4 62.3 37.7 84.5 33.8 46.8
    Ho 8.27 7.64 10.1 6.04 12.4 5.32 7.30
    Er 22.2 19.5 27.4 15.2 29.5 13.7 18.3
    Tm 2.87 2.31 3.50 1.87 3.05 1.69 2.11
    Yb 17.7 13.7 21.1 11.3 16.5 10.4 12.1
    Lu 2.29 1.71 2.68 1.49 1.93 1.32 1.55
    Sc 1.27 1.39 1.30 1.46 1.42 1.41 1.30
    Y 442 426 526 323 505 272 335
    下载: 导出CSV
  • [1]

    White J S, Richards R P. Chinese beryl crystals mimic twinning[J]. Rocks & Minerals, 1999, 74(5): 318-320. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=2260596&site=ehost-live

    [2]

    李建康, 刘善宝, 王登红, 等. 川西北雪宝顶钨锡铍矿床的成矿年代及其构造示踪意义[J]. 矿床地质, 2007, 26(5): 557-562. doi: 10.3969/j.issn.0258-7106.2007.05.008

    Li J K, Liu S B, Wang D H, et al. Metallogenic age of Xuebaoding W-Sn-Be deposit in northwest Sichuan and its tectonic tracing significance[J]. Deposit Geology, 2007, 26(5): 557-562. doi: 10.3969/j.issn.0258-7106.2007.05.008

    [3]

    颜丹平, 李书兵, 曹文涛, 等. 龙门山多层分层拆离地壳结构: 新构造变形与深部构造证据[J]. 地学前缘, 2010, 17(5): 106-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005010.htm

    Yan D P, Li S B, Cao W T, et al. Crustal structure of multi-layered delamination in Longmen Mountain: Evidence for neotectonic deformation and deep structure[J]. Geoscience Frontiers, 2010, 17(5): 106-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005010.htm

    [4]

    刘鹤, 颜丹平, 魏国庆. 扬子板块西北缘碧口地块变形变质作用序列——松潘—甘孜造山带伸展垮塌事件的意义[J]. 地质学报, 2008, 82(4): 464-474, 578-579. doi: 10.3321/j.issn:0001-5717.2008.04.004

    Liu H, Yan D P, Wei G Q. Deformation and metamorphism sequence of Bikou Block on the northwest margin of Yangtze Plate: Significance of extension and collapse of Songpan Ganzi orogenic belt[J]. Acta Geologica Sinica, 2008, 82(4): 464-474, 578-579. doi: 10.3321/j.issn:0001-5717.2008.04.004

    [5]

    Liu Y, Deng D, Shi G H, et al. Genesis of the Xuebaoding W-Sn-Be crystal deposits in southwest China: Evidence from fluid inclusions, stable isotopes and ore elements[J]. Resource Geology, 2012, 62: 159-173. doi: 10.1111/j.1751-3928.2012.00186.x

    [6]

    刘琰. 四川雪宝顶W-Sn-Be矿床矿物学特征和形成机制[J]. 岩石矿物学杂志, 2017, 36(4): 549-563. doi: 10.3969/j.issn.1000-6524.2017.04.008

    Liu Y. Mineralogical characteristics and formation mechanism of Xuebaoding W-Sn-Be deposit in Sichuan[J]. Acta Petrologica et Mineralogica, 2017, 36(4): 549-563. doi: 10.3969/j.issn.1000-6524.2017.04.008

    [7]

    刘琰. 川西北雪宝顶W-Sn-Be矿床矿物学特征和形成机制[D]. 北京: 中国地质大学(北京), 2010.

    Liu Y. Mineralogical characteristics and formation mechanism of Xuebaoding W-Sn-Be deposit in northwest Sichuan[D]. Beijing: China University of Geosciences (Beijing), 2010.

    [8]

    周开灿, 亓利剑, 向长金, 等. 四川平武绿柱石宝石成矿地质特征[J]. 矿物岩石, 2002(4): 1-7. doi: 10.3969/j.issn.1001-6872.2002.04.001

    Zhou K C, Qi L J, Xiang C J, et al. Geological characteristics of beryl gem mineralization in Pingwu, Sichuan[J]. Journal of Mineralogy and Petrology, 2002(4): 1-7. doi: 10.3969/j.issn.1001-6872.2002.04.001

    [9]

    Liu Y, Deng J, Zhang G, et al. 40Ar/39Ar dating of Xuebaoding granite in the Songpan—Garzê orogenic belt, southwest China, and its geological significance[J]. Acta Geologica Sinica (English Edition), 2010, 84(2): 345-357. doi: 10.1111/j.1755-6724.2010.00148.x

    [10]

    刘琰, 邓军, 孙岱生, 等. 四川虎牙雪宝顶W-Sn-Be矿床矿物学标型特征及流体对矿物形态的影响[J]. 地球科学——中国地质大学学报, 2007(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701010.htm

    Liu Y, Deng J, Sun D S, et al. Mineralogical typomorphic characteristics of Xuebaoding W-Sn-Be deposit in Huya, Sichuan Province and the influence of fluid on mineral morphology[J]. Geosciences—Journal of China University of Geosciences, 2007(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701010.htm

    [11]

    吴大伟, 李葆华, 杜晓飞, 等. 四川雪宝顶钨锡铍矿床流体包裹体研究及其意义[J]. 矿床地质, 2015, 34(4): 745-756. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504006.htm

    Wu D W, Li B H, Du X F, et al. Study on fluid inclusions in Xuebaoding W-Sn-Be deposit in Sichuan Province and its significance[J]. Deposit Geology, 2015, 34(4): 745-756. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201504006.htm

    [12]

    曹志敏, 任建国, 李佑国, 等. 雪宝顶绿柱石-白钨矿脉状矿床富挥发份成矿流体特征及其示踪与测年[J]. 中国科学(地球科学), 2002(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200201007.htm

    Cao Z M, Ren J G, Li Y G, et al. Characteristics of volatile rich ore-forming fluid in Xuebaoding beryl scheelite vein deposit and its tracing and dating[J]. Chinese Science (Earth Sciences), 2002(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200201007.htm

    [13]

    Zhu X, Raschke M B, Liu Y, Tourmaline as a recorder of ore-forming processes in the Xuebaoding W-Sn-Be deposit, Sichuan Province, China: Evidence from the chemical composition of tourmaline[J]. Minerals, 2020, 10(5): 438. doi: 10.3390/min10050438

    [14]

    Yan L, Jun D, Li C F, et al. REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan[J]. Chinese Science Bulletin, 2007, 52(18): 2543-2550. doi: 10.1007/s11434-007-0355-1

    [15]

    曹志敏, 郑建斌, 安伟, 等. 雪宝顶碱性花岗岩岩石地球化学与成矿控制[J]. 中国海洋大学学报(自然科学版), 2004(5): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200405031.htm

    Cao Z M, Zheng J B, An W, et al. Petrochemistry and metallogenic control of Xuebaoding alkaline granite[J]. Journal of Ocean University of China (Natural Science Edition), 2004(5): 874-880. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200405031.htm

    [16]

    蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 2020, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm

    Jiang S Y, Zhao K D, Jiang H, et al. Research progress on temporal and spatial distribution, geological characteristics and metallogenic mechanism of tungsten-tin deposits in China[J]. Science Bulletin, 2020, 65(33): 3730-3745. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm

    [17]

    Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for magmatic-hydrothermal fluid evolution and ore genesis[J]. Chemical Geology, 2004, 209(3-4): 193-213. doi: 10.1016/j.chemgeo.2004.04.021

    [18]

    岑炬标, 刘战庆, 刘善宝, 等. 江西崇义淘锡坑钨锡矿区基性岩脉的岩石地球化学特征及意义[J]. 桂林理工大学学报, 2019, 39(4): 793-805. doi: 10.3969/j.issn.1674-9057.2019.04.002

    Cen J B, Liu Z Q, Liu S B, et al. Geochemical characteristics and significance of basic dikes in Taoxikeng tungsten tin ore district, Chongyi, Jiangxi Province[J]. Journal of Guilin University of Technology, 2019, 39(4): 793-805. doi: 10.3969/j.issn.1674-9057.2019.04.002

    [19]

    曾钦旺, 彭陆军, 田威武, 等. 湖南大义山岩体白沙子岭矿区钨锡矿深部找矿探索[J]. 中国地质, 2016, 43(5): 1625-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605012.htm

    Zeng Q W, Peng L J, Tian W W, et al. Exploration of deep tungsten tin deposit in Baishailing mining area of Dayishan rock mass, Hunan Province[J]. Geology of China, 2016, 43(5): 1625-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605012.htm

    [20]

    梅玉萍, 杨红梅, 段瑞春, 等. 广东阳春锡山钨锡矿床成岩成矿年代学研究[J]. 地质学报, 2012, 86(9): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309014.htm

    Mei Y P, Yang H M, Duan R C, et al. Geochronology of the Xishan tungsten-tin deposit in Yangchun, Guangdong[J]. Acta Geologica Sinica, 2012, 86(9): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309014.htm

    [21]

    张如放, 张海涛, 张海波, 等. 广西富贺钟地区钨锡多金属矿成矿地质条件及找矿方向[J]. 矿产与地质, 2016, 30(4): 531-536. doi: 10.3969/j.issn.1001-5663.2016.04.002

    Zhang R F, Zhang H T, Zhang H B, et al. Metallogenic geological conditions and prospecting direction of tungsten-tin polymetallic deposits in Fuhezhong Area, Guangxi[J]. Mineral Resources and Geology, 2016, 30(4): 531-536. doi: 10.3969/j.issn.1001-5663.2016.04.002

    [22]

    刘建楠, 丰成友, 肖克炎, 等. 东昆仑成矿带成矿特征与资源潜力分析[J]. 地质学报, 2016, 90(7): 1364-1376. doi: 10.3969/j.issn.0001-5717.2016.07.008

    Liu J N, Feng C Y, Xiao K Y, et al. Analysis on metallogenic characteristics and resource potential of East Kunlun metallogenic belt[J]. Acta Geologica Sinica, 2016, 90(7): 1364-1376. doi: 10.3969/j.issn.0001-5717.2016.07.008

    [23]

    Duan Z P, Jiang S Y, Su H M, et al. Tourmaline as a recorder of contrasting boron source and potential tin mineralization in the Mopanshan Pluton from Inner Mongolia, northeastern China[J]. Lithos, 2020, 354: 105284.

    [24]

    袁顺达, 赵盼捞, 刘敏. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论[J]. 矿床地质, 2020, 39(4): 607-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202004006.htm

    Yuan S D, Zhao P L, Liu M. Discussion on some problems of tin ore diagenesis and mineralization related to granite[J]. Deposit Geology, 2020, 39(4): 607-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202004006.htm

    [25]

    李星强, 艾薛龙. 江西于都安前滩钨矿地质特征及成因探讨[J]. 世界有色金属, 2020(20): 78-80.

    Li X Q, Ai X L. Geological characteristics and genesis of Qiantan tungsten deposit in Yudu'An, Jiangxi Province[J]. World Nonferrous Metals, 2020(20): 78-80.

    [26]

    王璐璐, 倪培, 戴宝章, 等. 湖南柿竹园钨锡钼铋多金属矿床含矿云英岩脉的流体包裹体研究[J]. 南京大学学报(自然科学版), 2020, 56(5): 653-665. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005005.htm

    Wang L L, Ni P, Dai B Z, et al. Study on fluid inclusions of ore bearing greisen veins in Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, Hunan Province[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 653-665. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202005005.htm

    [27]

    王忠强, 李超, 江小均, 等. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示[J]. 岩矿测试, 2020, 39(5): 762-776. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310118

    Wang Z Q, Li C, Jiang X J, et al. In situ trace and Sr isotopic characteristics of scheelite in Xiuwacu molybdenum tungsten deposit in northwest Yunnan and their implications for mineralization[J]. Rock and Mineral Analysis, 2020, 39(5): 762-776. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310118

    [28]

    Carr P A, Zink S, Bennett V C, et al. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia[J]. Chemical Geology, 2020, 539: 119539. http://www.sciencedirect.com/science/article/pii/S0009254120300784

    [29]

    Groat L A, Giuliani G, Marshall D D, et al. Emerald deposits and occurrences: A review[J]. Ore Geology Reviews, 2008, 34(1-2): 87-112. http://www.sciencedirect.com/science/article/pii/S0169136808000218

    [30]

    Alexandre P. Mineral chemistry and geochronology of the Rajasthan emerald deposits, NW India[J]. The Canadian Mineralogist, 2020, 58(3): 1-12. http://www.researchgate.net/publication/342195048_Mineral_chemistry_and_geochronology_of_the_Rajasthan_emerald_deposits_NW_India

    [31]

    李延超, 梁静, 李来平, 等. 电感耦合等离子体发射光谱法同时测定钨锡矿中6种元素[J]. 中国钨业, 2019, 34(4): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201904016.htm

    Li Y C, Liang J, Li L P, et al. Simultaneous determination of six elements in tungsten-tin ore by inductively coupled plasma atomic emission spectrometry[J]. China Tungsten Industry, 2019, 34(4): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201904016.htm

    [32]

    赵晨辉, 王成辉, 赵如意, 等. 广东大宝山铜矿英安斑岩的同位素组成与蚀变特征及其找矿意义[J]. 岩矿测试, 2020, 39(6): 908-920. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007310107

    Zhao C H, Wang C H, Zhao R Y, et al. Isotopic composition, alteration characteristics and prospecting significance of dacite porphyry in Dabaoshan copper deposit, Guangdong Province[J]. Rock and Mineral Analysis, 2020, 39(6): 908-920. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202007310107

    [33]

    张勇, 潘家永, 马东升. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示[J]. 地质学报, 2020, 94(11): 3321-3342. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011010.htm

    Zhang Y, Pan J Y, Ma D S. Li enrichment mechanism of Li-rich mica rocks in Dahutang tungsten deposit, northwest Jiangxi Province and its implications for the prospecting of Li and other rare metals[J]. Acta Geologica Sinica, 2020, 94(11): 3321-3342. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202011010.htm

    [34]

    王毅民, 邓赛文, 王祎亚, 等. X射线荧光光谱在矿石分析中的应用评介——总论[J]. 冶金分析, 2020, 40(10): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010003.htm

    Wang Y M, Deng S W, Wang Y Y, et al. Review on the application of X-ray fluorescence spectrometry in ore analysis—General[J]. Metallurgical Analysis, 2020, 40(10): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010003.htm

    [35]

    李福春, 朱金初, 漆亮, 等. 富氟花岗岩体系岩浆流体内稀土元素演化规律的实验研究[J]. 高校地质学报, 2002(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200201001.htm

    Li F C, Zhu J C, Qi L, et al. Experimental study on REE evolution in magmatic fluid of fluorine rich granite system[J]. Geological Journal of China Universities, 2002(1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200201001.htm

    [36]

    朱金初, 饶冰, 熊小林, 等. 富锂氟含稀有矿化花岗质岩石的对比和成因思考[J]. 地球化学, 2002(2): 141-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202004.htm

    Zhu J C, Rao B, Xiong X L, et al. Correlation and genesis of rare mineralized granites rich in lithium and fluorine[J]. Geochemistry, 2002(2): 141-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202004.htm

    [37]

    李福春, 朱金初, 饶冰, 等. 富氟花岗岩中萤石岩浆成因的新证据[J]. 矿物学报, 2000(3): 224-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200003002.htm

    Li F C, Zhu J C, Rao B, et al. New evidence for the genesis of fluorite magma in fluorine rich granite[J]. Acta Mineralogica Sinica, 2000(3): 224-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200003002.htm

    [38]

    李福春, 朱金初, 张林松, 等. 富氟花岗质熔体形成和演化的实验研究[J]. 岩石学报, 2003(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301013.htm

    Li F C, Zhu J C, Zhang L S, et al. Experimental study on the formation and evolution of fluorine rich granitic melt[J]. Acta Petrologica Sinica, 2003(1): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301013.htm

    [39]

    王联魁, 王慧芬, 黄智龙. 锂氟花岗质岩石三端元组分的发现及其液态分离成因[J]. 地质与勘探, 1997(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199703002.htm

    Wang L K, Wang H F, Huang Z L. Discovery of three terminal elements of Li-F granitic rocks and their origin of liquid separation[J]. Geology and Exploration, 1997(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT199703002.htm

    [40]

    Linnen R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: Constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025. http://www.researchgate.net/publication/247863940_The_solubility_of_Nb-Ta-Zr-Hf-W_in_granitic_melts_with_Li_and_Li_F_Constraints_for_mineralization_in_rare_metal_granites_and_pegmatites

    [41]

    Duc-Tin Q, Audétat A, Keppler H. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700℃, 140MPa: A LA-ICP-MS study on synthetic fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3323-3335. http://www.sciencedirect.com/science/article/pii/S0016703707002219

  • 加载中

(1)

(3)

计量
  • 文章访问数:  1013
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2021-01-10
修回日期:  2021-03-07
录用日期:  2021-03-16
刊出日期:  2021-03-28

目录