Preparation of the Reference Materials for Rb-Sr and Sm-Nd Isotope Analysis
-
摘要:
通常样品的87Sr/86Sr和143Nd/144Nd同位素比值分析采用SRM987、JNdi-1作为标准物质,它们分别是纯的碳酸盐和氧化物,适用于监控质谱测试过程。中国现有的钐-钕地质和铷-锶年龄标准物质,分别为玄武岩和钾长石,它们与很多地质样品的基质存在差别。仅有这两种基质的标准物质不能有效地监控不同地质样品Rb-Sr、Sm-Nd同位素分析过程,因此研制不同岩性的Rb-Sr、Sm-Nd同位素标准物质具有重要现实意义。本文采集中国典型地区的橄榄岩、榴辉岩和花岗岩作为候选物,严格按照《一级标准物质技术规范》(JJF 1006—1994)和《标准物质定值的通用原则及统计学原理》(JJF 1343—2012)等相关标准物质国家计量技术规范和国家标准,研制了橄榄岩、榴辉岩和花岗岩铷-锶、钐-钕同位素标准物质(编号为GBW04139、GBW04140、GBW04141),其中橄榄岩标准物质适用于高Mg、Fe,低Rb、Nd含量样品的分析,榴辉岩和花岗岩标准物质适用于含有难溶副矿物的岩石样品的分析。每个标准物质具有6个特性量值,Rb、Sr、Sm和Nd含量分布分别为0.16~64μg/g、12~560μg/g、0.1~3.2μg/g和0.3~15.3μg/g,87Sr/86Sr比值分布为0.70446~0.71309,143Nd/144Nd比值分布为0.51115~0.51267,同位素比值精度达到或优于同类标准物质。这些特性量值更接近实际样品,使用时将更加有效和方便。该系列标准物质可用于校准仪器和评价方法,并能有效监控实验室此类样品的铷-锶、钐-钕同位素分析过程。
Abstract:BACKGROUND One Rb-Sr certified reference materials (GBW04411) and one Sm-Nd certified reference materials (GBW04419) for geological age, which are potash feldspar and basalt respectively, were produced and certified about 30 years ago. They have only one certified value and their matrices differ from many other geological samples. To better assess the quality of chromatographic separation, measurement procedures and mass spectrometry performance when analyzing Rb-Sr and Sm-Nd, three CRMs which are peridotite, eclogite and granite for Rb-Sr and Sm-Nd analysis were produced, and labelled GBW04139, GBW04140 and GBW04141 respectively.
OBJECTIVES To prepare certified reference materials for analysis of Rb-Sr and Sm-Nd isotopes of different types of rocks.
METHODS Peridotite, eclogite and granite from typical areas in China were used as candidates. Referring to 'Determinations for isotopes of lead, strontium and neodymium in rock samples (GB/T 17672-1999)', 'Determination of Rb-Sr isotopic geological age and Sr isotope ratio in rocks and minerals (DZ/T 0184.4-1997)', 'Determination of Sm-Nd isotopic geological age and Nd isotope ratio in rocks and minerals (DZ/T 0184.6-1997)', Rb, Sr, Sm and Nd were purified by chromatographic separation, and their concentrations were analyzed by ID-TIMS, 87Sr/86Sr and 143Nd/144Nd ratios were determined by TIMS and MC-ICP-MS, respectively.
RESULTS For homogeneity testing of the three CRMs, fifteen bottles of each were randomly selected (from the 200 bottles prepared) for analysis. F-testing was used to study homogeneity. The result was insignificant (1 < F < Fcritical (vamong, vwithin), demonstrating that the three CRMs had very good homogeneity. On the basis of the homogeneity study, the minimum sample required to ensure homogeneity was 1g for Peridotite, and 0.3g for Eclogite and Granite. The long-term stability of the samples was evaluated five times over 26 months. A linear model was used as a basic model for evaluating stability of Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd. Given that|b1| < t0.95, 3×s(b1), the slope was insignificant and no instability was observed. The certified value was calculated from the unweighted means of the results submitted by the participating laboratories, including Institute of Geology, Chinese Academy of Geological Sciences; Institute of Geology and Geophysics, Chinese Academy of Sciences; Tianjin Center, China Geological Survey; School of Earth and Space Sciences, University of Science and Technology of China; Wuhan Center, China Geological Survey; Beijing Research Institute of Uranium of Geology; School of Earth Sciences and Engineering, Nanjing University; First Institute of Oceanography, State Oceanic Administration of China; and National Research Center for Geoanalysis. Uncertainties associated with batch characterisation (uchar), possible between-bottle variations (ubb or ubb') and those derived from effects related to long-term storage (us) can be expressed as standard uncertainties and combined as follows:
$ {U_{{\rm{CRM}}}}=k \times \sqrt {u_{{\rm{char}}}^2 + u_{{\rm{bb}}}^2 + u_{\rm{s}}^2} $
A coverage factor of k=2 was used. Certified values and uncertainties of GBW04139, GBW04140 and GBW04141 were shown in the following table. The accuracy of isotope ratio reached or was better than that of similar standard materials.
CRMs and their codes Certified value±UCRM Rb(μg/g) Sr(μg/g) 87Sr/86Sr Sm(μg/g) Nd(μg/g) 143Nd/144Nd Peridotite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04139) 0.17±0.02 12.7±0.5 0.704465±0.000067 0.10±0.02 0.36±0.03 0.512647±0.000081 Eclogite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04140) 4.1±0.2 563±33 0.704915±0.000052 3.3±0.3 12.6±0.7 0.512264±0.000026 Granite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04141) 64±3 382±13 0.713109±0.000071 2.4±0.2 15.1±0.7 0.511142±0.000023 CONCLUSIONS All the rocks used for CRMs were collected from typical regions of Peridotite, Eclogite and Granite, the matrix were consistent with the geological samples. The three CRMs can meet the requirements of Rb-Sr and Sm-Nd analysis for rock samples.
-
Key words:
- certified reference materials /
- Rb-Sr isotope /
- Sm-Nd isotope /
- homogeneity /
- stability /
- certified values
-
-
CRMs and their codes Certified value±UCRM Rb(μg/g) Sr(μg/g) 87Sr/86Sr Sm(μg/g) Nd(μg/g) 143Nd/144Nd Peridotite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04139) 0.17±0.02 12.7±0.5 0.704465±0.000067 0.10±0.02 0.36±0.03 0.512647±0.000081 Eclogite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04140) 4.1±0.2 563±33 0.704915±0.000052 3.3±0.3 12.6±0.7 0.512264±0.000026 Granite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144Nd (GBW04141) 64±3 382±13 0.713109±0.000071 2.4±0.2 15.1±0.7 0.511142±0.000023 表 1 标准物质候选物的矿物组成
Table 1. Mineral compositions of reference material candidates
标准物质候选物名称及编号
Reference materials names and codes采样地区
Sampling site岩性描述
Lithology矿物及组成
Mineral composition粒度分布(< 76μm占比)
Particle size distribution (The proportion of < 76μm)橄榄岩
Peridotite (GBW04139)河北省万全县
Wanquan County, Hebei Province, China二辉橄榄岩
Lherzolite橄榄石(80%),辉石(20%)
Olivine (80%), Pyroxene (20%)97.5% 榴辉岩
Eclogite (GBW04140)安徽省潜山县
Qianshan County, Anhui Province, China榴辉岩
Eclogite绿辉石(30%),石榴石(30%),绿帘石(30%),白云母、阳起石、石英等(10%)
Omphacite (30%), Garnet (30%), Epidote (30%), White Mica, Actinolite and Quartz (10%)98.7% 花岗岩
Granite (GBW04141)湖北省夷陵区
Yiling District, Hubei Province, China斑状二长花岗岩
Porphyritic monzogranite钾长石(30%),斜长石(45%),石英(20%),黑云母等(5%)
Potash feldspar (30%), Plagioclase (45%), Quartz (20%), Biotite (5%)99.4% 表 2 MC-ICP-MS和TIMS仪器工作条件
Table 2. Routine operating condition of the MC-ICP-MS and TIMS instruments
仪器型号
Instruments元素
Elements杯排列
Cup configuration测量组数
Blocks扫描数
Cycles积分时间(s)
Integration time (s)Nu Plasma HR Nd H4:148 H3:147 H2:146 H1:145 C: 144 L1:143 L2:142 L3:140 4 20 20 MAT262 Sr F2:88 F3:87 F486 F5:85 F6:84 - - - 3~6 10 8 Rb - F3:87 - F5:85 - - - - 3~6 10 8 Sm F2:152 F3:149 F4:147 - - - - - 3~6 10 8 Nd - - - F5:146 F6:145 F7:143 - - 3~6 10 8 表 3 标准物质候选物均匀性检验结果
Table 3. Homogeneity tests for the reference material candidates
标准物质候选物名称及编号
Reference materials names and codes项目
ItemsRb (μg/g) Sr (μg/g) 87Sr/86Sr Sm (μg/g) Nd (μg/g) 143Nd/144Nd 橄榄岩
Peridotite (GBW04139)平均值
Average0.165 12.61 0.704457 0.092 0.351 0.512671 RSD(%) 3.8 3.0 0.0040 7.7 5.2 0.0023 F实测值
Fmeasure1.77 1.33 1.21 1.37 0.87 0.75 ubb(ubb’) 0.003 0.12 7.2×10-6 0.002 0.006 3.5×10-6 榴辉岩
Eclogite (GBW04140)平均值
Average4.15 560.6 0.704906 3.21 12.38 0.512279 RSD (%) 1.8 1.3 0.0038 1.6 1.8 0.0011 F实测值
Fmeasure0.71 1.01 1.15 1.59 1.90 1.92 ubb(ubb’) 0.02 0.42 5.8×10-6 0.02 0.11 2.9×10-6 花岗岩
Granite (GBW04141)平均值
Average64.0 384.0 0.713094 2.49 15.26 0.511153 RSD(%) 1.1 0.85 0.0031 1.2 1.2 0.0008 F实测值
Fmeasure1.20 1.56 1.84 1.11 0.72 1.08 ubb(ubb’) 0.18 1.30 1.1×10-5 0.006 0.006 7.0×10-7 表 4 标准物质候选物稳定性检验结果和不确定度
Table 4. Stability tests and uncertainties for the reference material candidates
标准物质候选物名称及编号
Reference materials names and codes参数
Parameters累计时间(月)
Time (Month)Rb含量
Rb concentration (μg/g)Sr含量
Sr concentration (μg/g)87Sr/86Sr Sm含量
Sm concentration (μg/g)Nd含量
Nd concentration (μg/g)143Nd/144Nd 橄榄岩
Peridotite (GBW04139)测定值
Measurement values0 0.166 12.65 0.704464 0.092 0.345 0.512676 4 0.168 12.71 0.704458 0.092 0.348 0.512674 8 0.168 12.71 0.704458 0.092 0.349 0.512675 17 0.168 12.70 0.704460 0.093 0.352 0.512668 26 0.168 12.70 0.704462 0.092 0.350 0.512667 统计结果
Statistical resultsb1 4.2×10-5 0.0010 1.4×10-8 3.2×10-5 1.9×10-4 -2.5×10-7 t0.95, ν×us 1.6×10-4 0.0044 4.6×10-7 6.2×10-5 2.9×10-4 3.3×10-7 Ults 0.0013 0.036 3.8×10-6 5.1×10-4 0.0024 2.7×10-6 榴辉岩
Eclogite (GBW04140)测定值
Measurement values0 4.13 559 0.704914 3.21 12.66 0.512274 4 4.14 561 0.704912 3.21 12.54 0.512276 8 4.14 566 0.704916 3.23 12.66 0.512272 17 4.14 565 0.704918 3.23 12.67 0.512271 26 4.14 566 0.704918 3.23 12.65 0.512271 统计结果
Statistical resultsb1 3.0×10-4 0.23 2.2×10-7 9.2×10-4 1.8×10-3 -1.6×10-7 t0.95, ν×us 8.4×10-4 0.37 2.4×10-7 1.0×10-3 9.0×10-3 2.4×10-7 Ults 0.007 3.0 1.9×10-6 0.0082 0.074 2.0×10-6 花岗岩
Granite (GBW04141)测定值
Measurement values0 63.9 381 0.713093 2.49 15.24 0.511154 4 64.6 381 0.713091 2.50 15.30 0.511157 8 64.0 380 0.713092 2.47 15.26 0.511152 17 64.0 380 0.713097 2.45 15.22 0.511152 26 63.6 380 0.713096 2.46 15.22 0.511152 统计结果
Statistical resultsb1 -0.018 -0.038 2.0×10-7 -0.0018 -0.0018 -1.3×10-7 t0.95, ν×us 0.047 0.077 2.8×10-7 0.0020 0.0043 3.0×10-7 Ults 0.39 0.63 2.3×10-6 0.017 0.035 2.5×10-6 表 5 标准物质认定值和不确定度
Table 5. Certified values and uncertainties for the reference materials GBW04139, GBW04140 and GBW04141
标准物质名称
Reference materials names标准物质编号
Reference materials codes认定值和不确定度
Certified values and uncertaintiesRb含量
Rb concentration (μg/g)Sr含量
Sr concentration (μg/g)87Sr/86Sr Sm含量
Sm concentration (μg/g)Nd含量
Nd concentration (μg/g)143Nd/144Nd 橄榄岩铷锶钐钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质
Peridotite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144NdGBW04139 认定值
Certified values0.17 12.7 0.704465 0.10 0.36 0.512647 UCRM 0.02 0.5 0.000067 0.02 0.03 0.000081 榴辉岩铷锶钐钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质
Eclogite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144NdGBW04140 认定值
Certified values4.1 563 0.704915 3.3 12.6 0.512264 UCRM 0.2 33 0.000052 0.3 0.7 0.000026 花岗岩铷锶钐钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质
Granite certified reference material for Rb, Sr, Sm, Nd concentration and 87Sr/86Sr, 143Nd/144NdGBW04141 认定值
Certified values64 382 0.713109 2.4 15.1 0.511142 UCRM 3 13 0.000071 0.2 0.7 0.000023 -
[1] Faure G. Isotopes: Principlesand applications (3rd edition)[M]. Hoboken: Wiley, 2004: 928.
[2] Dera G, Prunier J, Smithb P L, et al. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic Breakup of Pangea[J]. Gondwana Research, 2015, 27: 1599-1615. doi: 10.1016/j.gr.2014.02.006
[3] Blaser P, Lippold J, Gutjahr M, et al. Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching[J]. Chemical Geology, 2016, 439: 189-204. doi: 10.1016/j.chemgeo.2016.06.024
[4] Tillberg M, Drake H, Zack T, et al. In situ Rb-Sr dating of slicken fibres in deep crystalline basement faults[J]. Scientific Reports, 2020, 10(1): 1-13. doi: 10.1038/s41598-019-56847-4
[5] Fisher C, Bauer A, Vervoort J, et al. Disturbances in the Sm-Nd isotope system of the Acasta Gneiss Complex—Implications for the Nd isotope record of the early Earth[J]. Earth and Planetary Sicence Letters, 2020, 530: 115900. doi: 10.1016/j.epsl.2019.115900
[6] Yang Y H, Zhang H F, Chu Z Y, et al. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using multi-collector ICP-MS and TIMS[J]. International Journal of Mass Spectrometry, 2010, 290: 120-126. doi: 10.1016/j.ijms.2009.12.011
[7] 刘文刚, 刘卉, 李国占, 等. 离子交换树脂在地质样品Sr-Nd同位素测定中的应用[J]. 地质学报, 2017, 91(11): 2584-2592. doi: 10.3969/j.issn.0001-5717.2017.11.013
Liu W G, Liu H, Li G Z, et al. The application of ion exchange resins in Sr-Nd isotopic assay of geological samples[J]. Acta Geologica Sinica, 2017, 91(11): 2584-2592. doi: 10.3969/j.issn.0001-5717.2017.11.013
[8] Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7(11): 4793-4802. doi: 10.1039/C4AY02896A
[9] 朱志勇, 潘辰旭, 朱祥坤. 利用套柱法快速分离提纯Sr和Nd元素[J]. 岩矿测试, 2020, 39(4): 515-524. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120126
Zhu Z Y, Pan C X, Zhu X K. Purification of Sr and Nd for isotope analysis with multiple-column method[J]. Rock and Mineral Analysis, 2020, 39(4): 515-524. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201908120126
[10] Li C F, Li X H, Li Q L, et al. Directly determining 143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm-Nd[J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 2012-2022. doi: 10.1039/c0ja00081g
[11] Li C F, Li X H, Li Q, et al. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytical Chimica Acta, 2012, 727: 54-60. doi: 10.1016/j.aca.2012.03.040
[12] 曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094
Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorusiron ore reference mayerials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094
[13] Tanaka T, Togashi S, Kamioka H, et al. JNdi-1: A neodymium isotopic reference in consistency with La Jolla neodymium[J]. Chemical Geology, 2000, 168: 279-281. doi: 10.1016/S0009-2541(00)00198-4
[14] 张宏福. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变的重要方式[J]. 地学前缘, 2006, 13(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602006.htm
Zhang H F. Peridotite-melt interaction: An important mechanism or the compositional transformation of lithospheric mantle[J]. Earth Science Frontiers, 2006, 13(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602006.htm
[15] 刘贻灿, 李曙光, 徐树桐, 等. 大别山北部榴辉岩的Sm-Nd年龄测定及其对麻粒岩相退变质时间的制约[J]. 地球化学, 2001, 30(1): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101009.htm
Liu Y C, Li S G, Xu S T, et al. Sm-Nd dating of eclogites from northern Dabie Mountains and constraints on the timing of granulite-facies retrogression[J]. Geochimica, 2001, 30(1): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101009.htm
[16] 石玉若, 张宗清, 刘敦一, 等. 湖北省随州三里岗地区二长花岗岩Rb-Sr、40Ar/39Ar同位素年龄[J]. 地球学报, 2005, 26(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200501003.htm
Shi Y R, Zhang Z Q, Liu D Y, et al. Rb-Sr and 40Ar/39Ar ages of the adamellite in Sanligang Area[J]. Acta Geoscientica Sinica, 2005, 26(1): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200501003.htm
[17] 王学求, 张勤, 白金峰, 等. 地球化学基准与环境监测实验室分析指标对比与建议[J]. 岩矿测试, 2020, 39(1): 1-14. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906050080
Wang X Q, Zhang Q, Bai J F, et al. Comparison of laboratory analysis parameters and guidelines for global geochemical baselines and environmental monitoring[J]. Rock and Mineral Analysis, 2020, 39(1): 1-14. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201906050080
[18] Song Y, Frey F A. Geochemisty of peridotite xenoliths in basalt from Hannuoba, eastern China: Implications for subcontinental mantle heterogeneity[J]. Geochimica et Cosmochimica Acta, 1989, 53: 97-113. http://www.sciencedirect.com/science/article/pii/0016703789902767
[19] 李曙光, 安诗超. 变质岩同位素年代学: Rb-Sr和Sm-Nd体系[J]. 地学前缘, 2014, 21(3): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403033.htm
Li S G, An S C. Isotopes geochronology of metamorphic rocks: Rb-Sr and Sm-Nd systematics[J]. Earth Science Frontiers, 2014, 21(3): 246-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201403033.htm
[20] 洪大卫, 王涛, 童英. 中国花岗岩概述[J]. 地质论评, 2007, 53(增刊): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1004.htm
Hong D W, Wang T, Tong Y. An outline about granitoids in China[J]. Geological Review, 2007, 53(Supplement): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2007S1004.htm
[21] 张宗清, 张国伟, 唐索寒, 等. 南秦岭地质地层同位素年代[M]. 北京: 地质出版社, 2007.
Zhang Z Q, Zhang G W, Tang S H, et al. Isotopic geochronology of South Qinling metamorphic strata[M]. Beijing: Geological Publishing House, 2007.
[22] Na C, Nakano T, Tazawa T, et al. A systematic and prac-tical method of liquid chromatography for the determination of Sr and Nd isotopic ratios and REE concentrations in geological samples[J]. Chemical Geology, 1995, 123(1-4): 225-237. http://www.sciencedirect.com/science/article/pii/0009254195000057
[23] 李潮峰, 李献华, 周红英, 等. 微量岩石样品中Rb-Sr和Pb一步分离及高精度热电离质谱测试[J]. 地球化学, 2011, 40(5): 399-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105001.htm
Li C F, Li X H, Zhou H Y, et al. Single-step separation of Rb-Sr and Pb from minor rock samples and high precision determination using thermal ionization mass spectrometry[J]. Geochimica, 2011, 40(5): 399-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201105001.htm
[24] 濮巍, 赵葵东, 凌洪飞, 等. 新一代高精度高灵敏度的表面热电离质谱仪(Triton TI) 的Nd同位素测定[J]. 地球学报, 2004, 25(2): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200402032.htm
Pu W, Zhao K Z, Ling H F, et al. High precision Nd isotope measurement by Trion TI mass spectrometry[J]. Acta Geoscientica Sinica, 2004, 25(2): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200402032.htm
[25] 叶笑江, 张宗清. Nd比值测定中的Sm, Nd分离——HDEHP分离法[J]. 分析测试学报, 1990, 9(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST199003002.htm
Ye X J, Zhang Z Q. Seperation of Sm and Nd in the determination of Nd ratio[J]. Journal of Instrumental Analysis, 1990, 9(3): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST199003002.htm
[26] Chu Z Y, Chen F K, Yang Y H, et al. Precise determi-nation of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24: 1534-1544. http://ci.nii.ac.jp/naid/80020748587
[27] 何学贤, 唐索寒, 朱祥坤, 等. 多接收器等离子体质谱(MC-ICP-MS)高精度测定Nd同位素方法[J]. 地球学报, 2007, 28(4): 405-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200704012.htm
He X X, Tang S H, Zhu X K, et al. Precise measurement of Nd isotopic ratios by means of multi-collector magnetic sector inductively coupled plasma-mass spectrometry[J]. Acta Geoscientica Sinica, 2007, 28(4): 405-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200704012.htm
[28] 全国标准物质管理委员会. 标准物质的研制管理与应用[M]. 北京: 中国计量出版社, 2010.
. Preparation, management and application of reference material[M]. Beijing: China Metrology Publishing House, 2010.
[29] Li J, Tang S H, Zhu X K, et al. Production and certification of the reference material GSB 04-3258-2015 as a 143Nd/144Nd isotope ratio reference[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 255-267. http://onlinelibrary.wiley.com/doi/pdf/10.1111/ggr.12151
[30] 全国标准物质管理委员会. 标准物质定值原则和统计学原理[M]. 北京: 中国质检出版社, 2011.
National Administrative Committee for Certified Reference Material. Reference material—General and statistical principles for certification[M]. Beijing: China Zhijian Publishing House, 2011.
-