中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤硒的存在特征及分析测试技术研究进展

伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
引用本文: 伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
Citation: YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095

土壤硒的存在特征及分析测试技术研究进展

  • 基金项目:
    中国地质调查局地质调查项目(DD20190323);中国地质调查局中国地质科学研究院基本科研业务费项目(CJYYWF20182602)
详细信息
    作者简介: 伊芹, 博士, 助理研究员, 主要从事土壤岩石矿物分析。E-mail: yiyiustb@163.com
  • 中图分类号: S151.93;O613.52

Review on Characteristics of Selenium in Soil and Related Analytical Techniques

  • 硒是重要的生命健康微量元素之一,土壤硒的空间异质性是造成各种病害和环境问题的主要原因。全球土壤硒分布不均匀,大部分属于低硒土壤,土壤硒含量平均值为0.4mg/kg,典型高硒地区土壤硒含量为346~2018mg/kg。准确分析土壤硒含量是开展土壤硒研究的基础,土壤样品来源特征和硒存在形式是土壤硒分析测试方法的选择依据,合理使用标准物质能够有效监控分析质量。本文阐述了土壤硒的主要来源、分布特征和存在形式,总结了近年来土壤硒形态提取方法、硒含量分析技术研究进展和土壤硒标准物质研制现状。指出当前对硒迁移转化机理研究尚不完善,分步提取态的提出为研究土壤硒形态分布和迁移转化提供了新途径,但因未能完全解决提取专一性和提取过程中硒形态转化的问题,该方法仍在进一步发展。光谱技术尤其是原子荧光光谱是中国分析土壤硒含量的主流方法;高精密度、低检出限的质谱技术,以及具备原位形态分析能力的同步辐射X射线技术,在超痕量分析和形态分析领域具有显著优势。针对当前具有硒含量定值的土壤标准物质能覆盖的土壤基体和硒含量的范围有限,本文提出有待加强研制具备硒梯度含量变化和硒形态含量定值的系列标准物质,以满足分析质量监控需求。

  • 加载中
  • 图 1  自然界硒循环

    Figure 1. 

    表 1  土壤中部分含硒化合物及其存在环境

    Table 1.  Part of selenium forms in soil and their existing environment

    土壤中部分硒物种 各形态硒的主要性质及其存在环境特征
    无机硒 元素态硒(Se0) 不可溶,元素态硒在土壤中含量甚微,一般不参与化学反应,不能为植物所吸收,但在适宜条件下,可通过水解、氧化剂以及微生物直接氧化为亚硒酸盐和硒酸盐[5]
    负二价硒化合物(Se2-,HSe-,H2Se) 除碱金属的硒化物外,大部分硒化物不可溶,不能被植物吸收利用。多为半干旱地区含未经强烈风化的富硫化合物和含黄铁矿土壤中硒的主要存在形式。排水不良的土壤更容易积累不溶性硒化物[35]
    四价硒化合物(SeO2,SeO32-,HSeO3-,H2SeO3) 四价硒主要是以二氧化硒和亚硒酸盐两种形式存在。其中,二氧化硒是一种较稳定的氧化物,主要来自于化石燃料的燃烧,其在大气中流动性很强[35],可以固体颗粒形式存在,也可溶于水,并能够与水发生反应生成亚硒酸。亚硒酸盐既是土壤中硒的主要存在形式,也是可被植物吸收的主要无机硒形态,广泛存在于温带湿润地区土壤中;在酸性或中性且排水良好的土壤中,可通过配体交换反应在土壤表面形成内界表面配合物,很容易被氧化物和黏土矿物等吸附[34]
    六价硒化合物(SeO42-,HSeO4-,H2SeO4) 六价是硒的最高价态,相应化合物易被植物吸收,可溶性高。六价硒在土壤中主要以硒酸和硒酸盐的形式稳定存在,很难被土壤吸附,是土壤可溶性硒的主要组成部分,是植物可利用硒的主要来源[36]。在碱性和氧化良好的土壤中,六价硒占主导地位[37]
    有机硒 富里酸硒、胡敏酸硒、多肽硒、二甲基硒醚、二甲基二硒醚、硫代硒醚、二硫代硒醚、硒代胱氨酸、硒代半胱氨酸、甲基硒代半胱氨酸、γ-谷氨酸硒甲基硒代半胱氨酸、硒代乙硫氨酸、硒代蛋氨酸 土壤中有机硒化合物主要来源于动植物残体腐解和微生物作用。通常以负二价形式存在,是植物可利用硒的另一种存在形式,其成分复杂,种类繁多[15, 35, 38]
    下载: 导出CSV

    表 2  适用于土壤硒形态分析的分步提取方案

    Table 2.  Sequential extraction schemes suitable for soil selenium speciation analysis

    硒元素形态 浸提剂
    Shaheen等[44] Tessier等[42] 王亚平等[45] Fan等[46] Qin等[47] 唐沫岚等[48] Wang等[49] Favorito等[50]
    水溶态 - -
    弱酸提取态(可交换态) - 1mol/L氯化镁(pH=7) 0.11mol/L乙酸 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 0.1mol/L磷酸二氢钾-磷酸氢二钾 0.1mol/L磷酸二氢钾-磷酸氢二钾 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 磷酸提取态0.01mol/L磷酸二氢钾-磷酸氢二钾
    弱酸提取态(碳酸盐结合态) 0.1mol/L乙酸 1mol/L乙酸钠(pH=5) 0.11mol/L乙酸 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) - - 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 1mol/L乙酸胺(pH=5)
    有机结合态(可还原态) 0.50mol/L盐酸羟铵 0.04mol/L盐酸羟铵+25%乙酸 0.50mol/L盐酸羟铵 0.1mol/L氢氧化钠 0.1mol/L氢氧化钠 0.1mol/L氢氧化钠 富里酸结合态:0.1mol/L氢氧化钠90℃水浴,盐酸酸化至pH=1。腐植酸结合态:0.1mol/L氢氧化钠 0.1mol/L过硫酸钾(先提取晶形铁铝氧化物结合态,再提取有机结合态)
    铁锰氧化物结合态(可氧化态) 双氧水(pH 2~3)-1.0mol/L乙酸铵 0.02mol/L硝酸+30%双氧水 双氧水(pH 2~3)-1.0mol/L乙酸铵 - - - - 无定形铁铝氧化物结合态:0.2 mol/L草酸铵+ 草酸。晶形铁铝氧化物结合态:0.04mol/L盐酸羟铵+25%乙酸
    酸溶态 - - - - - 3mol/L盐酸 - -
    乙酸提取态 - - - 15%乙酸 15%乙酸 - - -
    元素态 - - - 1mol/L亚硫酸钠(pH=7) 1mol/L亚硫酸钠(pH=7,先提取元素态,再提取乙酸提取态) - - -
    硫化物/硒化物结合态 - - - - 0.5mol/L氯化铬+6mol/L盐酸 - - -
    残渣态 王水 盐酸-氢氟酸-高氯酸 盐酸-硝酸-氢氟酸-高氯酸 硝酸-高氯酸 硝酸-氢氟酸 硝酸-氢氟酸-高氯酸 硝酸-高氯酸 硝酸
    注:“-”表示该方法未涉及此形态。
    下载: 导出CSV

    表 3  原子光谱技术分析土壤硒含量应用实例

    Table 3.  Application examples of soil selenium content analyzed by atomic spectroscopy

    样品处理方法和硒含量分析测试技术 检出限 硒含量线性范围 RSD (%) 回收率(%)
    硝酸-盐酸微波消解,ET-AAS测定[54] - - 1.2~9.6 约100.2
    王水加热消解,HG-AAS测定[55] 0.10~0.62 mg/g - 1.4~6.6 -
    超声辅助碱性提取,HG-AAS测定[56] (仅分析四价硒) 6μg/L 20~100 μg/L - -
    硝酸提取,HG-AAS测定[57] - - - 65.0
    硝酸-氢氟酸微波消解,HG-AAS测定[58] 0.02 μg/L 0.08~16 μg/L <3 94.9~99.5
    直接进样,高分辨连续光源HG-AAS测定[59] 30 ng/g - 3~10 -
    GF-AAS测定[60] - - - -
    王水-氢氟酸-硼酸- 程序控制石墨消解,HG-AFS测定[61] - - 2.1~9.3 79.9~108.5
    微波消解,HG-AFS测定[62] 0.0097 mg/kg 0~20 μg/L 2.6~4.2 93.6~95.0
    悬浮液进样,HG-AFS测定[63] 0.06 μg/L 0~50 μg/L 3.08~5.54 94.6~107.2
    硝酸-盐酸-高氯酸消解,HG-AFS测定[11] - - - -
    硝酸-盐酸消解,HG-AFS测定[4] 0.002 μg/g - 1.8~4.4 -
    下载: 导出CSV

    表 4  质谱分析土壤硒常见同质异位素干扰

    Table 4.  Isobaric interference in the determination of selenium in soil by ICP-MS

    质荷比 丰度(%) 同质异位素 氩基干扰离子 多原子离子 双电荷
    74Se+ 0.89 74Ge+ 36Ar38Ar+40Ar34S+ 37Cl2+58Fe16O+58Ni16O+39K35Cl+42Ca16O2+ -
    76Se+ 9.36 76Ge+ 40Ar36Ar+40Ar36S+40Ar35Cl1H+38Ar2+ 60Ni16O+42Ca16O18O+75As1H+ -
    77Se+ 7.63 - 38Ar21H+40Ar37Cl+39K38Ar+36Ar40Ar1H+ 60Ni16O1H+60Ni17O+76Ge1H+76Se1H+60Ni16O1H+42Ca35Cl+ 154Sm++
    78Se+ 23.78 78Kr+ 40Ar38Ar+40Ar37Cl1H+40Ar36Ar1H2+38Ar40Ca+ 44Ca16O18O+77Se1H+62Ni16O+41K37Cl+ 156Gd++
    80Se+ 49.61 80Kr+ 40Ar40Ca+40Ar38Ar1H2+40Ar40Ar+40Ar40K+ 44Ca18O2+64Ni16O+64Zn16O+48Ca16O232S16O3+79Br1H+ 160Gd++160Dy++
    82Se+ 8.73 82Kr+ 40Ar21H2+40Ar42Ca+34S16O3+ 81Br1H+66Zn16O+68Zn14N+34S16O3+65Cu16O1H+81Br1H+ 164Dy++
    80Se16O+ - 96Ru+96Zr+96Mo+56Fe40Ar+ - 95Mo1H+ 192Os++
    下载: 导出CSV

    表 5  具备硒含量定值的国际土壤标准物质

    Table 5.  Standard reference materials of soil with certified value of seleniumin developed by foreign nations

    标准物质编号 研制机构 样品类型 硒含量(mg/kg) 硒含量分析方法
    BCR-320R IRMM 河道沉积物 0.96±0.18 -
    BCR-667 IRMM 河口湾沉积物 1.59±0.08 -
    ERM-CC135a LGC 被污染砖厂土壤 0.9±0.3
    LGC6145 LGC 被污染黏土 可提取硒含量1.81±0.13 CRC-ICP-MS
    LGC6187 LGC 河底沉积物 可提取硒含量1.2±0.2 -
    NIST-SRM-2706 NIST 新泽西土壤 0.3 INAA
    NIST-SRM-2709a NIST 圣华金土壤 1.5 CCT-ICP-MS
    NIST-SRM-2710a NIST 蒙大拿土壤Ⅰ 1 CCT-ICP-MS
    NIST-SRM-2711a NIST 蒙大拿土壤Ⅱ 2 CCT-ICP-MS
    NIST-SRM-1646a NIST 河口湾沉积物 0.193±0.028 RNAA,HYDR,ICP-MS
    NIST-SRM-2586 NIST 铅污染地区土壤 0.6 HF-AAS
    JSAC0461 JSAC 褐色森林土 0.44 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0462 JSAC 褐色森林土 71.6±2.1 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0463 JSAC 褐色森林土 141.5±3.6 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0464 JSAC 褐色森林土 291.9±5.8 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0465 JSAC 褐色森林土 587±13 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0466 JSAC 褐色森林土 1175±26 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    注:IRMM—标准物质和测量协会;LGC—英国政府化学实验室;NIST—美国国家标准与技术研究所;JSAC—日本分析化学会。INAA—仪器中子活化分析;RNAA—放射中子活化分析;HYDR—氢化物发生-原子吸收光谱法。“-”表示标准物质证书中未明确说明硒分析方法。
    下载: 导出CSV
  • [1]

    Banning H, Stelling M, Konig S, et al. Preparation and purification of organic samples for selenium isotope studies[J]. PLoS ONE, 2018, 13(3): 1-19. http://europepmc.org/abstract/MED/29509798

    [2]

    Ali J, Tuzen M, Feng X, et al. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques[J]. Food Chemistry, 2021, 344: 1-7. http://www.sciencedirect.com/science/article/pii/S0308814620325681

    [3]

    Araujo A M, Lessa J H D L, Lima F R D D, et al. Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 139-148. doi: 10.1007/s42729-019-00107-x

    [4]

    Mansur E T, Barnes S-J, Savard D, et al. Determination of Te, As, Bi, Sb and Se (TABS) in geological reference materials and GeoPT proficiency test materials by hydride generation-atomic fluorescence spectrometry (HF-AFS)[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 147-167. doi: 10.1111/ggr.12289

    [5]

    Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review[J]. Science of The Total Environment, 2020, 698: 1-14. http://www.ncbi.nlm.nih.gov/pubmed/31783461

    [6]

    Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of The Total Environment, 2018, 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103

    [7]

    Wen H, Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate[J]. Atmospheric Environment, 2007, 41(34): 7151-7165. doi: 10.1016/j.atmosenv.2007.07.035

    [8]

    Liu Y, Tian X, Liu R, et al. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China[J]. Catena, 2021, 196: 1-12. http://www.sciencedirect.com/science/article/pii/s0341816220304768

    [9]

    Wadgaonkar S L, Nancharaiah Y V, Esposito G, et al. Environmental impact and bioremediation of seleniferous soils and sediments[J]. Critical Reviews in Biotechnology, 2018, 38(6): 941-956. doi: 10.1080/07388551.2017.1420623

    [10]

    Wang Q Q, Yu S C, Xu C D, et al. Association between selenium in soil and diabetes in Chinese residents aged 35-74 years: Results from the 2010 national survey of chronic diseases and behavioral risk factors surveillance[J]. Biomedical and Environmental Sciences, 2020, 33(4): 260-268.

    [11]

    Xiao K, Tang J, Chen H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a Karst area of southwest China[J]. Science of The Total Environment, 2020, 708: 1-8. http://www.researchgate.net/publication/337456171_Impact_of_land_useland_cover_change_on_the_topsoil_selenium_concentration_and_its_potential_bioavailability_in_a_karst_area_of_southwest_China

    [12]

    秦海波, 朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705008.htm

    Qin H B, Zhu J M. Progress on environmental geochemistry of selenium in typical high-Se areas in China[J]. Current Biotechnology, 2017, 7(5): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705008.htm

    [13]

    Winkel L H E, Vriens B, Jones G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review[J]. Nutrients, 2015, 7(6): 4199-4239. doi: 10.3390/nu7064199

    [14]

    Floor G H, Román-Ross G. Selenium in volcanic environments: A review[J]. Applied Geochemistry, 2012, 27(3): 517-531. doi: 10.1016/j.apgeochem.2011.11.010

    [15]

    Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 81-110. doi: 10.1007/s11157-009-9145-3

    [16]

    Statwick J, Sher A A. Selenium in soils of western Colorado[J]. Journal of Arid Environments, 2017, 137: 1-6. doi: 10.1016/j.jaridenv.2016.10.006

    [17]

    Armstrong J G T, Parnell J, Bullock L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in West Ireland[J]. Applied Geochemistry, 2019, 109: 1-13. http://www.sciencedirect.com/science/article/pii/S088329271930201X

    [18]

    Parnell J, Brolly C, Spinks S, et al. Selenium enrichment in Carboniferous shales, Britain and Ireland: Problem or opportunity for shale gas extraction?[J]. Applied Geochemistry, 2016, 66: 82-87. doi: 10.1016/j.apgeochem.2015.12.008

    [19]

    Tuttle M L W, Fahy J W, Elliott J G, et al. Contaminants from cretaceous black shale: Ⅱ. Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States[J]. Applied Geochemistry, 2014, 46: 72-84. doi: 10.1016/j.apgeochem.2013.12.011

    [20]

    周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201911140158

    [21]

    Pilon-Smits E, Winkel L, Lin Z Q, Selenium in plants, Cham: Springer International Publishing, 2017.

    [22]

    谈加香, 冯朝军, 耿丽婵. 氢化物发生-原子荧光光谱法测定土壤中水溶性硒含量[J]. 化工管理, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    Tan J X, Feng C J, Geng L C. Determination of water-soluble selenium in soil by hydride generation-atomic fluorescence spectrometry[J]. Chemical Management, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    [23]

    Dinh Q T, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

    [24]

    He K Q, Yuan C G, Shi M D, et al. Accelerated scre-ening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotoxicology and Environmental Safety, 2020, 187: 1-8. http://www.sciencedirect.com/science/article/pii/S0147651319311510

    [25]

    Gebreeyessus G D, Zewge F. A review on environmental selenium issues[J]. SN Applied Sciences, 2018, 1(1): 55-74.

    [26]

    Myers T. Remediation scenarios for selenium contamination, blackfoot watershed, southeast Idaho, USA[J]. Hydrogeology Journal, 2013, 21(3): 655-671. doi: 10.1007/s10040-013-0953-8

    [27]

    Bajaj M, Eiche E, Neumann T, et al. Hazardous con-centrations of selenium in soil and groundwater in North-West India[J]. Journal of Hazardous Materials, 2011, 189(3): 640-646. doi: 10.1016/j.jhazmat.2011.01.086

    [28]

    Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Science of The Total Environment, 2014, 472: 1001-1009. doi: 10.1016/j.scitotenv.2013.11.124

    [29]

    LeBlanc K L, Kumkrong P, Mercier P H J, et al. Selenium analysis in waters. Part 2: Speciation methods[J]. Science of The Total Environment, 2018, 640-641: 1635-1651. doi: 10.1016/j.scitotenv.2018.05.394

    [30]

    Bailey R T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health[J]. Hydrogeology Journal, 2017, 25: 1191-1217. doi: 10.1007/s10040-016-1506-8

    [31]

    Vinceti M, Crespi C M, Bonvicini F, et al. The need for a reassessment of the safe upper limit of selenium in drinking water[J]. Science of The Total Environment, 2013, 443: 633-642. doi: 10.1016/j.scitotenv.2012.11.025

    [32]

    Xu Y, Li Y, Li H, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China[J]. Science of The Total Environment, 2018, 633: 240-248. doi: 10.1016/j.scitotenv.2018.03.190

    [33]

    Smažíková P, Praus L, Száková J, et al. Effects of organic matter-rich amendments on selenium mobility in soils[J]. Pedosphere, 2019, 29(6): 740-751. doi: 10.1016/S1002-0160(17)60444-2

    [34]

    Ma B, Fernandez-Martinez A, Grangeon S, et al. Selenite uptake by Ca-Al LDH: A description of intercalated anion coordination geometries[J]. Environmental Science & Technology, 2018, 52(3): 1624-1632. http://europepmc.org/abstract/MED/29271640

    [35]

    Ullah H, Liu G, Yousaf B, et al. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives[J]. Environmental Geochemistry and Health, 2019, 41(2): 1003-1035. doi: 10.1007/s10653-018-0195-8

    [36]

    Fan J, Zeng Y, Sun J. The transformation and migration of selenium in soil under different Eh conditions[J]. Journal of Soils and Sediments, 2018, 18(9): 2935-2947. doi: 10.1007/s11368-018-1980-9

    [37]

    Kopittke P M, Wang P, Lombi E, et al. Synchrotron-based X-ray approaches for examining toxic trace metal(loid)s in soil-plant systems[J]. Journal of Environmental Quality, 2017, 46(6): 1175-1189. doi: 10.2134/jeq2016.09.0361

    [38]

    Reynolds R J B, Jones R R, Heiner J, et al. Effects of selenium hyperaccumulators on soil selenium distribution and vegetation properties[J]. American Journal of Botany, 2020, 107(7): 970-982. doi: 10.1002/ajb2.1500

    [39]

    Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: Environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907. doi: 10.1016/j.biotechadv.2016.05.005

    [40]

    Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054

    [41]

    Natasha, Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J]. Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019

    [42]

    Tessier A P, Campbell P G C, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    [43]

    Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172: 133-141. doi: 10.1016/j.gexplo.2016.09.013

    [44]

    Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J]. Journal of Geochemical Exploration, 2018, 191: 28-42. doi: 10.1016/j.gexplo.2018.05.003

    [45]

    王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    Wang Y P, Huang Y, Wang S M, et al. Chemical speciation of elements in sediments and soil and their sequential extraction process[J]. Geological Bulletin of China, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    [46]

    Fan J, Zhao G, Sun J, et al. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation[J]. Science of The Total Environment, 2019, 684: 476-485. doi: 10.1016/j.scitotenv.2019.05.246

    [47]

    Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062

    [48]

    唐沫岚, 鲍征宇, 范博伦, 等. 顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804009.htm

    Tang M L, Bao Z Y, Fan B L, et al. HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804009.htm

    [49]

    Wang D, Dinh Q T, Thu T T A, et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J]. Chemosphere, 2018, 199: 417-426. doi: 10.1016/j.chemosphere.2018.02.007

    [50]

    Favorito J E, Luxton T P, Eick M J, et al. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS[J]. Environmental Pollution, 2017, 229: 911-921. doi: 10.1016/j.envpol.2017.07.071

    [51]

    Wang M, Cui Z, Xue M, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L. ) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. Science of The Total Environment, 2019, 689: 1-9. doi: 10.1016/j.scitotenv.2019.06.346

    [52]

    秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803200024

    [53]

    Dodd J, Large D J, Fortey N J, et al. A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud[J]. Environmental Geochemistry & Health, 2000, 22(4): 281-296. http://www.ingentaconnect.com/content/klu/egah/2000/00000022/00000004/00319557

    [54]

    Shaltout A A, Castilho I N B, Welz B, et al. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry[J]. Talanta, 2011, 85(3): 1350-1356. doi: 10.1016/j.talanta.2011.06.015

    [55]

    Busheina I S, Abobaker M M, Aljurmi E S, et al. Determination of selenium in environmental samples using hydride generation coupled to atomic absorption spectroscopy[J]. Journal of Environmental Analytical Chemistry, 2016, 3(2): 1-5. http://www.onacademic.com/detail/journal_1000040892108610_8e8a.html

    [56]

    Schneider M, Pereira É R, Castilho I N B, et al. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry[J]. Microchemical Journal, 2016, 125: 50-55. doi: 10.1016/j.microc.2015.10.018

    [57]

    Carvalho G S, Oliveira J R, Curi N, et al. Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics[J]. Chemosphere, 2019, 218: 412-415. doi: 10.1016/j.chemosphere.2018.11.099

    [58]

    韩亚, 郭伟, 汪洪. 电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J]. 中国无机分析化学, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    Han Y, Guo W, Wang H. Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    [59]

    Castilho I N B, Pereira É R, Welz B, et al. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J]. Analytical Methods, 2014, 6(9): 2870-2875. doi: 10.1039/C3AY42227E

    [60]

    Lessa J H L, Araujo A M, Silva G N T, et al. Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J]. Chemosphere, 2016, 164: 271-277. doi: 10.1016/j.chemosphere.2016.08.106

    [61]

    钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soil by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    [62]

    李美秀, 齐少华. 微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J]. 化学分析计量, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    Li M X, Qi S H. Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    [63]

    温晓华, 邵超英, 张琢, 等. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J]. 岩矿测试, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162

    Wen X H, Shao C Y, Zhang Z, et al. Determination of trace arsenic, antimony, selenium in soil samples by hydride generation-atomic fluorescence spectrometry with slurry sample introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007 http://www.ykcs.ac.cn/article/id/ykcs_200706162

    [64]

    赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809190106

    Zhao Z S, Zhao X X, Jiang X X, et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201809190106

    [65]

    Zhou F, Li Y, Ma Y, et al. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods[J]. Science of The Total Environment, 2020, 762: 1-10. http://www.sciencedirect.com/science/article/pii/S0048969720366493

    [66]

    Bullock L A, Parnell J, Feldmann J, et al. Selenium and tellurium concentrations of Carboniferous British coals[J]. Geological Journal, 2019, 54(3): 1401-1412. doi: 10.1002/gj.3238

    [67]

    Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

    [68]

    de Souza J R, da Silva L, da Rocha M S, et al. Dynamic reaction cell-ICP-MS as a powerful tool for quality control of a Se-enriched dietary supplement[J]. Food Analytical Methods, 2017, 10: 3088-3097. doi: 10.1007/s12161-017-0861-y

    [69]

    Henn A S, Rondan F S, Mesko M F, et al. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 143: 48-54. doi: 10.1016/j.sab.2018.02.014

    [70]

    屈明华, 陈雄弟, 倪张林, 等. DRC-ICP-MS法测定土壤硒前处理方法研究[J]. 土壤通报, 2019, 50(3): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903027.htm

    Qu M H, Chen X D, Ni Z L, et al. Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J]. Chinese Journal of Soil Science, 2019, 50(3): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903027.htm

    [71]

    de Feudis M, D'Amato R, Businelli D, et al. Fate of selenium in soil: A case study in a maize (Zea mays L. ) field under two irrigation regimes and fertilized with sodium selenite[J]. Science of The Total Environment, 2019, 659: 131-139. doi: 10.1016/j.scitotenv.2018.12.200

    [72]

    刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    Liu Y, Cao G S, Cheng P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry & Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    [73]

    林立, 王琳琳. 采用ICP-MS/MS对硒和砷检测的质谱干扰[J]. 分析试验室, 2016, 35(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201603026.htm

    Lin L, Wang L L. Study on the interference of selenium and arsenic in different detecting conditions by ICP-MS/MS[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201603026.htm

    [74]

    Kumkrong P, LeBlanc K L, Mercier P H J, et al. Selenium analysis in waters. Part 1: Regulations and standard methods[J]. Science of The Total Environment, 2018, 640-641: 1611-1634. doi: 10.1016/j.scitotenv.2018.05.392

    [75]

    Gil-Díaz T, Schäfer J, Keller V, et al. Tellurium and selenium sorption kinetics and solid fractionation under contrasting estuarine salinity and turbidity conditions[J]. Chemical Geology, 2020, 532: 1-10. http://www.sciencedirect.com/science/article/pii/S0009254119304991

    [76]

    Bolea-Fernandez E, Balcaen L, Resano M, et al. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(3): 919-929. doi: 10.1007/s00216-014-8195-8

    [77]

    di Tullo P, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of The Total Environment, 2016, 562: 280-288. doi: 10.1016/j.scitotenv.2016.03.207

    [78]

    谭德灿, 朱建明, 李社红, 等. 同位素双稀释剂法的原理与应用Ⅱ: 应用部分[J]. 矿物岩石地球化学通报, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    Tan D C, Zhu J M, Li S H, et al. The principle and application of isotopic double spike technique: The application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    [79]

    Pons M L, Millet M A, Nowell G N, et al. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76-78 double-spike[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 320-330. doi: 10.1039/C9JA00331B

    [80]

    Marguí E, Floor G H, Hidalgo M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J]. Analytical Chemistry, 2010, 82(18): 7744-7751. doi: 10.1021/ac101615w

    [81]

    Kocot K, Leardi R, Walczak B, et al. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction[J]. Talanta, 2015, 134: 360-365. doi: 10.1016/j.talanta.2014.11.036

    [82]

    Scheinost A C, Kretzschmar R, Pfister S, et al. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[J]. Environmental Science & Technology, 2002, 36(23): 5021-5028. http://www.ncbi.nlm.nih.gov/pubmed/12523415

    [83]

    Qin H B, Takeichi Y, Nitani H, et al. Tellurium distri-bution and speciation in contaminated soils from abandoned mine tailings: Comparison with selenium[J]. Environmental Science & Technology, 2017, 51(11): 6027-6035. http://pubs.acs.org/doi/abs/10.1021/acs.est.7b00955

    [84]

    Nie Z, Finck N, Heberling F, et al. Adsorption of sele-nium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems[J]. Environmental Science & Technology, 2017, 51(7): 3751-3758.

    [85]

    Ryser A, Strawn D, Marcus M, et al. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands[J]. Environmental Science & Technology, 2006, 40(2): 462-467. http://pubs.acs.org/doi/10.1021/es051674i

  • 加载中

(1)

(5)

计量
  • 文章访问数:  3812
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2020-06-23
修回日期:  2021-01-04
录用日期:  2021-01-26
刊出日期:  2021-07-28

目录