-
摘要:
铜矿床中的伴生元素通常具有较高经济价值,其矿物颗粒细小,往往从微米级到纳米级,因此难以被发现和获得利用,进而导致无法系统地对其赋存状态进行研究。本文以“里伍式”铜矿床中的矿石矿物为研究对象,通过背散射图像、二次电子像观察以及X射线光谱点、线与面分析技术的相互佐证,获得铜矿床伴生元素矿物物相、形貌特征、赋存状态、定性/定量及分布规律等信息。实验中选取扫描电镜的加速电压20kV、发射电流10μA、能谱脉冲处理活时间100s,同时对样品前处理、测试过程中的关键技术进行详细探讨,形成了一套有效的分析铜矿床中有关伴生元素的能谱-扫描电镜(EDX-SEM)微区分析方法。应用该方法分析查明四川里伍铜矿床中金、银、钴、铋、硒等元素的赋存状态,这些元素以独立矿物存在或类质同象的形式分布在其他矿物中。通过对这些伴生元素赋存状态的研究,为矿物工业价值的认定、矿床资源评价、伴生元素的回收利用提供了微观依据,为矿山的开采、选矿以及冶炼工艺过程的制定提供了技术支撑。
Abstract:BACKGROUND Associated elements in copper deposits are of high economic value. However, they are difficult to locate and utilize because of their fine (micrometer to nanometer) size.
OBJECTIVES To develop a method for determining the occurrence of associated elements in copper deposits.
METHODS Backscatter image, secondary electron image, X-ray spectrum point, line and mapping analysis technology were used to determine the mineral phases, morphological characteristics, occurrence, qualitative/quantitative and distribution laws of the associated elements of the copper deposit. The acceleration voltage of the scanning electron microscope was 20kV, the emission current was 10μA, and the energy spectrum dwelling time was 100s.
RESULTS The key technologies in the sample pretreatment and analysis were discussed in detail to form a set of effective analyses of copper deposits. The energy spectrum-scanning electron microscope (EDX-SEM) microanalysis method of associated elements was established. Gold, silver, cobalt, bismuth, and selenium were all distributed in other minerals in the form of independent minerals or isomorphic substitution.
CONCLUSIONS Through the study of the occurrence of the associated elements, a micro basis for the identification of mineral industrial value, mine resource evaluation, and the recovery and utilization of associated elements has been established, and provides technical support for mining, beneficiation and smelting formulation.
-
Key words:
- EDX-SEM /
- copper deposit /
- associated elements /
- occurrence /
- isomorphism
-
-
表 1 矿石样品采集信息及化学分析结果
Table 1. Collection information and chemical analysis results of ore samples
样品编号 矿石性状或岩性 采样地点 Cu含量(×10-2) Au含量(×10-6) Ag含量(×10-6) KKLWB2-1 块状矿石 里伍本部B2矿体 12.92 0.30 < 10.0 KKLWB2-2 块状矿石 里伍本部B2矿体 21.70 0.31 < 10.0 KKLWB2-5 块状矿石 里伍本部B2矿体 3.70 < 0.10 16.8 KKLWB2-6 块状矿石 里伍本部B2矿体 1.56 < 0.10 < 10.0 JKLWB2-7 浸染状矿石 里伍本部B2矿体 4.15 0.17 16.8 WYLWB2-16 浸染状矿石 里伍本部B2矿体 - 0.15 < 10.0 WYLWB2-17 浸染状矿石 里伍本部B2矿体 - 0.15 < 10.0 KKLW-3 块状矿石 里伍本部 3.04 < 0.10 < 10.0 KKLWB1-1-1 块状矿石 里伍本部B1矿体 16.55 < 0.10 17.9 KKLWA2-3 块状矿石 里伍本部A2矿体 10.06 0.72 59.0 KKLWA2-8 块状矿石 里伍本部A2矿体 7.37 0.55 64.9 GKLWE1-8 网脉状-块状矿石 里伍本部E1矿体 5.45 0.14 123.0 GKLWA2-10 网脉状-块状矿石 里伍本部A2矿体 3.93 0.16 36.3 GKLWA2-11 网脉状-块状矿石 里伍本部A2矿体 10.98 2.38 16.5 KKHN-1 块状矿石 黑牛洞 19.99 0.11 < 10.0 KKHN-2 块状矿石 黑牛洞 14.74 0.18 < 10.0 KKHN-3 块状矿石 黑牛洞 15.61 < 0.10 < 10.0 KKHN-4 块状矿石 黑牛洞 15.88 0.15 < 10.0 KKHN-7 块状矿石 黑牛洞 15.35 0.87 51.1 KKHN-13 块状矿石 黑牛洞 19.10 0.12 - HWJG-6 块状矿石 挖金沟 10.77 0.13 34.4 WJG-7 块状矿石 挖金沟 1.58 0.23 11.6 JK207H141/6 浸染状矿石 黑牛洞 - 0.20 < 10.0 TK207H154/5 条带状矿石 黑牛洞 - 0.16 14.2 KK207H16-1 块状矿石 黑牛洞 - 0.11 < 10.0 KK207H222/6 块状矿石 黑牛洞 - 0.13 33.0 KK207H234/6 块状矿石 黑牛洞 - 0.20 20.5 TKZK20841H18 条带状矿石 黑牛洞 - 0.12 - KKZZ-5 块状矿石 中咀 4.37 < 0.10 29.0 KKZZ-6 块状矿石 中咀 4.97 < 0.10 29.6 KKZZ-7 块状矿石 中咀 17.72 < 0.10 15.4 WY1P-7 二云母石英片岩 中咀 - 0.10 10.8 表 2 能谱-扫描电镜工作条件
Table 2. Working conditions of EDX-SEM instrument
实验内容 加速电压(kV) 发射电流(μA) 工作距离(mm) 处理时间(s) 活时间(s) 死时间 扫描电镜的背散射电子(BSE)观察 20 10 15 - - - 二次电子(SE)影像观察 20 10 15 - - - EDX定性分析 20 10 - 6 100 20%~40% EDX定量分析 20 10 - 6 100 20%~40% EDX线分析 20 10 - 2 依据线扫描的长短和元素含量高低而定 20%~40% EDX面分析 20 10 - 2 依据面分析区域大小和元素含量高低而定 20%~40% 表 3 矿物能谱分析结果
Table 3. Energy spectrum analysis results of the minerals
矿物名称 化学式 元素含量(%) S Fe Co Sb Te Zn Te Bi Au Ag W Ca O 硫锑钴矿 CoSbS 15.59 0.83 24.13 57.56 1.89- - - - - - - - - 赫碲铋矿 Bi7Te3 - 0.73 - - - 3.12 24.70 71.45 - - - - - 赫碲铋矿 Bi7Te3 - 1.04 - - - 2.26 25.19 71.50 - - - - - 自然金 Au - 1.26 - - - - - - 98.74 - - - - 银金矿 AgAu - 1.06 - - - - - - 76.51 22.43 - - - 类质同象金 Au 3.15 4.11 - - 34.93 - - - 5.60 52.22 - - - 银金矿 AgAu - 10.64 - - - - - - 86.53 2.83 - - - 碲银矿 Ag2Te 1.61 3.42 - - - 37.38 - 57.59 - - - 硫铋银矿 AgBiS2 17.31 1.54 - - - - 0.98 65.53 - 14.65 - - - 单质铋 Bi - 3.73 - - - - 96.27 - - - - - 单质铋 Bi - - - - - - 100 - - - - - 碲铋矿 Bi2Te3 - - - - - - 36.62 63.38 - - - - - 碲铋矿 Bi2Te3 - - - - - - 46.75 53.25 - - - - - 白钨矿 CaWO4 - - - - - - - - - - 63.14 13.97 22.89 白钨矿 CaWO4 - 0.98 - - - - - - - - 60.55 13.59 24.88 注:“-”表示未能检出该元素。 -
[1] 关静芝, 景毅, 张贺群, 等. 某金铜矿工艺矿物学研究[J]. 吉林地质, 2019, 38(3): 72-77. doi: 10.3969/j.issn.1001-2427.2019.03.019
Guan J Z, Jing Y, Zhang H Q, et al. Process mineralogical study of a copper ore in Jilin Province[J]. Jilin Geology, 2019, 38(3): 72-77. doi: 10.3969/j.issn.1001-2427.2019.03.019
[2] 宋磊, 周少珍. 铜尾矿中铜矿物综合回收影响因素分析[J]. 中国矿业2014, 23(增刊1): 178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S1041.htm
Song L, Zhou S Z. Influence factors analysis of separation recycling of copper minerals in copper tailings[J]. China Mining Magazine, 2014, 23(Supplement 1): 178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S1041.htm
[3] 许志华. 铜工艺矿物学[J]. 广东有色金属学报, 1999, 9(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS901.000.htm
Xu Z H. Technological mineralogy of copper[J]. Transactions of Nonferrous Metals Society of Guangdong, 1999, 9(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS901.000.htm
[4] 饶明生. 刚果(金)某难选氧化铜矿高效回收选矿工艺技术研究[J]. 中国金属通报, 2020(3): 115-117. doi: 10.3969/j.issn.1672-1667.2020.03.072
Rao M S. Research on high-efficiency recovery and beneficiation technology of a refractory oxidized copper ore in the Democratic Republic of Congo[J]. China Metal Bulletin, 2020(3): 115-117. doi: 10.3969/j.issn.1672-1667.2020.03.072
[5] 严华山, 尹艳芬, 艾光华. 某铜铅锌伴生金银多金属矿工艺矿物学研究[J]. 矿业研究与开发, 2015, 35(2): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201502009.htm
Yan H S, Yin Y F, Ai G H. Process mineralogy research on a Cu-Pb-Zn polymetallic ore associated with gold and silver[J]. Mining Research and Development, 2015, 35(2): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201502009.htm
[6] 孔令采, 李正要. 赞比亚某铜矿石工艺矿物学研究[J]. 金属矿山, 2015(1): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201501018.htm
Kong L C, Li Z Y. Study on process mineralogy for a copper ore in Zambia[J]. Metal Mine, 2015(1): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201501018.htm
[7] 吴立毅, 王文民, 赵晓霞, 等. 基于火焰原子吸收法实现多金属原矿石中铅锌铜的测定[J]. 世界有色金属, 2018(14): 196, 199. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201814109.htm
Wu L Y, Wang W M, Zhao X X, et al. Determination of lead, zinc and copper in polymetallic ore by flame atomic absorption spectrometry[J]. World Nonferrous Metals, 2018(14): 196, 199. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201814109.htm
[8] 尹秀杰. 原子吸收分光光度法在矿石矿物分析中的运用[J]. 黑龙江科学, 2020, 11(10): 66-67. doi: 10.3969/j.issn.1674-8646.2020.10.029
Yin X J. Application of atomic absorption spectro-photometry in analysis of ore minerals[J]. Heilongjiang Science, 2020, 11(10): 66-67. doi: 10.3969/j.issn.1674-8646.2020.10.029
[9] 刘烽, 吴骋, 吴广宇, 等. 微波消解-电感耦合等离子体原子发射光谱法测定高镍铸铁中硅锰磷铬镍铜[J]. 冶金分析, 2018, 38(5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805014.htm
Liu F, Wu C, Wu G Y, et al. Determination of silicon, manganese, phosphorus, chromium, nickel and copper in high nickel cast iron by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2018, 38(5): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805014.htm
[10] 李田义, 柯玲. 滤纸制样X射线荧光光谱法测定矿石中的多元素[J]. 岩矿测试, 2010, 29(1): 77-79. doi: 10.3969/j.issn.0254-5357.2010.01.018 http://www.ykcs.ac.cn/article/id/ykcs_20100118
Li T Y, Ke L. Determination of multi-elements in ore samples by X-ray fluorescence spectrometry with filter paper sample preparation[J]. Rock and Mineral Analysis, 2010, 29(1): 77-79. doi: 10.3969/j.issn.0254-5357.2010.01.018 http://www.ykcs.ac.cn/article/id/ykcs_20100118
[11] 王玲, 王明燕. 某铜矿山老尾矿中铜的赋存状态研究[J]. 有色金属(选矿部分), 2012(6): 1-4. doi: 10.3969/j.issn.1671-9492.2012.06.001
Wang L, Wang M Y. Research on copper dissemination state from old tailings in a copper mine[J]. Nonferrous Metals (Mineral Processing Section), 2012(6): 1-4. doi: 10.3969/j.issn.1671-9492.2012.06.001
[12] 梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试, 2015, 34(2): 201-206. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.008
Liang S T, Liu Y C, Liu Z. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.008
[13] 任小明, 蔡志伟. 提高扫描电镜能谱空间分辨率的方法研究[J]. 分析科学学报, 2020, 36(4): 579-583. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202004022.htm
Ren X M, Cai Z W. Study on improving the spatial resolution of energy dispersive spectroscopy-mapping in scanning electron microscopy[J]. Journal of Analytical Science, 2020, 36(4): 579-583. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202004022.htm
[14] Sie S H, Griffin W L, Ryan C G, et al. The proton microprobe: A revolution in mineral analysis[J]. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 1991, 54: 281-291. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0168583X9195527K&originContentFamily=serial&_origin=article&_ts=1414366220&md5=c252d4b94d13a750455d3af82af91904
[15] Wang K R, Zhou Y Q, Li F Q, et al. SPM and SEM study on the occurrence of micrograined gold in Jinya gold deposit, Guangxi[J]. Chinese Science Bulletin, 1992, 379220: 1906-1910. http://qikan.cqvip.com/Qikan/Article/Detail?id=1005219412
[16] 任炽刚, 周世俊, 胡卫明, 等. 微米PIXE对含金矿样的分析[J]. 科学通报, 1991, 36(16): 1215-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199116004.htm
Ren C G, Zhou S J, Hu W M, et al. Micron PIXE on gold-bearing ore samples analysis[J]. Chinese Science Bulletin, 1991, 36(16): 1215-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199116004.htm
[17] 杨晓勇, 王奎仁, 戴小平, 等. 质子探针分析方法研究矿石中微细粒金的赋存状态——以皖中沙溪斑岩铜(金)矿床为例[J]. 高校地质学报, 1998, 4(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX801.004.htm
Yang X Y, Wang K R, Dai X P, et al. Study on the occurrence of micrograined gold in minerals by application of proton and nuclear microprobes as exemplified by Shaxi porphyry copper and gold deposit Anhui[J]. Geological Journal of China Universities, 1998, 4(1): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX801.004.htm
[18] 梁冬云, 邱显扬, 蒋英, 等. 天然铁锰氧化物负载金银规律性研究[J]. 有色金属(选矿部分), 2020(4): 6-12. doi: 10.3969/j.issn.1671-9492.2020.04.002
Liang D Y, Qiu X Y, Jiang Y, et al. The gold and silver loading behavior study of natural iron-manganese oxides[J]. Nonferrous Metals (Mineral Processing Section), 2020(4): 6-12. doi: 10.3969/j.issn.1671-9492.2020.04.002
[19] 李遥, 邓小华, 吴艳爽, 等. 新疆哈密卡拉塔格块状硫化物矿床金银赋存状态研究[J]. 地学前缘, 2018, 25(5): 69-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805006.htm
Li Y, Deng X H, Wu Y S, et al. A study of the occurrences of gold and silver in the massive sulfide deposit in the Kalatagregion, NW China[J]. Earth Science Frontiers, 2018, 25(5): 69-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805006.htm
[20] 高知睿, 赵元艺, 曹冲, 等. 德兴铜矿堆浸场矿石矿物学、Cu伴生元素地球化学特征及意义[J]. 岩石矿物学杂志, 2017, 36(6): 785-799. doi: 10.3969/j.issn.1000-6524.2017.06.003
Gao Z R, Zhao Y Y, Cao C, et al. Ore mineralogy of the heap leaching field of the Dexing copper deposit and geochemistry of Cu and associated elements[J]. Acta Petrologica Et Mineralogica, 2017, 36(6): 785-799. doi: 10.3969/j.issn.1000-6524.2017.06.003
[21] 戴婕, 徐金沙, 丁俊, 等. 四川甘孜江浪矿田里伍和黑牛洞铜矿床伴生金元素的赋存状态研究及成因探讨[J]. 矿物岩石, 2017, 37(1): 40-48. doi: 10.3969/j.issn.1007-2802.2017.01.005
Dai J, Xu J S, Ding J, et al. The study of occurrence state of associated gold and discussion of its genesis for Liwu and Heiniudong copper deposits, Janglang Dome, Sichuan[J]. Mineral Petrology, 2017, 37(1): 40-48. doi: 10.3969/j.issn.1007-2802.2017.01.005
[22] 周姣花, 周晶, 牛睿, 等. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态[J]. 岩矿测试, 2019, 38(6): 649-659. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905090057
Zhou J H, Zhou J, Niu R, et al. Study on occurrence of noble mental elements in black shale series in Zhangjiajie, Hunan Province by heavy placer classification-SEM-EDS and other techniques[J]. Rock and Mineral Analysis, 2019, 38(6): 649-659. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905090057
[23] 杨瑞林, 白燕. 应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式[J]. 岩矿测试, 2019, 30(4): 382-393. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2014.06.008
Yang R L, Bai Y. The occurrence of rare earth and radioactive elements in the associated minerals with raw coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis, 2019, 30(4): 382-393. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2014.06.008
[24] 陈丽华, 缪昕, 于众. 扫描电镜在地质上的应用[M]. 北京: 科学出版社, 1986: 13.
Chen L H, Miu X, Yu Z. Application of SEM in geology[M]. Beijing: Science Press, 1986: 13.
[25] 戴婕, 孙传敏, 丁俊, 等. 四川九龙里伍铜矿主要矿石矿物扫描电镜能谱分析[J]. 沉积与特提斯地质, 2009, 29(4): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200904020.htm
Dai J, Sun C M, Ding J, et al. Scanning electron microscopy and energy dispersive spectrum analysis of the ore minerals from the Liwu copper deposit[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(4): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200904020.htm
[26] 张达兵, 查寿才, 武鹏, 等. 云南大红山铜矿Ⅰ号矿带金赋存规律研究[J]. 矿产与地质, 2019, 33(5): 851-860. doi: 10.3969/j.issn.1001-5663.2019.05.012
Zhang D B, Zha S C, Wu P, et al. Study on the occurrence regularity of gold in the ore belt No. Ⅰ of Dahongshan copper deposit, Yunnan[J]. Mineral Resources and Geology, 2019, 33(5): 851-860. doi: 10.3969/j.issn.1001-5663.2019.05.012
[27] 徐晓春, 季珂, 白茹玉, 等. 安徽宣城茶亭斑岩铜金矿床金的赋存状态及金铜成因联系[J]. 岩石矿物学杂志, 2018, 37(4): 575-589. doi: 10.3969/j.issn.1000-6524.2018.04.005
Xu X C, Ji K, Bai R Y, et al. Modes of occurrence of gold and genetic connection between gold and copper in the ores from the Chating porphyry copper-gold deposit, Xuancheng City, Anhui Province[J]. Acta Petrologica Et Mineralogica, 2018, 37(4): 575-589. doi: 10.3969/j.issn.1000-6524.2018.04.005
[28] 冯浩轩, 申萍, 潘鸿迪, 等. 哈萨克斯坦努尔卡斯甘大型富金斑岩铜矿地质特征及金赋存状态[J]. 岩石学报, 2018, 34(3): 763-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803015.htm
Feng H X, Shen P, Pan H D, et al. Geological character-istics and occurrence of gold in the large Nurkazgan glod-rich porphyry copper deposit, Kazakhstan[J]. Acta Petrologica Sinica, 2018, 34(3): 763-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803015.htm
[29] 宋会侠, 郭国林, 焦学军, 等. 新疆包古图斑岩铜矿伴生元素金和银赋存状态初步研究[J]. 岩石矿物学杂志, 2007, 26(4): 329-334. doi: 10.3969/j.issn.1000-6524.2007.04.005
Song H X, Guo G L, Jiao X J, et al. A preliminary study of the modes of occurrence of associated Au and Ag in the Baogutu porphyry copper deposit, Xinjiang Autonomous Region, China[J]. Acta Petrologica Et Mineralogica, 2007, 26(4): 329-334. doi: 10.3969/j.issn.1000-6524.2007.04.005
[30] 巴红飞, 许永权, 段景文, 等. 刚果(金)某低品位铜钴矿选矿工艺试验研究[J]. 湖南有色金属, 2019, 35(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906006.htm
Ba H F, Xu Y G, Duan J W, et al. Separation test research on a low-grade copper-cobalt ore in D.R. C[J]. Hunan Nonferrous Metals, 2019, 35(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906006.htm
[31] 穆彪. 蒙古某铜矿中钴的赋存状态[J]. 有色矿冶, 2014, 3(1): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY201401007.htm
Mu B. The occurrence state of cobalt in copper ore for certain mine of Mongolia[J]. Non-Ferrous Mining and Metallurgy, 2014, 3(1): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY201401007.htm
[32] 单连军, 穆彪. 非洲某铜矿石中钴难选因素的矿物学研究[J]. 矿产综合利用, 2015(4): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201504014.htm
Shan L J, Mu B. Mineralogical study on the refractory factors of cobalt in a copper ore originated from Africa[J]. Multipurpose Utilization of Mineral Resources, 2015(4): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201504014.htm
[33] 杨敏之. 红透山铜矿床氧化带内硒的地球化学及其资源环境利用方向[J]. 地质找矿论丛, 2004, 19(3): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200403001.htm
Yang M Z. Se Geochemistry in the oxidation of Hongtoushan Cu deposit and its resource -environmental recovery[J]. Contributions to Geology and Mineral Resources Research, 2004, 19(3): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK200403001.htm
[34] 王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京: 地质出版社, 1982: 274.
Wang P, Pan Z L, Weng L B, et al. System mineralogy[M]. Beijing: Geological Publishing House, 1982: 274.
-