Occurrence of Niobium and Rare Earth Elements in Related Ores by Electron Microprobe
-
摘要:
铌是一种战略金属,在现代钢铁技术中发挥着非常重要的作用。某铌-稀土矿矿石中的Nb2O5平均含量达0.0855%,稀土总量(REO)含量达1.03%,接近铌矿最低工业品位要求,并伴生有稀土矿,因此查明铌和稀土的赋存状态至关重要。由于铌矿物、稀土矿物具有颗粒细小且嵌布特征复杂的特点,在偏光显微镜下不容易发现,而且定名困难,很难达到研究目的,一直是地质分析测试的难点。为查明铌和稀土元素的存在形式以及铌、稀土元素的赋存矿物,本文应用电子探针背散射图像、能谱分析及电子探针波谱定量分析技术对某铌、稀土矿矿石进行分析,主要研究铌矿物和稀土矿物的种类、嵌布关系及化学成分等特征,更准确地分析铌和稀土元素的赋存状态。结果表明:①铌元素主要以铌铁矿、含铌金红石的形式存在,其中铌铁矿中Nb2O5的平均含量为78.26%,含铌金红石中Nb2O5的平均含量为5.26%。②稀土元素主要以独居石、氟碳钙铈矿和氟碳铈矿的形式存在,其中独居石中稀土总量(REO)的平均含量为64.84%,氟碳钙铈矿中稀土总量(REO)的平均含量为57.52%,氟碳铈矿中稀土总量(REO)的平均含量为70.61%。③铌矿物、稀土矿物分布分散,多包裹于钾长石、方解石及黑云母等脉石矿物中。本研究实现了常规岩矿鉴定手段难以完成的矿物识别和鉴定,查明该矿床矿石中主要的铌矿物和稀土矿物的种类及特征,为后续铌-稀土矿的综合利用提供了科学依据。
Abstract:BACKGROUND Niobium is a strategic metal with wide applications and plays a very important role in modern steel technology. The average content of Nb2O5 in a niobium-rare earth ore is 0.0855%, and the content of total rare earth (REO) is 1.03%, which is close to the minimum industrial grade requirement of niobium ore. Niobium minerals and rare earth minerals have the characteristics of small particles and complex intergrowths, which makes them difficult to find under a polarized microscope.
OBJECTIVES To investigate the forms of niobium and rare earth elements.
METHODS Electron probe backscatter image, energy spectrum analysis and electron probe spectrum quantitative analysis were used to analyze niobium and rare-earth ore.
RESULTS Niobium mainly existed in the form of niobite and niobium-bearing rutile. The average content of Nb2O5 in niobite was 78.26% and that in niobium-bearing rutile was 5.26%. Rare earth elements mainly existed in the form of monazite, bastnaite and bastnaesite. The average content of rare earth elements (REO) in monazite, bastnaite and bastnaesite was 64.84%, 57.52% and 70.61%, respectively. Niobium and rare-earth minerals were distributed and dispersed. They were mostly trapped in the gangue minerals such as potassium feldspar, calcite and biotite.
CONCLUSIONS The types and characteristics of the main niobium and rare earth minerals in the ore deposit were identified. This study has important guiding significance for the comprehensive utilization of niobium and rare earth deposits in the future.
-
表 1 铌铁矿电子探针波谱定量分析结果
Table 1. Electron microprobe analyses of niobite in a niobium-rare earth ore area
铌铁矿样品 元素含量(%) Nb2O5 FeO TiO2 MnO Ta2O5 总计 1 78.27 17.43 2.46 1.03 0.24 99.44 2 78.27 18.48 2.09 1.10 0.00 99.94 3 78.53 18.55 2.31 0.95 0.13 100.47 4 79.07 18.80 1.80 1.04 0.01 100.72 5 78.42 18.58 2.03 1.15 0.23 100.42 6 78.13 18.42 2.19 1.10 0.06 99.89 7 78.08 18.73 2.54 0.90 0.16 100.41 8 77.77 18.64 1.83 1.16 0.23 99.61 9 77.83 18.40 2.03 1.48 0.00 99.75 平均 78.26 18.45 2.14 1.10 0.12 100.07 表 2 金红石(铌)电子探针波谱定量分析结果
Table 2. Electron microprobe analyses of rutile (Nb) in a niobium-rare earth ore area
金红石样品 元素含量(%) TiO2 Nb2O5 FeO CaO MnO MgO Cr2O3 总计 1 85.49 9.85 2.12 0.76 0.02 0.01 1.37 99.63 2 86.40 10.01 2.47 0.11 0.04 0.00 1.34 100.36 3 92.45 4.70 0.80 0.07 0.00 0.01 1.41 99.44 4 90.08 7.06 2.05 0.05 0.00 0.00 0.64 99.87 5 84.30 11.93 3.14 0.03 0.01 0.01 0.97 100.40 6 86.39 9.05 3.42 0.37 0.01 0.00 0.00 99.24 7 94.53 3.85 1.83 0.30 0.01 0.01 0.00 100.52 8 95.16 2.61 1.32 0.28 0.01 0.00 0.00 99.39 9 93.96 3.83 1.47 0.67 0.00 0.00 0.00 99.93 10 95.37 2.57 1.06 0.32 0.03 0.01 0.00 99.36 11 94.53 3.09 1.20 0.44 0.01 0.00 0.00 99.26 12 93.32 4.08 1.53 0.34 0.05 0.01 0.00 99.33 13 96.68 1.72 0.70 0.40 0.01 0.01 0.00 99.51 14 96.34 2.00 0.92 0.38 0.02 0.00 0.00 99.66 表 3 独居石电子探针波谱定量分析结果
Table 3. Electron microprobe analyses of monazite in a niobium-rare earth ore area
独居石样品 元素含量(%) P2O5 CaO SiO2 La2O3 Ce2O3 Pr2O3 Nd2O3 Sm2O3 Eu2O3 Gd2O3 Dy2O3 UO2 ThO2 Y2O3 总计 1 29.88 0.05 0.23 33.86 28.67 1.50 3.16 0.50 0.08 0.00 0.00 0.00 0.56 0.18 98.65 2 30.24 0.18 0.25 23.98 31.47 2.13 6.63 0.98 0.14 0.15 0.00 0.02 2.71 0.41 99.26 3 30.35 0.12 0.15 24.56 31.06 2.22 6.59 0.99 0.13 0.51 0.00 0.03 1.42 0.46 98.60 4 30.25 0.94 0.22 22.14 32.87 2.29 7.54 1.20 0.13 0.24 0.00 0.05 1.60 0.36 99.82 5 29.57 0.43 0.50 21.47 32.86 2.60 7.72 1.00 0.16 0.61 0.05 0.06 2.39 0.48 99.91 6 30.02 0.60 0.41 21.84 33.35 2.65 7.75 0.99 0.15 0.34 0.03 0.01 1.82 0.44 100.41 7 30.03 0.41 0.32 22.31 31.68 2.40 7.11 0.98 0.16 0.48 0.00 0.08 3.04 0.46 99.47 8 29.51 0.87 0.30 22.74 31.49 2.40 6.44 0.98 0.11 0.15 0.16 0.09 3.37 0.43 99.02 9 30.04 0.59 0.17 23.67 32.62 2.37 7.10 0.92 0.14 0.31 0.17 0.05 1.33 0.43 99.89 10 29.35 1.11 0.22 24.61 31.74 2.12 6.84 0.93 0.15 0.51 0.18 0.02 0.77 0.58 99.13 11 29.73 0.80 0.15 24.34 31.92 2.36 7.44 1.02 0.14 0.40 0.13 0.01 0.56 0.63 99.63 12 30.37 0.57 0.48 21.78 31.19 2.35 8.27 1.08 0.16 0.38 0.09 0.08 2.37 0.45 99.62 平均 29.95 0.56 0.28 23.94 31.74 2.28 6.88 0.96 0.14 0.34 0.07 0.04 1.83 0.44 99.45 表 4 氟碳钙铈矿和氟碳铈矿的电子探针波谱定量分析结果
Table 4. Electron microprobe analyses of bastnaesite and parisite in a niobium-rare earth ore area
氟碳钙铈矿样品 元素含量(%) F SiO2 CaO La2O3 Ce2O3 Pr2O3 Nd2O3 ThO2 Y2O3 总计 1 9.31 0.05 12.57 15.05 28.91 2.79 8.52 1.55 0.76 79.51 2 7.44 0.04 11.92 16.30 30.61 2.85 8.98 2.33 1.33 81.78 3 10.47 0.06 11.18 15.38 30.84 2.84 9.48 0.84 0.61 81.69 平均 9.07 0.05 11.89 15.58 30.12 2.83 8.99 1.57 0.90 80.99 氟碳铈矿样品 元素含量(%) F SiO2 CaO La2O3 Ce2O3 Pr2O3 Nd2O3 ThO2 Y2O3 总计 1 14.09 0.09 0.86 29.53 32.80 2.14 4.46 1.56 0.37 85.91 2 14.47 0.06 0.57 28.48 34.66 2.18 4.92 0.81 0.29 86.43 3 14.85 0.02 0.67 30.55 32.93 2.04 4.42 1.68 0.32 87.48 4 13.92 0.06 0.18 29.50 35.67 2.62 5.48 0.89 0.38 88.71 平均 14.33 0.06 0.57 29.52 34.02 2.25 4.82 1.24 0.34 87.13 -
[1] 黎洁, 谢贤, 吕晋芳, 等. 铌矿资源概述及选矿技术研究进展[J]. 金属矿山, 2021(2): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202102020.htm
Li J, Xie X, Lv J F. Overview of niobium resources and research progress in mineral processing technology[J]. Metal Mine, 2021(2): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202102020.htm
[2] 何海洋, 何敏, 李建武. 我国铌矿资源供需形势分析[J]. 中国矿业, 2018, 27(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201811001.htm
He H Y, He M, Li J W. Analysis of the niobium resources supply and demand pattern in China[J]. China Mining Magazine, 2018, 27(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201811001.htm
[3] 吴昌雄, 方鑫, 鄢华. 武当地区与碱性岩有关的铌、稀土矿特征及找矿方向[J]. 资源环境与工程, 2015, 29(3): 270-298. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201503009.htm
Wu C X, Fang X, Yan H. Charactersitcis of niobium rare earth deposit and prospecting direction of Wudang[J]. Resources Environment & Engineering, 2015, 29(3): 270-298. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201503009.htm
[4] 吴凤贤, 李红伟, 程钊, 等. 湖北省竹溪县蒋家堰铌钽矿区地球化学异常特征[J]. 资源环境与工程, 2016, 30(6): 829-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201606006.htm
Wu F X, Li H W, Cheng Z, et al. Characteristics of geochemical anomalies of niobium-tantalum mining area in Jiangjiayan of Zhuxi County, Hubei Province[J]. Resources Environment & Engineering, 2016, 30(6): 829-834. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201606006.htm
[5] 朱江, 程昌红, 王连训, 等. 南秦岭竹山地区早古生代碱性岩浆活动及其相关铌稀土成矿的若干认识[J]. 岩石矿物学杂志, 2017, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008
Zhu J, Cheng C H, Wang L X, et al. Some new knowledge concerning Silurian alkaline magmatism and related Nb-REE mineralization in Zhushan region, South Qinling[J]. Acta Petrologica Et Mineralogica, 2017, 36(5): 681-690. doi: 10.3969/j.issn.1000-6524.2017.05.008
[6] 鲁力, 廖经慧, 刘爽, 等. 湖北某稀土矿石工艺矿物学研究[J]. 稀土, 2016, 37(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201606001.htm
Lu L, Liao J H, Liu S, et al. Process mineralogy of a rare earth ore in Hubei Province[J]. Chinese Rare Earths, 2016, 37(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201606001.htm
[7] 鲁力, 刘爽, 冉晓红, 等. 湖北某黑云母方解石碳酸岩型铌矿石赋存状态及可选性评价[J]. 稀有金属, 2015, 39(9): 831-835. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201509011.htm
Lu L, Liu S, Ran X H, et al. Occurrence and evaluation of beneficiation of sovite-alvikite niobium ore in Hubei[J]. Chinese Journal of Rare Metals, 2015, 39(9): 831-835. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201509011.htm
[8] 刘爽, 林璠, 鲁力, 等. 湖北省某矿区复杂稀土矿石选矿实验研究[J]. 稀土, 2016, 37(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201604007.htm
Liu S, Lin P, Lu L, et al. Experimental research on the mineral processing technology for a rare earth ore in Hubei[J]. Chinese Rare Earths, 2016, 37(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201604007.htm
[9] 刘爽, 康健, 李健, 等. 湖北省两竹地区四个铌矿矿石性质及可选性实验研究[J]. 矿产综合利用, 2021(1): 88-91, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202101014.htm
Liu S, Kang J, Li J, et al. Study on mineral composition and processing technology of four niobium mines in Liangzhu area, Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 88-91, 203. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202101014.htm
[10] 张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm
Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm
[11] 邵兴坤, 尹京武, 杨海涛, 等. 电子探针在新疆拜城碱性花岗岩烧绿石研究中的应用[J]. 电子显微学报, 2011, 30(6): 521-526. doi: 10.3969/j.issn.1000-6281.2011.06.008
Shao X K, Yin J W, Yang H T, et al. Application of EMPA to pyrochlore study from Baicheng alkali granite, Xinjiang[J]. Journal of Chinese Electron Microscopy Society, 2011, 30(6): 521-526. doi: 10.3969/j.issn.1000-6281.2011.06.008
[12] 荆国强, 廉康, 胡菲菲, 等. 利用电子探针研究甘肃陇南赵家庄金矿载金矿物特征[J]. 岩矿测试, 2018, 37(5): 490-498. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707170119
Jing G Q, Lian K, Hu F F, et al. Application of EMPA to study the characteristics of gold-bearing minerals in the Zhaojiazhuang gold deposit in Longnan, Gansu Province[J]. Rock and Mineral Analysis, 2018, 37(5): 490-498. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201707170119
[13] 王梦亚, 尹京武, 陈浦浦, 等. 陕西洛南长岭正长岩中含稀土矿物的特征[J]. 电子显微学报, 2015, 34(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201501008.htm
Wang M Y, Yin J W, Chen P P, et al. Rare earth mineral characteristics of aegirine augite syenite in Changling, Luonan County, Shannxi Province[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201501008.htm
[14] 张随安, 刘能, 刘文菊, 等. 陕西东南部碱性岩中含铌矿物特征及其成因机制研究[J]. 黄金科学技术, 2017, 25(2): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201702003.htm
Zhang S A, Liu N, Liu W J, et al. Study on the niobium minerals characteristics of alkaline rock and it's genetic mechanism in southeastern Shannxi[J]. Gold Science and Technology, 2017, 25(2): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201702003.htm
[15] 张云海, 陈化凯, 龚书浩, 等. 豫西太平镇稀土矿工艺矿物学研究[J]. 稀土, 2020, 41(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202001021.htm
Zhang Y H, Chen H K, Gong S H, et al. Study on process mineralogy of rare earth ore in Taipingzhen, western Henan Province[J]. Chinese Rare Earths, 2020, 41(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202001021.htm
[16] 张轰玉, 杨占峰, 焦登铭, 等. 白云鄂博主矿霓石型铌稀土铁矿石中铌在独立矿物中的富集状态和分布规律研究[J]. 有色金属(选矿部分), 2020(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202001002.htm
Zhang H Y, Yang Z F, Jiao D M, et al. Distribution regularity and enrichment state of niobium in independent minerals in aegirine-type niobium rare earth iron ore in Bayan Obo main mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202001002.htm
[17] 李波, 梁冬云, 张莉莉, 等. 富磷灰石复杂稀土矿石工艺矿物学研究[J]. 中国稀土学报, 2012, 30(6): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201206019.htm
Li B, Liang D Y, Zhang L L, et al. Process mineralogy of an apatite-rich complex rare earth ore[J]. Journal of the Chinese Rare Earth Society, 2012, 30(6): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201206019.htm
[18] 刘洋. 湖南某地独居石型稀土矿工艺矿物学研究[J]. 矿产保护与利用, 2016(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201602008.htm
Liu Y. Process mineralogical study of a monazite-type rare earth in Hunan[J]. Conservation and Utillzation of Mineral Resources, 2016(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201602008.htm
[19] 原显顺. 山东微山稀土矿床的稀土矿物学研究[J]. 矿产勘查, 2019, 10(9): 2229-2242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201909015.htm
Yuan X S. Rare earth mineralogy study of Weishan rare earth deposit in Shandong Province[J]. Mineral Exploration, 2019, 10(9): 2229-2242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201909015.htm
[20] 殷晓. 扫描电镜能谱法测定独居石中铈、镧、钍等元素的含量[J]. 地质与资源, 2015, 24(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201505017.htm
Yin X. Content determination of cerium, lanthanum, thorium and other elements in monazite with SEM-EDS analysis[J]. Geology and Resources, 2015, 24(5): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201505017.htm
[21] 范晨子, 詹秀春, 曾普胜, 等. 白云鄂博稀土氟碳酸盐矿物的LA-ICP-MS多元素基体归一定量分析方法研究[J]. 岩矿测试, 2015, 34(6): 609-616. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.002
Fan C Z, Zhan X C, Zeng P S, et al. Multi-element content analysis of rare earth fluorocarbonates from Bayan Obo deposit by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(6): 609-616. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.002
[22] 姚立, 田地, 梁细荣. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54. http://www.ykcs.ac.cn/article/id/ykcs_20080118
Yao L, Tian D, Liang X R. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54. http://www.ykcs.ac.cn/article/id/ykcs_20080118
[23] 朱丹, 桂博艺, 王芳, 等. AMICS测试技术在铌矿中的应用——以竹溪铌矿为例[J]. 有色金属(选矿部分), 2021(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202103001.htm
Zhu D, Gui B Y, Wang F, et al. Application of the advanced mineral identification and characterization system (AMICS) in the Nb deposit: A case study of the Zhuxi Nb deposit[J]. Nonferrous Metals (Mineral Processing Section), 2021(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202103001.htm
[24] 苟瑞涛. 基于MLA的碳酸岩-碱性杂岩稀土-铌-铁矿矿物学特征研究——以内蒙古白云鄂博矿床为例[D]. 北京: 中国地质大学(北京), 2016: 1-68.
Gou R T. Study on mineralogical characteristics of REE-Nb-Fe ore within carbonatites-alkaline complexes based on MLA-A case study for Bayan Obo deposit in Inner Mongolia, China[D]. Beijing: China University of Geosciences (Beijing), 2016: 1-68.
[25] 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201708110129
Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201708110129