Determination of Major and Trace Elements in Sepiolite of Remote Mining Area by Microwave Plasma-Atomic Emission Spectroscopy
-
摘要:
海泡石是具有层状结构的含水富镁硅酸盐黏土矿物,其中无机元素含量是揭示其成矿物质来源、成矿流体性质和矿床成因的重要依据,通常采用电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)进行测定,等离子体(ICP)的高温激发会产生成大量谱线干扰,维持ICP稳定工作需使用高纯氩气,持续供气对于偏远矿区海泡石的检测还将面对气体采购和运输不便的问题。本文基于微波等离子体原子发射光谱(MP-AES)的低温激发技术减少光谱干扰,建立了准确测定偏远矿区海泡石中主量元素Mg、Al、Ca、Fe、K、Na和微量元素Cu、Zn、Mn、Pb含量的分析方法。利用硝酸-盐酸-氢氟酸混合酸对海泡石进行微波消解,避免了样品处理过程中分析元素的损失,加快了样品处理速度,同时提高了样品溶液的稳定性。通过选择各元素光谱线的分析波长,并利用快速线性干扰校正(FLIC)技术校正光谱干扰,以Lu为内标元素校正基体效应,提高了灵敏度和准确度。各元素的检出限为0.19~14.6μg/L。海泡石国家标准物质(GBW07138)各元素测定值与认定值的相对误差在-5.0%~6.7%之间。本方法具有检出限低、线性范围宽、结果准确等优点;MP-AES采用自带的氮气发生器为等离子体提供氮气作为工作气,无需引入复杂气体,提高了分析效率,尤其适用于气体采购和运输不便的偏远矿区。
Abstract:BACKGROUND Sepiolite is a layered hydrous magnesium-rich silicate clay mineral. The content of inorganic elements in sepiolite is an important basis for revealing the source of ore-forming materials, the nature of ore-forming fluids and the genesis of the deposit. It is usually determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS), high temperature excitation of inductively coupled plasma (ICP) will produce a large number of spectral interferences. High purity argon is needed to maintain the stability of ICP. Continuous gas supply for sepiolite detection in remote mining areas will also cause the problem of inconvenient gas procurement and transportation.
OBJECTIVES In order to reduce the spectral interference and realize the accurate analysis of major and trace elements in sepiolite samples from remote mining areas.
METHODS An analytical method was developed for accurate determination of major elements Mg, Al, Ca, Fe, K, Na and trace elements Cu, Zn, Mn and Pb in sepiolite by microwave plasma-atomic emission spectroscopy (MP-AES). Microwave digestion of sepiolite by using HNO3-HCl-HF as a mixed acid not only avoids the loss of analytes during sample processing, but also speeds up the sample processing and improves the stability of the sample solution. By selecting the analysis wavelength of the spectral line for analyte, using the fast linear interference correction (FLIC) technology to correct the spectral interference, and selecting Lu as the internal standard element corrected the matrix effect, which improved sensitivity and accuracy.
RESULTS The limit of detection (LOD) was 0.19-14.6μg/L. The accuracy of the method was verified by the national standard reference material sepiolite (GBW07138). The relative error between the measured value and the certified value of analytes was between -5.0% and 6.7%, which verified the accuracy and reliability of the method.
CONCLUSIONS The method has the advantages of low LOD, wide linear range, and accurate results. MP-AES uses its own nitrogen generator to provide nitrogen as the working gas for plasma, without introducing a complex gas, which improves the analysis efficiency, and is especially suitable for remote mining areas where gas procurement and transportation are inconvenient.
-
表 1 分析元素的校准数据和检出限
Table 1. Calibration data and limit of detection of elements
元素 测定范围
(mg/L)线性相关系数
(r)检出限
(μg/L)元素 测定范围
(mg/L)线性相关系数
(r)检出限
(μg/L)Mg 0.007~500 0.9999 1.87 Na 0.002~10.0 0.9999 0.52 Al 0.005~200 0.9997 1.35 Cu 0.001~1.00 0.9996 0.22 Ca 0.050~50.0 1.0000 14.6 Zn 0.017~1.00 0.9999 4.81 Fe 0.009~50.0 0.9998 2.53 Mn 0.001~1.00 1.0000 0.19 K 0.004~10.0 1.0000 1.01 Pb 0.001~1.00 0.9998 0.34 表 2 MP-AES测定海泡石标准参考物质(GBW07138)的分析结果(n=6)
Table 2. Analytical results of standard reference material sepiolite (GBW07138) using MP-AES (n=6)
元素 标准值(mg/g) 测定值(mg/g) 相对误差(%) RSD (%) Mg 180±2.00 184±2.60 2.2 1.4 Al 44.5±0.70 43.1±0.94 -3.1 2.2 Ca 25.6±0.90 27.3±0.82 6.6 3.0 Fe 14.6±0.70 15.1±0.30 3.4 2.0 K 3.20±0.20 3.14±0.13 -1.9 4.1 Na 1.20±0.10 1.28±0.07 6.7 5.5 Cu 25.0±2.00* 24.3±1.05* -2.8 4.3 Zn 105±8.00* 110±4.01* 4.8 3.6 Mn 220±30.0* 209±7.22* -5.0 3.5 Pb 8.70±0.70* 8.52±0.34* -2.1 4.0 注:标注“*”的元素(Cu、Zn、Mn、Pb)含量单位为μg/g。 表 3 采用MP-AES测定海泡石样品的分析结果(n=6)
Table 3. Analytical results of sepiolite samples using MP-AES (n=6)
元素 样品A 样品B 国标法测定值
(mg/g)本文方法测定值
(mg/g)相对误差
(%)RSD
(%)国标法测定值
(mg/g)本文方法测定值
(mg/g)相对误差
(%)RSD
(%)Mg 211±7.12 203±6.34 -3.8 3.1 191±5.38 187±6.33 -2.1 3.4 Al 52.0±2.36 50.1±1.95 3.7 3.9 41.8±2.87 43.1±3.46 3.1 8.0 Ca 26.6±1.01 27.6±0.82 3.8 3.0 21.5±0.45 20.8±0.90 -3.3 4.3 Fe 14.6±0.58 15.0±0.44 2.7 2.9 18.3±0.37 18.1±0.41 -1.1 2.3 K 3.27±0.16 3.14±0.10 -4.0 3.2 2.82±0.12 2.97±0.20 5.3 6.7 Na 1.91±0.06 1.83±0.04 -4.2 2.2 1.17±0.05 1.13±0.08 -3.4 7.1 Cu 70.2±3.85* 72.5±3.07* 3.3 4.2 96.8±4.10* 101±6.23* 4.3 6.2 Zn 83.9±3.74* 81.6±2.22* -2.7 2.7 45.0±2.15* 48.3±2.59* 7.3 5.4 Mn 255±11.0* 264±6.91* 3.5 2.6 182±7.36* 175±12.1* -3.8 6.9 Pb 16.0±1.27* 16.7±0.59* 4.4 3.5 20.5±0.88* 21.6±1.30* 5.4 6.0 注:标注“*”的元素(Cu、Zn、Mn、Pb)含量单位为μg/g。 -
[1] Ozcan A, Oncua E M, Ozcan A S. Adsorption of acid blue 193 from aqueous solutions onto DEDMA-sepiolite[J]. Journal of Hazardous Materials, 2006, 129(1-3): 244-252. doi: 10.1016/j.jhazmat.2005.08.037
[2] Rytwo G, Tropp D, Serban C. Adsorption of diquat, paraquat and methyl green on sepiolite: Experimental results and model calculations[J]. Applied Clay Science, 2002, 20(6): 273-282. doi: 10.1016/S0169-1317(01)00068-0
[3] Lazarevic S L, Jankovic-Castvan, Potkonjak B, et al. Removal of Co2+ ions from aqueous solutions using iron-functionalized sepiolite[J]. Chemical Engineering and Processing: Process Intensification, 2012, 55: 40-47. doi: 10.1016/j.cep.2012.01.004
[4] 黄东强, 李津苏, 王玉峰, 等. 海泡石负载稀土/天然胶乳胶膜复合材料制备与表征[J]. 中国稀土学报, 2019, 37(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201901005.htm
Huang D Q, Li J S, Wang Y F, et al. Preparation and characterization of sepiolite supported rare earth/natural latex composite film[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(1): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB201901005.htm
[5] Li Z, Gomez-Aviles A, Sellaoui L, et al. Adsorption of ibuprofen on organo-sepiolite and on zeolite/sepiolite heterostructure: Synthesis, characterization and statistical physics modeling[J]. Chemical Engineering Journal, 2019, 371: 868-875. doi: 10.1016/j.cej.2019.04.138
[6] Chen B, Jia Y, Zhang M, et al. Facile modification of sepiolite and its application in superhydrophobic coatings[J]. Applied Clay Science, 2019, 174: 1-9. doi: 10.1016/j.clay.2019.03.016
[7] Liu L, Chen H, Shiko E, et al. Low-cost DETA impre-gnation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948. doi: 10.1016/j.cej.2018.07.086
[8] 贺洋. 低品质海泡石提纯及吸附性能研究[J]. 非金属矿, 2019, 42(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm
He Y. Purification of low quality sepiolite and adsorption capacity research[J]. Non-Metallic Mines, 2019, 42(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904017.htm
[9] Galan E. Properties and applications of palygorskite-sepiolite clays[J]. Clay Minerals, 1996, 31: 443-453. doi: 10.1180/claymin.1996.031.4.01
[10] 迟广成, 张泉, 赵爱林, 等. X射线粉晶衍射仪定量测量海泡石矿样的实验条件[J]. 岩矿测试, 2012, 31(2): 282-286. http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb
Chi G C, Zhang Q, Zhao A L, et al. Experimental conditions of X-ray powder diffraction for sepiolite measurement[J]. Rock and Mineral Analysis, 2012, 31(2): 282-286. http://www.ykcs.ac.cn/article/id/60cfa9e7-b598-46dd-a602-4e3d30509cdb
[11] Chen S, Yan X, Liu W, et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers[J]. Chemical Engineering Journal, 2020, 401: 126095. doi: 10.1016/j.cej.2020.126095
[12] Liu L, Chen H, Shiko E, et al. Low-cost DETA impreg-nation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948. doi: 10.1016/j.cej.2018.07.086
[13] Deng C, Jiang Y, Fan Z, et al. Sepiolite-based separator for advanced Li-ion batteries[J]. Applied Surface Science, 2019, 484: 446-452. doi: 10.1016/j.apsusc.2019.04.141
[14] 宋帅娣, 任健, 卢思桥. 氢化物发生-原子荧光光谱法测定海泡石中砷[J]. 化学与粘合, 2013, 35(3): 78-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201303022.htm
Song S D, Ren J, Lu S Q. Determination of arsenic in sepiolite by hydride generation-atomic fluorescence spectrometry[J]. Chemistry and Adhesion, 2013, 35(3): 78-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201303022.htm
[15] 王力强, 王家松, 徐铁民, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定海泡石中的氧化铝等主量成分[J]. 岩矿测试, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/id/88f08198-6b3e-488e-9d6f-0bfbcde632d7
Wang L Q, Wang J S, Xu T M, et al. Determination of major elements in sepoilite by inductively coupled plasma-optical emission spectrometry with opening acid dissolution[J]. Rock and Mineral Analysis, 2020, 39(3): 391-397. http://www.ykcs.ac.cn/article/id/88f08198-6b3e-488e-9d6f-0bfbcde632d7
[16] 张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
[17] Jung M Y, Kang J H, Choi Y S, et al. Analytical features of microwave plasma-atomic emission spectrometry (MP-AES) for the quantitation of manganese (Mn) in wild grape (Vitis coignetiae) red wines: Comparison with inductively coupled plasma-optical emission spectro-metry (ICP-OES)[J]. Food Chemistry, 2019, 274: 20-25. http://www.ncbi.nlm.nih.gov/pubmed/30372927
[18] 郭鹏然, 潘佳钏, 雷永乾, 等. 微波等离子体原子发射光谱新技术同时测定环境水样中多种元素[J]. 分析化学, 2015, 43(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201505021.htm
Guo P R, Pan J C, Lei Y Q, et al. Simultaneous determination of multiple elements in environmental water samples by microwave plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(5): 748-753. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201505021.htm
[19] Ozbek N, Akman S. Method development for the deter-mination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry[J]. Food Chemistry, 2016, 200: 245-248. http://europepmc.org/abstract/MED/26830585
[20] Zhao Y, Li Z, Ross A, et al. Determination of heavy metals in leather and fur by microwave plasma-atomic emission spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 112: 6-9.
[21] Ozbek N, Akman S. Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry[J]. LWT-Food Science and Technology, 2015, 61: 532-535. http://www.onacademic.com/detail/journal_1000037359726510_e96a.html
[22] Li W, Simmons P, Shrader D, et al. Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer[J]. Talanta, 2013, 112: 43-48. http://www.onacademic.com/detail/journal_1000035851809610_d5a4.html
[23] Ozbek N, Ozcan M. Elemental analysis of tarhana by mi-crowave induced plasma atomic emission spectrometry[J]. Analytical Letters, 2017, 50(13): 2139-2146. http://www.onacademic.com/detail/journal_1000040026839010_d797.html
[24] 符靓, 施树云, 陈晓青. 电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J]. 分析化学, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm
Fu L, Shi S Y, Chen X Q. Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201808017.htm
[25] 杨开放. ICP-OES常见干扰类型及校正方法探讨[J]. 分析化学计量, 2016, 25(3): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201603042.htm
Yang K F. Common interference types and calibration methods discussion of ICP-OES[J]. Chemical Analysis and Meterage, 2016, 25(3): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201603042.htm
[26] Karlsson S, Sjoberg V, Ogar A. Comparison of MP-AES and ICP-MS for analysis of principal and selected trace elements in nitric acid digests of sunflower (Helianthus annuus)[J]. Talanta, 2015, 135: 124-132. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0039914014009989&originContentFamily=serial&_origin=article&_ts=1483759927&md5=9fd3c7975bb7116cc0b6e007aca292d0
[27] 张萍, 刘宏伟, 黄建华, 等. 微波等离子体原子发射光谱测定啤酒中的常量和微量金属元素[J]. 食品科学, 2021, 42(8): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202108034.htm
Zhang P, Liu H W, Huang J H, et al. Determination of major and trace metal elements in beer by microwave plasma-atomic emission spectroscopy[J]. Food Science, 2021, 42(8): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX202108034.htm
[28] Drava G, Minganti V. Influence of an internal standard in axial ICP-OES analysis of trace elements in plant materials[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 301-305. http://pubs.rsc.org/en/content/articlelanding/2019/ja/c9ja00372j
[29] Barros A I, Pinheiro F C, Nobrega J A. Calibration strate-gies to correct for matrix effects in direct analysis of urine by ICP-OES: Internal standardization and multi-energy calibration[J]. Analytical Methods, 2020, 11(27): 3401-3409. http://pubs.rsc.org/en/content/articlelanding/2019/ay/c9ay00907h
[30] Sajtos Z, Herman P, Harangi S, et al. Elemental analysis of Hungarian honey samples and bee products by MP-AES method[J]. Microchemical Journal, 2019, 149: 103968. http://www.sciencedirect.com/science/article/pii/S0026265X19303807