中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素

王力强, 王家松, 魏双, 郑智慷, 吴良英, 张楠, 曾江萍. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688-697. doi: 10.15898/j.cnki.11-2131/td.202103190040
引用本文: 王力强, 王家松, 魏双, 郑智慷, 吴良英, 张楠, 曾江萍. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688-697. doi: 10.15898/j.cnki.11-2131/td.202103190040
WANG Li-qiang, WANG Jia-song, WEI Shuang, ZHENG Zhi-kang, WU Liang-ying, ZHANG Nan, ZENG Jiang-ping. Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. doi: 10.15898/j.cnki.11-2131/td.202103190040
Citation: WANG Li-qiang, WANG Jia-song, WEI Shuang, ZHENG Zhi-kang, WU Liang-ying, ZHANG Nan, ZENG Jiang-ping. Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697. doi: 10.15898/j.cnki.11-2131/td.202103190040

偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素

  • 基金项目:
    中国地质调查局地质调查项目"地质调查标准化与标准制修订(2019-2021)"(DD20190472)
详细信息
    作者简介: 王力强, 工程师, 主要从事地质样品分析测试和方法研究。E-mail: 1046360046@qq.com
    通讯作者: 王家松, 硕士, 高级工程师, 主要从事地质样品分析测试和方法研究。E-mail: 372516720@qq.com
  • 中图分类号: O657.31;O614.612;O614.613

Determination of W, Mo and 11 Other Elements in Tungsten-Molybdenum Ores by Inductively Coupled Plasma Optical Emission Spectrometry with Lithium Metaborate Fusion

More Information
  • 钨钼矿石是重要的战略性矿产资源,中国是钨钼矿的产出和消费大国,准确、高效地分析钨钼及其共伴生的有益有害元素含量对钨钼矿的矿床评价和综合利用有重要意义。钨钼矿石中钨钼及伴生元素的分析目前主要采用酸溶和碱熔方式消解样品,酸溶方式在处理高钨钼样品时无法克服水解问题,过氧化钠、氢氧化钠等碱熔方式通常会引入大量碱金属,不能完成钾钠的测定。本文建立了一种偏硼酸锂熔融,盐酸-酒石酸超声浸取,电感耦合等离子体发射光谱(ICP-OES)同时测定钨钼矿石中钨钼铜铅锌铝铁钙镁钛锰钾钠的方法。利用偏硼酸锂熔融的强解离作用使样品完全分解,溶液除硼锂外不引入其他金属元素,在盐酸提取液中加入酒石酸络合能够有效抑制钨钼水解,经超声浸取加快了熔块溶解。实验优化了各元素的分析谱线和观测方式,对熔剂用量以及仪器条件进行对比实验以获得最佳条件,采用基体匹配法绘制标准曲线消除了基体效应的影响。标准曲线线性相关系数均大于0.9990,方法检出限为1.34~46.2μg/g,标准物质测定结果的相对误差为0.14%~8.7%,相对标准偏差(RSD,n=10)为1.4%~7.6%。该方法能够准确、高效地完成钨钼矿石样品中多元素的同时测定。

  • 加载中
  • 表 1  国家标准物质GBW07238采用不同样品分解方式测定结果

    Table 1.  Analytical results of elements in GBW07238 dissoluted with different digestion methods

    元素 GBW07238中各元素含量
    标准值(%) 方法1测定值(%) 方法2测定值(%) 方法3测定值(%) 方法4测定值(%)
    W 0.36±0.03 0.30 0.31 0.35 0.37
    Mo 1.51±0.03 1.42 1.23 1.52 1.53
    Cu 0.00936±0.00123 0.0092 0.0097 0.0096 0.0095
    Pb 0.00187±0.00032 - - - -
    Zn 0.00655±0.00112 0.0068 0.0070 0.0070 0.0071
    Al2O3 3.46±0.21 3.43 3.48 3.45 3.48
    TFe2O3 21.34±0.36 21.17 21.25 21.41 21.31
    CaO 31.44±0.36 31.30 31.57 31.49 31.37
    MgO 0.86±0.05 0.84 0.87 0.87 0.88
    TiO2 0.13±0.01 0.13 0.12 0.13 0.12
    MnO 1.40±0.07 1.43 1.37 1.42 1.39
    K2O 0.046±0.014 0.045 - - 0.042
    Na2O 0.075±0.051 0.076 - - 0.081
    注:表中“-”表示无法检出。
    下载: 导出CSV

    表 2  国家标准物质GBW07238在不同熔剂-试样比条件下的测定结果

    Table 2.  Analytical results of elements in GBW07238 dissoluted with different flux and sample ratio

    元素 标准值(%) GBW07238各元素测定值(%)
    剂样比3:1 剂样比5:1 剂样比7:1 剂样比10:1
    W 0.36±0.03 0.19 0.37 0.34 0.35
    Mo 1.51±0.03 0.86 1.53 1.48 1.46
    Cu 0.00936±0.00123 0.0061 0.0095 0.0091 0.0097
    Pb 0.00187±0.00032 - - - -
    Zn 0.00655±0.00112 0.0038 0.0071 0.0061 0.0068
    Al2O3 3.46±0.21 2.08 3.48 3.43 3.41
    TFe2O3 21.34±0.36 13.56 21.31 21.25 21.37
    CaO 31.44±0.36 17.69 31.37 31.29 31.31
    MgO 0.86±0.05 0.48 0.88 0.85 0.85
    TiO2 0.13±0.01 0.071 0.12 0.13 0.12
    MnO 1.40±0.07 0.082 1.39 1.41 1.37
    K2O 0.046±0.014 0.028 0.042 0.042 0.044
    Na2O 0.075±0.051 0.043 0.081 0.082 0.074
    下载: 导出CSV

    表 3  各元素的分析谱线、标准曲线与方法检出限

    Table 3.  Spectral line, calibration curve and detection limit of elements

    元素 测定波长
    (nm)
    线性范围
    (μg/mL)
    相关系数 方法检出限
    (μg/g)
    W 224.876 1.0~100.0 0.9996 2.71
    Mo 202.030 1.0~100.0 0.9998 4.67
    Cu 324.752 0.1~10.0 0.9992 4.11
    Pb 220.353 0.1~10.0 0.9991 7.27
    Zn 213.857 0.1~10.0 0.9995 0.90
    Al 396.153 10.0~200.0 0.9991 27.1
    Fe 238.204 10.0~200.0 0.9996 38.9
    Ca 317.933 10.0~200.0 0.9991 46.2
    Mg 285.213 2.0~50.0 0.9992 19.6
    Ti 334.940 1.0~20.0 0.9999 2.32
    Mn 257.610 1.0~20.0 1.0000 1.34
    K 766.490 2.0~50.0 0.9995 31.2
    Na 589.592 2.0~50.0 0.9992 43.8
    下载: 导出CSV

    表 4  钨矿石和钼矿石标准物质测定结果

    Table 4.  Analytical results of tungsten ore and molybdenum ore certified references

    元素 GBW07241(钨矿石) GBW07238(钼矿石)
    标准值
    (%)
    测定值
    (%)
    相对误差
    (%)
    RSD
    (%)
    标准值
    (%)
    测定值
    (%)
    相对误差
    (%)
    RSD
    (%)
    W 0.22±0.02 0.23 4.50 1.8 0.36±0.03 0.37 2.80 3.2
    Mo 0.098±0.006 0.104 6.10 6.8 1.51±0.03 1.53 1.30 2.0
    Cu 0.096±0.004 0.098 2.10 1.4 0.00936±0.00123 0.0095 1.50 5.4
    Pb 0.00812±0.00031 0.0087 7.10 7.6 0.00187±0.00032 - - -
    Zn 0.103±0.008 0.100 2.90 2.6 0.00655±0.00112 0.0071 8.4 4.8
    Al2O3 11.15±0.18 11.22 0.63 1.8 3.46±0.21 3.48 0.58 2.2
    TFe2O3 5.60±0.07 5.58 0.36 1.5 21.34±0.36 21.31 0.14 1.4
    CaO 4.17±0.08 4.15 0.48 1.7 31.44±0.36 31.37 0.22 1.4
    MgO 0.14±0.01 0.13 7.10 2.8 0.86±0.05 0.88 2.30 1.7
    TiO2 0.044±0.006 0.042 4.50 2.2 0.13±0.01 0.12 7.70 2.1
    MnO 0.090±0.006 0.087 3.30 2.1 1.40±0.07 1.39 0.71 1.5
    K2O 1.58±0.07 1.54 2.50 3.9 0.046±0.014 0.042 8.70 3.5
    Na2O 0.12±0.01 0.11 8.30 3.4 0.075±0.051 0.081 8.00 4.1
    下载: 导出CSV

    表 5  方法结果对比

    Table 5.  Comparison of different methods

    元素 相关分析方法 测定值(%) 本文方法测定值(%) 与相关方法的相对误差(%)
    W 光度法 0.93 0.94 0.53
    Mo 光度法 0.67 0.65 1.52
    Cu AAS 0.091 0.084 4.00
    Pb AAS 0.034 0.037 4.23
    Zn AAS 0.045 0.041 4.65
    Al2O3 ICP-OES 9.73 9.66 0.36
    TFe2O3 ICP-OES 8.41 8.45 0.24
    CaO ICP-OES 15.21 15.30 0.29
    MgO ICP-OES 2.36 2.41 1.05
    TiO2 ICP-OES 0.17 0.16 3.03
    MnO ICP-OES 1.15 1.14 0.44
    K2O ICP-OES 0.75 0.73 1.35
    Na2O ICP-OES 0.42 0.44 2.33
    下载: 导出CSV
  • [1]

    孙伟, 卫召, 韩海生, 等. 钨矿浮选化学及其实践[J]. 金属矿山, 2021(1): 24-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101004.htm

    Sun W, Wei Z, Han H S, et al. Flotation chemistry of tungsten ore and its practice[J]. Metal Mine, 2021(1): 24-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202101004.htm

    [2]

    《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011: 317-319, 338-340.

    The editorial committee of 《Rock and mineral analysis》. Rock and mineral analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Publishing House, 2011: 317-319, 338-340.

    [3]

    Padmasubashini V, Ganguly M K, Satyanarayana K, et al. Determination of tungsten in niobium-tantalum, vanadium and molybdenum bearing geological samples using derivative spectrophotometry and ICP-AES[J]. Talanta, 1999, 50(3): 669-676. doi: 10.1016/S0039-9140(99)00165-4

    [4]

    Sheng J F, Liu L J, Wang D H, et al. Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, China University of Geosciences, Changjiang University, College of Earth Science, Jilin University. A preliminary review of metallogenic regularity of tungsten deposits in China[J]. Acta Geologica Sinica(English Edition), 2015, 89(4): 1359-1374. doi: 10.1111/1755-6724.12533

    [5]

    Chen X Y, Guo F L, Chen Q, et al. Leaching tungsten and rare earth elements from scheelite through H2SO4-H3PO4 mixed acid decomposition[J]. Minerals Engineering, 2020, 156: 106526. doi: 10.1016/j.mineng.2020.106526

    [6]

    刘宇, 魏双. 高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J]. 地质调查与研究, 2018, 41(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm

    Liu Y, Wei S. Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J]. Geological Survey and Research, 2018, 41(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201803012.htm

    [7]

    Qin J X, Zheng S, Mao Y H, et al. Carboxyl-func-tionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111729. doi: 10.1016/j.ecoenv.2020.111729

    [8]

    Cobelo-García A, Mulyani M E, Schfer J. Ultra-trace interference-free analysis of palladium in natural waters by ICP-MS after on-line matrix separation and pre-concentration[J]. Talanta, 2021, 232: 122289. doi: 10.1016/j.talanta.2021.122289

    [9]

    方蓬达, 张莉娟, 王家松, 等. 熔融制样-波长色散X射线荧光光谱法同时测定砂岩型铀矿中主量及铀、钍成分[J]. 地质调查与研究, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm

    Fang P D, Zhang L J, Wang J S, et al. Simultaneous determination of major elements, uranium and thorium in sandstone type uranium deposits by melting sample preparation wavelength dispersive X-ray fluorescence spectrometry[J]. Geological Survey and Research, 2021, 44(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202102005.htm

    [10]

    王川, 郭义蓉. 熔融制样-X射线荧光光谱法测定锡矿和钨钼矿中16种组分[J]. 理化检验(化学分册), 2020, 56(7): 765-770. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007004.htm

    Wang C, Guo Y R. XRFs determination of 16 components in tin ore and tungsten molybdenum ore with fused sample preparation[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(7): 765-770. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202007004.htm

    [11]

    Zhang J, Zeng Y J, Slatt R. XRF (X-ray fluorescence) applied to characterization of unconventional Woodford Shale (Devonian, U.S.A. ) lateral well heterogeneity[J]. Fuel, 2019, 254: 115565. doi: 10.1016/j.fuel.2019.05.148

    [12]

    孙爽. 电感耦合等离子体原子发射光谱(ICP-AES)技术的应用进展[J]. 世界有色金属, 2017(23): 233-235. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201723139.htm

    Sun S. Progress in application of inductively coupled plasma atomic emission spectroscopy[J]. World Nonferrous Metals, 2017(23): 233-235. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201723139.htm

    [13]

    Vyacheslavov A V, Tsepkova V V, Titova A D, et al. Development of a technique for analysis of tungsten-containing sludge using inductively coupled plasma atomic emission spectrometry (ICP-AES)[J]. Inorganic Materials, 2020, 56(14): 1369-1373. doi: 10.1134/S0020168520140150

    [14]

    王力强, 魏双, 王家松, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定多金属矿中的铝锰钾钠钙镁硫[J]. 地质调查与研究, 2019, 42(4): 259-262. doi: 10.3969/j.issn.1672-4135.2019.04.004

    Wang L Q, Wei S, Wang J S, et al. Determination of Al, Mn, K, Na, Ca, Mg, S in polymetallic ores by open acid solution-inductively coupled plasma emission spectrometry[J]. Geological Survey and Research, 2019, 42(4): 259-262. doi: 10.3969/j.issn.1672-4135.2019.04.004

    [15]

    Mounteney I, Burton A K, Farrant A R, et al. Heavy mineral analysis by ICP-AES a tool to aid sediment provenancing[J]. Journal of Geochemical Exploration, 2018, 184: 1-10. doi: 10.1016/j.gexplo.2017.10.007

    [16]

    高小飞, 倪文山, 毛香菊, 等. 电感耦合等离子体质谱法测定钨钼矿中锗[J]. 冶金分析, 2018, 38(8): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201808007.htm

    Gao X F, Ni W S, Mao X J, et al. Determination of germanium in tungsten molybdenum ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(8): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201808007.htm

    [17]

    杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32

    Yang X L, Yang X L, Li X D, et al. Simeutaneous determination of 14 trace elements in tungsten ore and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006 http://www.ykcs.ac.cn/article/id/956360be-9a54-4e0a-8ef1-0f9f0be45e32

    [18]

    蒋常菊, 范志平, 雷占昌, 等. ICP-MS法同时测定青海省柴北缘某地区多金属矿石中的钨锡[J]. 黄金, 2017, 38(8): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708019.htm

    Jiang C J, Fan Z P, Lei Z C, et al. Simultaneous determination of tungsten and tin in a polymetallic ore from a region in the northern margin of Qaidam Basin in Qinghai Province by ICP-MS[J]. Gold, 2017, 38(8): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201708019.htm

    [19]

    吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607006.htm

    [20]

    杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm

    Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201912009.htm

    [21]

    高小飞, 肖芳, 姚明星, 等. 电感耦合等离子体原子发射光谱法测定钡精矿中钡、钨的含量[J]. 理化检验(化学分册), 2017, 53(7): 771-774. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707005.htm

    Gao X F, Xiao F, Yao M X, et al. ICP-AES determination of barium and tungsten in barium concentrate[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(7): 771-774. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707005.htm

    [22]

    刘正红, 高振广, 陈永红, 等. 电感耦合等离子体原子发射光谱法测定矿石中的钼钨[J]. 黄金, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm

    Liu Z H, Gao Z G, Chen Y H, et al. Determination of tungsten and molybdenum in ores by inductively coupled plasma-atomic emission spectrometry[J]. Gold, 2019, 40(6): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201906021.htm

    [23]

    王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661-664. doi: 10.3969/j.issn.0254-5357.2014.05.008 http://www.ykcs.ac.cn/article/id/3d672437-647e-4ea1-a94d-770e474fb11c

    Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661-664. doi: 10.3969/j.issn.0254-5357.2014.05.008 http://www.ykcs.ac.cn/article/id/3d672437-647e-4ea1-a94d-770e474fb11c

    [24]

    王风, 程相恩, 陈传伟. 电感耦合等离子体原子发射光谱法测定钼矿石中的钨钼[J]. 冶金分析, 2014, 34(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201406013.htm

    Wang F, Cheng X E, Chen C W. Determination of tungsten and molybdenum in molybdenum ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2014, 34(6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201406013.htm

    [25]

    林学辉, 辛文彩, 徐磊. 过氧化钠熔融-电感耦合等离子体发射光谱法快速测定稀散元素矿石中高含量钨[J]. 分析试验室, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm

    Lin X H, Xin W C, Xu L. Rapid determination of tungsten scattered element mineral by ICP-AES with sodium peroxide alkali fusion[J]. Chinese Journal of Analysis Laboratory[J]. Chinese Journal of Analysis Laboratory, 2018, 37(11): 1324-1326. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201811018.htm

    [26]

    门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral survey samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-67. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201905100060

    [27]

    冯晓军, 姜威, 薛菁, 等. 电感耦合等离子体原子发射光谱法同时测定磷矿中12种组分[J]. 冶金分析, 2017, 37(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201705010.htm

    Feng X J, Jiang W, Xue J, et al. Simultaneous determination of twelve elements in phosphate ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(5): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201705010.htm

    [28]

    吕振生, 赵庆令, 李清彩, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中8种成分[J]. 冶金分析, 2010, 30(9): 47-50. doi: 10.3969/j.issn.1000-7571.2010.09.009

    Lv Z S, Zhao Q L, Li Q C, et al. Determination of eight components in tungsten ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2010, 30(9): 47-50. doi: 10.3969/j.issn.1000-7571.2010.09.009

    [29]

    龙光花, 梅毅, 杨加强, 等. 电感耦合等离子体原子发射光谱法测定湿法磷酸中8种元素[J]. 冶金分析, 2017, 37(6): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706010.htm

    Long G H, Mei Y, Yang J Q, et al. Determination of eight elements in wet-process phosphoric acid by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(6): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706010.htm

    [30]

    龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm

    Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm

    [31]

    王树英, 左文家, 郭雅尘, 等. 电感耦合等离子体发射光谱(ICP-OES)法测定石灰石中5种氧化物含量[J]. 中国无机分析化学, 2019, 9(3): 17-22. doi: 10.3969/j.issn.2095-1035.2019.03.005

    Wang S Y, Zuo W J, Guo Y C, et al. Determination of five oxides in limestone by inductively coupled plasma optical emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(3): 17-22. doi: 10.3969/j.issn.2095-1035.2019.03.005

    [32]

    曹磊, 陈微微, 高孝礼, 等. 基体干扰对ICP-AES分析土壤样品中主、次量元素的影响研究[J]. 光谱学与光谱分析, 2016, 36(7): 2260-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607056.htm

    Cao L, Chen W W, Gao X L, et al. Research on the matrix interference on major and minor elements in soil samples with ICP-AES[J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2260-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201607056.htm

    [33]

    陈忠颖, 刘巍, 郭颖. 电感耦合等离子体质谱法测定高纯铁中21种元素时的基体效应[J]. 理化检验(化学分册), 2017, 53(12): 1416-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201712011.htm

    Chen Z Y, Liu W, Guo Y. Matrix effect in the ICP-MS determination of 21 elements in high purity iron[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(12): 1416-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201712011.htm

    [34]

    王雪平, 闫凯. 电感耦合等离子体原子发射光谱法测定污水中的总磷[J]. 理化检验(化学分册), 2017, 53(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201703010.htm

    Wang X P, Yan K. Determination of total phosphorus in sewages by ICP-AES[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201703010.htm

    [35]

    李清彩, 赵庆令, 荀红梅. 电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J]. 冶金分析, 2015, 35(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201502014.htm

    Li Q C, Zhao Q L, Xun H M, et al. Determination of arsenic, cadmium, indium, sulfur and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201502014.htm

    [36]

    严子心, 曲景奎, 余志辉, 等. 多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴[J]. 分析化学, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm

    Yan Z X, Qu J K, Yu Z H, et al. Multi-spectral fitting-determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm

    [37]

    刘佳, 刘冰冰, 韩梅, 等. 电感耦合等离子体原子发射光谱法测定水中总磷的方法研究[J]. 光谱学与光谱分析, 2018, 38(6): 1880-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806046.htm

    Liu J, Liu B B, Han M, et al. Methodology research for determination of total phosphorus in water by inductively coupled plasma-atomic emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1880-1883. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806046.htm

    [38]

    姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma-atomic emission spectrometry combined with alkali fusion and separation using on exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    [39]

    王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065

    Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704240065

    [40]

    张世龙, 黄启华, 胡小明, 等. 电感耦合等离子体原子发射光谱法测定钨矿石中硅、铁、铝、钛、钨、锡和钼的含量[J]. 理化检验(化学分册), 2016, 52(10): 1237-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610036.htm

    Zhang S L, Huang Q H, Hu X M, et al. ICP-AES determination of Si, Fe, Al, Ti, W, Sn and Mo in tungsten ores[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(10): 1237-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201610036.htm

  • 加载中

(5)

计量
  • 文章访问数:  1626
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2021-03-19
修回日期:  2021-06-23
录用日期:  2021-07-28
刊出日期:  2021-09-28

目录