Discussion on the Precision Evaluation Method of Serpentine Phase Quantitative Analysis by X-ray Diffraction
-
摘要:
蛇纹石是一种重要的矿物材料和化工原料,广泛应用于化工、农业、建材、冶金及环保等领域,中国由于对蛇纹石矿开采品位要求较高,形成了较多的弃尾矿,造成了大量的浪费和环境污染。根据弃尾矿中蛇纹石的不同含量,进而生产不同的工业产品,可改善生态环境,为蛇纹石企业寻求到新的发展出路。这些工作的基础是能够对蛇纹石进行快速和精确的测定。目前蛇纹石矿石的测定方法采用行业标准《蛇纹石矿石分析方法》(HG/T 3575—2006)进行,其分析步骤繁琐,分析时间过长,现有的检测方法已不能满足市场和企业的急需,而长期以来利用X射线衍射进行的蛇纹石定量分析,其分析方法的精密度一直没有得到规范的量化控制,实验室之间的精密度比对也缺乏相应的依据。为进一步提高X射线衍射法检测蛇纹石矿物含量的水平,本文根据GB/T 6379.2—2004标准中的要求,首先通过挑选加配制共10个不同含量的样品,进行均匀性检验,当检测结果F实测值均小于F临界值,表明试验样品是均匀的,然后选择8家实验室使用检验后合格的样品进行精密度协作试验,对得到的测试结果进行格拉布斯检验和柯克伦检验,通过检验的数据才能参与精密度参数的计算,最终获得X射线衍射标准曲线法和K值法的精密度与含量之间的数学函数关系。实验结果表明:本次协作试验的数据,全部通过格拉布斯检验和柯克伦检验,均可参与精密度参数的计算,结果也侧面证明了不同实验室不同仪器测试的结果一致性较高。精密度参数的计算结果显示:在X射线衍射标准曲线法和K值法重复性限和再现性限数据中,含量最低的样品,其重复性限和再现性限也最小,验证了X射线衍射对物相定量分析的误差主要源自于样品的均匀性误差这一特征。证实了在所有影响X射线衍射定量分析结果的因素中,样品的均匀性是最关键的因素,而其他因素产生的影响可用改变测试条件等相应方法来克服。只要样品足够均匀,就能将定量分析的误差限定在可控范围内。本文针对蛇纹石物相定量分析方法精密度的研究,可为蛇纹石物相定量分析标准方法的建立和分析方法的评价及分析质量的监控等提供依据。
Abstract:BACKGROUND Serpentine is an important group of minerals, widely used in the chemical and building industries, agriculture, metallurgy, environmental protection, and other fields. Due to the high requirements for the mining grade of serpentine ores in China, many abandoned tailings have been formed, resulting in a large amount of waste causing environmental pollution. According to the different content of serpentine in the waste tailings, different industrial products can be produced, which can improve the natural environment and diversify serpentine enterprises. These works are based on the ability to determine serpentine contents quickly and accurately. At present, the determination method of serpentine ores is based on the industry standard HG/T 3575—2006 Analysis Method of Serpentine Ores. The content of magnesium is measured first, and the content of serpentine mineral is obtained after conversion. The analysis steps are tedious, and the analysis time is long. The existing detection methods obviously cannot meet the urgent needs of the market and enterprises. For a long time, the precision of the quantitative analysis of serpentine by X-ray diffraction has not been controlled quantitatively. The precision comparison between laboratories also lacks a corresponding basis.
OBJECTIVES It is urgent to improve the detection level of X-ray diffraction and further improve the detection technology of serpentine mineral content. The purpose of this study is to lay a foundation for the establishment of the standard method for the quantitative analysis of serpentine phase in the future and provide a basis for the evaluation of analytical methods and the monitoring of analytical quality.
METHODS This study refers to the method widely used internationally to express precision with repeatability limit and reproducibility limit, and to judge the reliability of analysis results in practice. According to the requirements of GB/T 6379.2—2004 standard, 10 samples with different serpentine content are selected and prepared for uniformity test. The serpentine content ranges from 5.00% to 84.78%, which basically covers the content range of serpentine deposits in China, meeting the requirements of the research program. The purpose of the uniformity test is to reduce the error of quantitative analysis, especially in the case of low content, because the uniformity of the sample has a great impact on the accuracy of the test results. The measured value of Fmeasured is less than the critical value of Fcritical, indicating that the analyzed samples are uniform. Eight laboratories are selected to use the qualified samples for the precision collaborative test. According to the requirements of the quantitative limit and the optimal measurement range, and the results of the precision, accuracy and recovery test, the standard curve method has a small error, accurate test data, high recovery rate and stronger applicability for samples with serpentine mineral content of less than 20.00%. For high-content samples with serpentine mineral content of 20% or more, the parameters of the K value method all meet the requirements, considering the fast and convenient determination, it is more suitable for the application of the K value method. The laboratories participating in the collaborative test use the uniformly supplied analytical pure corundum reagent as the reference material, and use the X-ray diffraction standard curve method (provide the calibration curve) for samples with serpentine mineral < 20%, while use the X-ray diffraction K value method (provide K value) for samples with serpentine mineral ≥20% under the same test conditions. Only the data passing the test of Grubbs and Cochran can participate in the calculation of precision parameters, and the mathematical function relationship between the precision and content of X-ray diffraction standard curve method and K-value method is obtained.
RESULTS The experimental results show that the critical value of Fcritical under 95% confidence is 3.50 for the collaborative test, while the measured value of Fmeasured after statistical calculation is less than 3.50, which proves that the 10 samples are relatively uniform and are qualified as the precision collaborative sample. Moreover, the data of the collaborative test are all less than 5% of the critical value, and all of them pass the Grubbs test and Cochran test. All of the data can be included in the calculation of precision parameters, which also proves the high consistency of the test results of different instruments in different laboratories.
CONCLUSIONS The calculation results of precision parameters show that the precision parameters of X-ray diffraction standard curve method and K-value method are positively correlated with the content of serpentine minerals, that is, the higher the content of serpentine minerals, the greater the repeatability limit and reproducibility limit, and vice versa. The sample with the lowest content of serpentine has the lowest repeatability limit and reproducibility limit, which also verifies that the error of X-ray diffraction for phase quantitative analysis mainly comes from the uniformity error of the sample. It confirms that among all factors affecting the results of X-ray diffraction quantitative analysis, the homogeneity of the sample is the most critical factor, and the influence of other factors can be overcome by changing the test conditions and other corresponding methods. If the sample is uniform enough, the error of quantitative analysis can be controlled. The research on the precision of the quantitative analysis method of serpentine phase provides technical support and basis for the establishment of the standard method of the quantitative analysis of serpentine phase, the evaluation of the analysis method and the monitoring of the analysis quality in the future.
-
-
表 1 均匀性检验的单因素方差分析统计结果
Table 1. Univariate ANOVA statistical results of uniformity test.
参数 JBSWS-1 JBSWS-2 JBSWS-3 JBSWS-4 JBSWS-5 JKSWS-1 JKSWS-2 JKSWS-3 JKSWS-4 JKSWS-5 平均值x(%) 10.62 15.12 5.03 15.14 20.01 49.69 85.74 60.73 31.94 20.45 单元数 8 8 8 8 8 8 8 8 8 8 最小值min(%) 10.58 14.96 4.96 14.93 19.69 49.21 85.33 59.87 31.68 20.11 最大值max(%) 10.66 15.43 5.12 15.44 20.46 50.28 86.32 61.69 32.37 20.94 标准偏差s(%) 0.03 0.11 0.04 0.18 0.25 0.36 0.35 0.52 0.19 0.27 相对标准偏差RSD(%) 0.28 0.70 0.88 1.20 1.20 0.72 0.40 0.85 0.59 1.30 单元间方差MS12 0.00130 0.0091 0.00311 0.03618 0.01019 0.08425 0.07937 0.34482 0.03554 0.01213 单元内方差MS22 0.00051 0.01316 0.00098 0.02584 0.10558 0.16548 0.15495 0.19532 0.03445 0.12337 F实测值 2.53 0.69 3.19 1.40 0.10 0.51 0.51 1.77 1.03 0.10 F0.01(v1, v2) 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 F0.05(v1, v2) 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 表 2 蛇纹石精密度试验数据的平均值和标准偏差
Table 2. Mean value and standard deviation of serpentine precision test data.
样品编号 参数 实验室代号 A B C D E F G H JBSWS-1 单元均值(%) 10.63 10.42 10.65 10.69 10.48 10.45 10.56 10.36 标准偏差(%) 0.039 0.31 0.21 0.23 0.15 0.17 0.15 0.17 JBSWS-2 单元均值(%) 15.13 14.94 14.99 15.13 14.95 14.94 14.90 14.93 标准偏差(%) 0.21 0.11 0.083 0.24 0.20 0.14 0.11 0.20 JBSWS-3 单元均值(%) 5.05 5.02 5.07 5.13 4.99 4.97 5.00 4.99 标准偏差(%) 0.028 0.042 0.079 0.069 0.086 0.098 0.099 0.12 JBSWS-4 单元均值(%) 15.17 15.13 15.16 15.10 14.91 14.87 14.93 14.55 标准偏差(%) 0.26 0.26 0.22 0.059 0.16 0.20 0.12 0.19 JBSWS-5 单元均值(%) 19.99 19.86 19.87 19.92 19.99 19.80 20.02 19.94 标准偏差(%) 0.34 0.52 0.23 0.16 0.25 0.32 0.15 0.51 JKSWS-1 单元均值(%) 49.68 50.00 50.09 50.19 49.59 49.86 49.70 49.34 标准偏差(%) 0.43 0.53 0.54 0.58 0.098 0.47 0.36 0.26 JKSWS-2 单元均值(%) 85.85 85.92 85.68 85.48 84.06 83.73 83.82 83.67 标准偏差(%) 0.39 0.42 0.46 0.33 0.46 0.65 0.12 0.21 JKSWS-3 单元均值(%) 60.82 60.73 61.32 61.36 59.90 60.38 60.00 59.89 标准偏差(%) 0.76 0.56 0.24 0.43 0.28 0.81 0.39 0.66 JKSWS-4 单元均值(%) 32.02 31.71 32.13 31.93 31.80 31.94 31.72 31.45 标准偏差(%) 0.28 0.37 0.38 0.33 0.58 0.27 0.40 0.42 JKSWS-5 单元均值(%) 20.44 20.29 20.30 20.35 20.42 20.23 20.47 20.37 标准偏差(%) 0.37 0.56 0.24 0.18 0.27 0.34 0.17 0.55 表 3 精密度试验数据的格拉布斯检验和柯克伦检验结果
Table 3. Results of Grubbs test and Cochron test of precision test data.
检验方法 参数 JBSWS-1 JBSWS-2 JBSWS-3 JBSWS-4 JBSWS-5 JKSWS-1 JKSWS-2 JKSWS-3 JKSWS-4 JKSWS-5 格拉布斯检验 最大观测值统计量Gp 1.352 1.717 1.933 0.915 1.296 1.348 1.107 1.342 1.368 1.318 最小观测值统计量G1 1.404 1.171 1.083 2.032 1.600 1.653 1.063 1.098 1.805 1.568 1%临界值 2.274 2.274 2.274 2.274 2.274 2.274 2.274 2.274 2.274 2.274 5%临界值 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 2.126 柯克伦检验 统计量C 0.332 0.255 0.255 0.225 0.293 0.220 0.318 0.266 0.276 0.295 1%临界值 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 5%临界值 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 表 4 精密度参数(重复性限和再现性限)的计算结果
Table 4. Calculation results of precision parameters (repeatability limit and reproducibility limit).
参数 JBSWS-1 JBSWS-2 JBSWS-3 JBSWS-4 JBSWS-5 JKSWS-1 JKSWS-2 JKSWS-3 JKSWS-4 JKSWS-5 重复性方差Srj2 0.0367 0.02848 0.00676 0.0377 0.11321 0.1888 0.16659 0.3098 0.15094 0.1337 实验室间方差SLj2 0.0056 0.0011 0.00104 0.03484 -0.02253 0.033 1.03074 0.28682 0.00752 -0.02665 再现性方差SRj2 0.0423 0.02958 0.00779 0.07254 0.09068 0.2218 1.19734 0.59662 0.15846 0.10705 总平均值mj(%) 10.52 14.99 5.03 14.98 19.92 49.84 84.78 60.53 31.84 20.36 重复性标准差Sr(%) 0.19 0.17 0.08 0.19 0.34 0.43 0.41 0.56 0.39 0.37 再现性标准差SR(%) 0.21 0.17 0.09 0.27 0.30 0.47 1.1 0.77 0.40 0.33 重复性限r 0.54 0.48 0.23 0.55 0.95 1.2 1.2 1.6 1.1 1.0 再现性限R 0.58 0.49 0.25 0.76 0.85 1.3 3.1 2.2 1.1 0.93 表 5 蛇纹石物相定量分析方法的精密度公式
Table 5. Precision formula of quantitative phase analysis method for serpentine. The precision of X-ray diffraction standard curve method and K-value method is positively correlated with the content of serpentine minerals, that is, the higher the content of serpentine minerals, the greater the repeatability limit and reproducibility limit, and vice versa.
定量分析方法 含量范围m 重复性限r 再现性限R 标准曲线法 5.03~19.92 r=0.0413m+0.0093 R=0.0373m+0.0978 K值法 20.36~84.78 r=0.6419m0.1664 R=0.0345m+0.0268 表 6 蛇纹石物相定量分析方法不同实验室精密度验证
Table 6. Verification of different laboratory precision for quantitative analysis method of serpentine phase.
样品 内部测试结果(%) 外检测试结果(%) 相对偏差(%) 允许值(%) 测试方法 样品1 8.28 8.41 -1.56 ±4.90 标准曲线法 样品2 13.80 13.38 3.09 ±4.45 标准曲线法 样品3 39.48 38.38 2.83 ±3.52 K值法 样品4 71.04 72.18 -1.59 ±3.49 K值法 -
[1] 黄宣镇. 中国蛇纹石玉矿床[J]. 中国非金属矿工业导刊, 2005, 47(3): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200503021.htm
Huang X Z. Serpentine jade deposits in China[J]. China Non-metallic Mining Industry, 2005, 47(3): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK200503021.htm
[2] 李桂金, 赵平, 白志民, 等. 蛇纹石表面特征[J]. 硅酸盐学报, 2017, 45(8): 1204-1210.
Li G J, Zhao P, Bai Z M, et al. Surface characteristics of serpentine[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1204-1210.
[3] 陈彦国, 陈鸣. 蛇纹石的性质与利用的研究进展[J]. 化学世界, 2018, 59(2): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS201802001.htm
Chen Y G, Chen M. Progress on the properties and applications of serpentine[J]. Chemical Word, 2018, 59(2): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSS201802001.htm
[4] 张本日, 刘丹, 郭锐, 等. 含镍蛇纹石的综合利用现状[J]. 矿产综合利用, 2020(8): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202004003.htm
Zhang B Y, Liu D, Guo R, et al. Comprehensive utilization status of nickel-containing serpentine[J]. Multipurpose Utilization of Mineral Resources, 2020(8): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202004003.htm
[5] 邱兰清. 国外蛇纹石粉矿的开发利用[J]. 化工矿山技术, 1991, 20(4): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ199104026.htm
Qu L Q. Development and utilization of serpentine fine ore abroad[J]. Chemical and Mining Technology, 1991, 20(4): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ199104026.htm
[6] 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2014: 684-686.
Editorial Board of <Manual of Industrial Requirements for Mineral Resources>. Manual of industrial requirements for mineral resources[M]. Beijing: Geological Publishing Press, 2014: 684-686.
[7] 彭祥玉, 刘本刚, 王本英, 等. 蛇纹石综合利用现状与展望[J]. 矿产保护与利用, 2019, 39(4): 99-103, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201904017.htm
Peng X Y, Liu B G, Wang B Y, et al. Current situation and prospect of comprehensive utilization of comprehen-sive utilization of serpentine[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 99-103, 120. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201904017.htm
[8] 苏小丽, 孙传敏. 蛇纹石尾矿固体废弃物资源化的途径[J]. 中国陶瓷工业, 2010, 17(1): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTCG201001011.htm
Su X L, Sun C M. Recovery pathway for serpentine tailings solid waste[J]. China Ceramic Industry, 2010, 17(1): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTCG201001011.htm
[9] 于少民, 周爱萍, 杭国培, 等. 用蛇纹石提镁残渣直接合成六配位有机硅化物[J]. 硅酸盐学报, 2004, 32(2): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB200402021.htm
Yu S M, Zhou A P, Hang G P, et al. Direct synthesis of hexacoordinate silicon complexes from serpentine ore residue after extracting magnesium[J]. Journal of the Chinese Ceramic Society, 2004, 32(2): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB200402021.htm
[10] 郑金宇, 刘云贵, 陈涛, 等. 蓝色蛇纹石玉的谱学特征[J]. 光谱学与光谱分析, 2021, 41(2): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202102058.htm
Zheng J Y, Liu Y G, Chen T, et al. Spectroscopic characteristics of blue serpentine[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202102058.htm
[11] 申婷婷, 陈晶, 张立飞, 等. 利用TEM研究叶蛇纹石晶胞参数随温压条件的变化特征[J]. 电子显微学报, 2018, 37(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801008.htm
Shen T T, Chen J, Zhang L F, et al. Study of antigorite crystal cell parameters changing with temperature and pressure by TEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201801008.htm
[12] 林研. X荧光熔融法测定蛇纹石中的SiO2、MgO、CaO和Al2O3[J]. 福建分析测试, 2019, 28(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FJFC201903017.htm
Lin Y. Determination of SiO2, MgO, CaO, and Al2O3 in sperpentine by X-ray fluorescence fusion method[J]. Fujian Analysis & Testing, 2019, 28(3): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-FJFC201903017.htm
[13] Shi N C, Bai W J, Ma Z S. An X-ray diffraction study of an inclusion in diamond from the Luobusha chromite deposit in Tibet, China[J]. Acta Geologica Sinica, 2003, 3: 326-331.
[14] Sengupta A, Kadam R M, Rajeswari B, et al. Character-ization of Indian serpentine by X-ray diffraction, photoacoustic spectroscopy and electron paramagnetic resonance spectroscopy[J]. Applied Clay Science, 2010, 50(3): 305-310.
[15] 伍月, 刘欣, 张波, 等. X射线粉晶衍射基体清洗法在矿物定量分析中的应用[J]. 地质与资源, 2017, 26(3): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201703017.htm
Wu Y, Liu X, Zhang B, et al. The application and research of X-ray powder diffraction matrix flushing method in quantitative analysis[J]. Geology and Resources, 2017, 26(3): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201703017.htm
[16] 农以宁, 曾令民. X射线衍射法测定药用滑石粉中石棉的研究[J]. 中国中药杂志, 2002, 27(7): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY200207016.htm
Nong Y N, Zeng L M. Determination of asbestos in medical talc powder by X-ray diffraction[J]. China Journal of Chinese Material Medica, 2002, 27(7): 524-527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY200207016.htm
[17] 张梅, 侯鹏飞, 周康民, 等. 摩擦材料中微量石棉的检测方法研究[J]. 地质学刊, 2009, 33(4): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ200904014.htm
Zhang M, Hou P F, Zhou K M, et al. Study on detection method of trace asbestos in friction materials[J]. Journal of Geology, 2009, 33(4): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ200904014.htm
[18] 闻向东, 邵梅, 曹宏燕. 测量方法精密度共同试验测量数据的统计分析[J]. 中国无机分析化学, 2014, 4(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201401019.htm
Wen X D, Shao M, Cao H Y. Statistic analysis of measurement data from cooperative experiments on method precision[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201401019.htm
[19] 熊英, 董亚妮, 裴若会, 等. 锑矿石化学物相分析方法精密度的确定与评价[J]. 冶金分析, 2017, 37(3): 13-30. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.009
Xiong Y, Dong Y N, Pei R H, et al. Determination and evaluation of precision of chemical phase analysis method for antimony ore[J]. Metallurgical Analysis, 2017, 37(3): 13-30. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.009
[20] 熊英, 董亚妮, 裴若会, 等. 锑矿石化学物相分析方法选择性分离条件验证及准确度评估[J]. 岩矿测试, 2017, 36(2): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201702009.htm
Xiong Y, Dong Y N, Pei R H, et al. Separation condition verification and accuracy evaluation of chemical phase analysis method for antimony ore[J]. Rock and Mineral Analysis, 2017, 36(2): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201702009.htm
[21] 洪飞, 赵伟, 刘耀华, 等. 菱镁矿、蛇纹岩、碲金矿化学成分标准物质研制[J]. 山东国土资源, 2018, 34(5): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201805012.htm
Hong F, Zhao W, Liu Y H, et al. Preparation of chemical composition standard material of magnesite serpentine and tellurium gold deposit[J]. Shandong Land and Resources, 2018, 34(5): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201805012.htm
[22] 南京大学地质学系矿物岩石学教研室. 粉晶X射线物相分析[M]. 北京: 地质出版社, 1980: 159-169.
Department of Mineral Petrdogy, Department of Geology, Nanjing University. X-ray phase analysis of powder crystal[M]. Beijing: Geological Publishing Press, 1980: 159-169.
[23] Chipera S J, Bish D L. FULLPAT: A full pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns[J]. Journal of Applied Crystallography, 2002, 35(6): 744-749.
[24] 吴建鹏, 曹丽云, 张国运, 等. XRD物相定量分析外标法标准曲线库的建立[J]. 分析测试学报, 2006, 25(4): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200604024.htm
Wu J P, Cao L Y, Zhang G Y, et al. Establishment of the standard curve database for XRD analysis based on the external standard method[J]. Journal of Instrumental Analysis, 2006, 25(4): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200604024.htm
[25] 许聚良, 陈汀水. 一种基于晶体结构数据建立XRD内标法定量相分析标准曲线库的方法[J]. 理化检验(物理分册), 2016, 52(3): 164-167, 188. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201603005.htm
Xu J L, Chen T S. A method of establishing standard curves database for quantitative phase analysis by XRD internal standard method based on crystal structure data[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2016, 52(3): 164-167, 188. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201603005.htm
[26] 储刚, 徐秀静, 符岩, 等. X射线衍射多谱峰区匹配强度比定量分析方法[J]. 分析测试学报, 2004, 23(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200401012.htm
Chu G, Xu X J, Fu Y, et al. The multi-peak match intensity ratio method for X-ray diffraction quantitative phase analysis[J]. Journal of Instrumental Analysis, 2004, 23(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST200401012.htm
[27] 房俊卓, 张霞, 徐崇福. 实验条件对X射线衍射物相定量分析结果的影响[J]. 岩矿测试, 2008, 27(1): 60-62. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080120
Fang J Z, Zhang X, Xu C F. Effect of experimental conditions on X-ray diffractometric quantitative phase analysis[J]. Rock and Mineral Analysis, 2008, 27(1): 60-62. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080120
[28] 袁珂, 廖立兵, 万红波, 等. 膨润土中方石英和α-石英的定向分析——X射线衍射外标法和K值法的对比[J]. 硅酸盐学报, 2011, 39(2): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201102039.htm
Yuan K, Liao L B, Wan H B, et al. Quantitative analysis of cristobalite and α-quartz in bentonite by X-ray powder diffraction—Comparison between external standard and K-value method[J]. Journal of the Chinese Ceramic Society, 2011, 39(2): 377-382. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201102039.htm
[29] 林伟伟, 宋友桂. 沉积物中X射线衍射物相定量分析中的两种方法对比研究[J]. 地球环境学报, 2017, 8(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201701010.htm
Lin W W, Song Y G. A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments[J]. Journal of Earth Environment, 2017, 8(1): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201701010.htm
-