Determination of Rare Earth Elements in Soil and Stream Sediment by Inductively Coupled Plasma-Mass Spectrometry with Automatic Graphite Digestion
-
摘要:
稀土元素由于化学性质稳定,均一化程度高,常作为地球化学示踪剂,为揭示岩石、矿物成因、成岩成矿的地球化学条件以及物质来源和岩浆分异演化等提供重要信息,因此,建立快速、准确地测定地质样品中稀土元素含量的方法非常重要。地质样品因基体复杂,大部分的样品前处理需要酸溶,酸溶试剂用量大,溶样过程中产生的酸雾易对实验人员造成伤害,且批量样品前处理劳动强度大。基于此,本文建立了以全自动石墨消解仪消解样品,“加酸—消解—赶酸—定容—摇匀”全程用软件控制,以Rh和Re为内标,电感耦合等离子体质谱法(ICP-MS)测定土壤和水系沉积物中La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y等15个稀土元素的方法。通过12个土壤和水系沉积物国家一级标准物质对消解程序、消解混合酸及方法精密度、准确度和检出限进行研究。结果表明:按照优化后的消解程序消解土壤和水系沉积物,混合酸用量为4mL,稀土各元素测定值与标准值一致,相对误差(RE)绝对值在0~6.67%之间,ΔlgC绝对值在0~0.028之间,相对标准偏差(RSD)在0.97%~4.62%之间。全自动石墨消解因自动化操作,操作条件一致,温度均匀,精度更高,各元素的RSD值均小于电热板消解的元素RSD值。本方法精密度、准确度和检出限满足《地质矿产实验室测试质量管理规范》的要求,混合酸用量远低于常用的电热板消解法,相应的环境污染也减少;方法精密度优于常用的电热板消解法。前处理时只需要称样后将消解管置于石墨消解仪中,溶样全过程自动完成,自动化程度高,适用于批量样品的测试。
Abstract:BACKGROUND Rare earth elements were used as geochemical tracers usually to provide important information for revealing the genesis of rocks and minerals, geochemical conditions of diagenesis and mineralization, material sources and magmatic differentiation and evolution, due to their stable chemical properties and high degree of uniformity. Therefore, it was very important to develop a method for rapidly and accurately determining the contents of rare earth elements in geological samples. In addition, due to the complex matrix of geological samples, most samples needed to be acid-dissolved in pre-treatment, and the amount of acid-dissolved reagents was large. The acid mist generated in the process of sample dissolution was harmful to the experimental personnel and the labor intensity of batch sample pretreatment was high.
OBJECTIVES To establish a rapid and accurate method for batch determination of rare earth elements in geological samples.
METHODS A method was developed to measure 15 rare earth elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y in soil and stream sediment by inductively coupled plasma-mass spectrometry with Rh and Re as the internal standard, in which the pre-treatment process of “acid addition—digestion—acid removal—constant volume—shaking” was controlled by software and completed with an automatic graphite digestion instrument. The digestion procedure, the effects of digestion mixed acid, precision, accuracy, and detection limit of the method were studied by soil and stream sediment reference materials including GBW07402, GBW07446, GBW07448, GBW07454, GBW07456, GBW07457, GBW07304a, GBW07307a, GBW07308, GBW07312, GBW07359 and GBW07361.
RESULTS The results showed that the amount of mixed acids was 4mL consumed by soil and stream sediment digestion according to optimized digestion procedure. The absolute values of relative error and ΔlgC of rare earth elements were 0-6.67% and 0-0.028, respectively. Therefore, the measured values were consistent with certified values. The relative standard deviation (RSD) of rare earth elements was 0.97%-4.62%, which is lower than the RSD of the electric plate digestion method.
CONCLUSIONS The precision, accuracy and detection limit of the method meet the requirements of the specification of testing quality management for geological laboratories-part 4 “Analysis methods for regional geochemical sample”. The precision of the method is better than electric plate digestion method. The amount of mixed acid used in the method is 4mL, which is much lower than that in the electric plate digestion method, the corresponding environmental pollution is also reduced. The detection limit of most rare earth elements in the method is lower than that in the standard method. The pre-processing of the automatic digestion method only requires the experimental personnel to weigh the sample and place it in the digestion tube in the automatic graphite digestion instrument and the whole process of dissolution is then automated. The automation degree is high, which guarantees the safety of experimental personnel to the greatest extent and can be applied to the testing of batch samples.
-
-
表 1 电感耦合等离子体质谱仪工作条件
Table 1. Operating parameters for ICP-MS measurements.
ICP-MS工作参数 实验条件 ICP-MS工作参数 实验条件 射频功率 1350W 扫描方式 跳峰 雾化器流速 0.85L/min 测量点/峰 3 冷却气流速 12L/min 重复测定次数 3 辅助气流速 1.2L/min 停留时间 10ms/点 采样深度 90步 扫描次数 40 采样锥/截取锥 1.0mm/0.7mm 测量时间 60s 表 2 不同方法精密度结果比较
Table 2. Comparison of precision results of REEs in reference materials for different methods.
元素 GBW07448(n=12) GBW07454(n=12) 认定值
(µg/g)消解仪 电热板 认定值
(µg/g)消解仪 电热板 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) La 30±1 30.8 2.45 31.2 4.49 35±1 36.0 1.74 36.5 2.74 Ce 57±2 56.0 2.21 57.0 4.82 71±3 71.0 1.90 73.0 2.80 Pr 6.9±0.3 6.6 2.27 6.70 4.18 8.0±0.5 7.90 1.83 8.15 2.27 Nd 25±1 25.5 2.44 25.8 4.55 31±1 31.8 2.37 30.9 3.49 Sm 4.7±0.2 4.77 2.63 4.84 3.83 5.8±0.3 5.98 2.97 5.66 4.09 Eu 1.00±0.05 1.00 1.14 1.01 2.44 1.20±0.06 1.19 1.52 1.23 4.03 Gd 4.2±0.2 4.17 2.56 4.29 3.83 5.3±0.3 5.34 2.38 5.52 4.65 Tb 0.69±0.03 0.66 2.99 0.67 3.20 0.86±0.06 0.84 2.60 0.86 3.52 Dy 3.8±0.2 3.80 2.89 3.88 4.27 5.0±0.4 5.00 1.90 5.00 2.99 Ho 0.77±0.04 0.76 3.76 0.77 5.03 1.02±0.08 0.99 1.58 1.00 2.51 Er 2.2±0.2 2.15 3.90 2.11 5.13 2.8±0.3 2.66 1.69 2.68 2.31 Tm 0.35±0.03 0.34 3.98 0.34 4.52 0.46±0.04 0.47 1.99 0.44 4.68 Yb 2.2±0.2 2.15 4.27 2.14 5.96 3.3±0.3 3.20 2.21 3.16 4.67 Lu 0.35±0.02 0.34 3.61 0.36 6.97 0.45±0.04 0.47 1.79 0.43 5.28 Y 21±1 20.2 3.79 20.5 5.95 27±2 25.9 1.35 25.8 3.63 元素 GBW07456(n=12) GBW07308(n=12) 认定值
(µg/g)消解仪 电热板 认定值
(µg/g)消解仪 电热板 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) La 43±1 44.1 1.39 45.1 3.44 30±4 28.8 1.51 28.9 3.01 Ce 82±4 82.4 1.68 83.9 3.71 54±5 53.0 0.97 52.0 2.60 Pr 9.8±0.8 9.51 1.29 9.75 3.52 5.8±0.7 5.66 1.43 5.66 3.28 Nd 44±2 45.4 1.58 46.1 3.75 21±2 20.6 1.54 20.6 3.16 Sm 6.9±0.3 7.12 2.00 7.17 3.22 3.8±0.3 3.70 1.57 3.70 3.41 Eu 1.50±0.05 1.50 1.98 1.51 2.24 0.56±0.07 0.54 1.36 0.57 3.91 Gd 6.2±0.3 6.25 1.47 6.36 3.50 3.5±0.6 3.39 1.51 3.65 3.37 Tb 1.00±0.04 0.99 1.95 1.00 2.11 0.54±0.10 0.52 1.20 0.55 4.65 Dy 5.7±0.2 5.71 1.75 5.74 2.98 2.6±0.5 2.72 1.33 2.69 3.56 Ho 1.13±0.07 1.13 1.68 1.12 3.23 0.7±0.02 0.86 1.54 0.94 2.63 Er 3.2±0.2 3.13 1.55 3.07 2.95 1.8±0.3 1.72 2.37 1.78 3.63 Tm 0.51±0.03 0.49 2.17 0.49 5.48 0.33±0.06 0.32 2.25 0.34 4.00 Yb 5.8±0.5 5.66 2.05 5.61 3.48 2.1±0.3 2.04 2.53 2.03 3.79 Lu 0.50±0.02 0.48 2.15 0.49 3.04 0.38±0.07 0.37 1.46 0.37 3.11 Y 31±2 29.5 1.51 29.6 2.68 18±2 17.2 2.20 18.7 4.31 元素 GBW07359(n=12) GBW07312(n=12) 认定值
(µg/g)消解仪 电热板 认定值
(µg/g)消解仪 电热板 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) 平均值(µg/g) RSD(%) La 13.9±1.0 13.6 4.09 13.8 5.74 32.7±1.4 30.9 1.38 32.5 4.67 Ce 24±2 22.8 3.95 23.2 4.16 61±4 61.5 0.98 59.0 4.91 Pr 2.9±0.3 2.79 3.66 2.79 4.94 6.9±1.1 6.58 1.20 6.83 4.32 Nd 9.8±0.4 9.49 3.68 9.98 4.72 26±3 26.9 1.08 25.3 4.53 Sm 1.9±0.1 1.82 3.23 1.88 4.40 5±0.4 4.79 1.04 5.08 3.49 Eu 0.62±0.03 0.61 2.47 0.62 3.73 0.61±0.03 0.58 2.39 0.61 2.64 Gd 1.7±0.1 1.63 2.23 1.71 4.28 4.4±0.4 4.19 1.54 4.60 4.99 Tb 0.29±0.02 0.28 1.73 0.28 4.10 0.82±0.06 0.84 1.88 0.80 5.17 Dy 1.7±0.1 1.67 3.22 1.67 4.40 4.8±0.2 4.59 2.85 5.04 5.06 Ho 0.33±0.02 0.33 3.06 0.33 6.99 0.94±0.07 0.97 3.42 0.99 6.08 Er 0.93±0.09 0.89 3.77 0.89 5.21 3.1±0.3 2.98 1.72 3.06 5.91 Tm 0.16±0.02 0.153 3.69 0.165 6.98 0.53±0.06 0.55 1.91 0.55 5.68 Yb 1.0±0.1 1.02 3.40 1.01 5.78 3.7±0.4 3.84 2.00 3.81 5.55 Lu 0.16±0.02 0.155 4.62 0.166 6.05 0.58±0.06 0.59 2.16 0.56 5.82 Y 9.7±0.7 9.64 3.04 10.14 4.82 29±3 27.7 1.88 27.9 5.89 表 3 方法准确度结果
Table 3. Accuracy results of REEs in reference materials by ICP-MS.
元素 GBW07402 GBW07446 认定值(µg/g) 测定值(µg/g) ΔlgC RE(%) 认定值(µg/g) 测定值(µg/g) ΔlgC RE(%) La 164±11 173 0.023 5.49 14±0.3 13.9 −0.003 −0.71 Ce 402±16 421 0.020 4.73 25±2 24.8 −0.003 −0.80 Pr 57±6 59.3 0.017 4.04 3.2±0.2 3.15 −0.007 −1.56 Nd 210±14 220 0.020 4.76 12.4±0.4 12.4 0.000 0.00 Sm 18±2 18.4 0.010 2.22 2.4±0.1 2.44 0.007 1.67 Eu 3.0±0.2 3.10 0.014 3.33 0.66±0.05 0.67 0.007 1.52 Gd 7.8±0.6 8.00 0.011 2.56 2.2±0.1 2.17 −0.006 −1.36 Tb 0.97±0.26 0.98 0.004 1.03 0.37±0.03 0.36 −0.012 −2.70 Dy 4.4±0.3 4.61 0.020 4.77 2.3±0.2 2.29 −0.002 −0.43 Ho 0.93±0.12 0.90 −0.014 −3.23 0.46±0.04 0.46 0.000 0.00 Er 2.1±0.4 2.16 0.012 2.86 1.3±0.1 1.31 0.003 0.77 Tm 0.42±0.11 0.41 −0.010 −2.38 0.23±0.02 0.22 −0.019 −4.35 Yb 2.0±0.2 2.10 0.021 5.00 1.5±0.1 1.48 −0.006 −1.33 Lu 0.32±0.05 0.31 −0.014 −3.13 0.24±0.02 0.23 −0.018 −4.17 Y 22±2 21.4 −0.012 −2.73 12.7±0.8 12.3 −0.014 −3.15 元素 GBW07304a GBW07361 认定值(µg/g) 测定值(µg/g) ΔlgC RE(%) 认定值(µg/g) 测定值(µg/g) ΔlgC RE(%) La 44±1 45.6 0.016 3.64 11.8±0.6 12.0 0.007 1.69 Ce 90±3 91.3 0.006 1.44 32±2 31.6 −0.005 −1.25 Pr 9.9±0.2 9.90 0.000 0.00 2.5±0.4 2.51 0.002 0.40 Nd 36±2 36.9 0.011 2.50 8.9±1.0 8.92 0.001 0.22 Sm 6.6±0.2 6.79 0.012 2.88 1.6±0.1 1.62 0.005 1.25 Eu 1.30±0.03 1.33 0.010 2.31 0.54±0.05 0.57 0.023 5.56 Gd 5.9±0.2 6.16 0.019 4.41 1.4±0.1 1.46 0.018 4.29 Tb 0.92±0.04 0.95 0.014 3.26 0.22±0.02 0.22 0.00 0.00 Dy 5.3±0.4 5.60 0.024 5.66 1.3±0.1 1.29 −0.003 −0.77 Ho 1.05±0.06 1.12 0.028 6.67 0.26±0.03 0.25 −0.017 −3.85 Er 3.0±0.3 3.08 0.011 2.67 0.8±0.1 0.76 −0.022 −5.00 Tm 0.50±0.03 0.49 −0.009 −2.00 0.13±0.02 0.125 −0.017 −3.85 Yb 3.2±0.3 3.20 0.000 0.00 0.83±0.04 0.81 −0.011 −2.41 Lu 0.50±0.03 0.47 −0.027 −6.00 0.14±0.03 0.135 −0.016 −3.57 Y 29±2 29.2 0.003 0.69 7.0±0.6 6.61 −0.025 −5.57 表 4 方法检出限
Table 4. Detection limits of the method.
元素 本方法检出限
(µg/g)标准方法检出限
(µg/g)元素 本方法检出限
(µg/g)标准方法检出限
(µg/g)Y 0.04 0.03 Tb 0.02 0.03 La 0.05 0.05 Dy 0.01 0.02 Ce 0.06 0.05 Ho 0.02 0.03 Pr 0.009 0.01 Er 0.01 0.01 Nd 0.04 0.05 Tm 0.01 0.03 Sm 0.01 0.02 Yb 0.01 0.01 Eu 0.01 0.01 Lu 0.02 0.02 Gd 0.02 0.05 表 5 全自动石墨消解仪消解程序
Table 5. Resolution program of automatic graphite digestion instrument.
步骤序号 消解程序 具体条件 步骤序号 消解程序 具体条件 1 加入试剂 2mL氢氟酸,1mL硝酸,
0.5mL高氯酸,0.5mL硫酸9 加热 230℃, 60min 2 混匀 1min 10 混匀 0.5min 3 加热 200℃ 60min 11 加热 230℃, 30min 4 混匀 0.5min 12 加入试剂 20%反王水约10mL 5 加热 210℃, 60min 13 加热 180℃, 7min 6 混匀 0.5min 14 冷却 10 min 7 加热 230℃, 60min 15 定容 水定容至50mL 8 混匀 0.5min 表 6 不同混合酸用量时稀土元素测定结果
Table 6. Comparative data of REEs in reference materials with different amounts of mixed acid by ICP-MS.
元素 GBW0745测定的相对误差(%) GBW07307a测定的相对误差(%) 3mL 3.5mL 4mL 5mL 3mL 3.5mL 4mL 5mL La −12.56 11.00 4.60 2.78 −15.22 −7.07 5.19 0.67 Ce −15.63 10.15 3.74 3.08 −10.00 −8.08 5.37 2.96 Pr −14.67 8.45 0.91 −3.00 −16.82 −12.60 3.28 2.93 Nd −15.83 8.33 2.33 −0.42 −18.63 −12.69 5.43 2.38 Sm −13.44 10.00 2.30 −0.25 −18.00 −12.62 4.62 1.84 Eu −14.26 6.52 2.90 1.22 −14.00 −17.20 2.15 1.79 Gd −12.45 10.00 3.03 3.71 21.11 −20.00 5.29 0.86 Tb −13.85 −16.64 0.00 −2.86 −20.00 −13.25 1.92 −1.85 Dy −10.63 9.85 2.22 −0.81 −24.74 −5.29 2.41 6.54 Ho −9.62 7.90 1.57 1.30 −7.50 −10.29 1.69 −1.11 Er −11.15 −7.73 −1.08 −3.75 21.11 −8.04 −1.76 −1.11 Tm −22.56 −10.00 −3.33 −4.88 −17.50 −4.19 −3.70 −6.06 Yb −22.63 −15.74 −0.83 −5.36 21.11 −6.67 1.76 −2.86 Lu −19.76 −9.76 −5.08 −4.76 −20.53 −9.87 −3.70 −5.26 Y −12.60 −16.05 −2.35 −3.81 −17.86 −8.50 −2.50 −7.22 表 7 土壤和水系沉积物样品测试结果
Table 7. Determination results of REEs in soil and stream sediment samples for different methods.
元素 A190350001 A190350018 标准方法(µg/g) 全自动石墨消解(µg/g) 相对偏差(%) 标准方法(µg/g) 全自动石墨消解(µg/g) 相对偏差(%) La 37.9 36.1 −4.86 16.2 17.8 9.41 Ce 68.8 69.5 1.01 27.2 29.7 8.79 Pr 7.36 6.85 −7.18 3.90 3.64 −6.90 Nd 26.8 27.5 2.58 17.1 18.2 6.23 Sm 4.46 4.20 −6.00 4.45 4.14 −7.22 Eu 1.26 1.15 −9.13 1.59 1.51 −5.16 Gd 3.84 3.94 2.57 4.28 4.67 8.72 Tb 0.53 0.57 7.27 0.72 0.79 9.27 Dy 2.40 2.33 −2.96 4.15 3.97 −4.43 Ho 0.46 0.43 −6.74 0.75 0.73 −2.70 Er 1.18 1.23 4.15 1.84 1.89 2.68 Tm 0.18 0.18 0.00 0.26 0.25 −3.92 Yb 1.15 1.11 −3.54 1.63 1.57 −3.75 Lu 0.17 0.16 −6.06 0.21 0.21 0.00 Y 10.9 11.5 5.36 16.8 17.6 4.65 元素 A221060001 A221060008 标准方法(µg/g) 全自动石墨消解(µg/g) 相对偏差(%) 标准方法(µg/g) 全自动石墨消解(µg/g) 相对偏差(%) La 44.2 45.3 2.46 34.8 33.7 −3.21 Ce 84.6 86.5 2.22 66.1 63.2 −4.49 Pr 8.93 9.18 2.76 7.16 6.97 −2.69 Nd 28.5 29.3 2.77 23.3 22.6 −3.05 Sm 5.08 5.07 −0.20 4.40 4.26 −3.23 Eu 0.84 0.80 −4.88 0.70 0.70 0.00 Gd 4.22 4.16 −1.43 3.62 3.63 0.28 Tb 0.62 0.62 0.00 0.59 0.61 3.33 Dy 3.42 3.30 −3.57 3.69 3.93 6.30 Ho 0.66 0.64 −3.08 0.76 0.82 7.59 Er 1.79 1.69 −5.75 1.96 2.13 8.31 Tm 0.28 0.26 −7.41 0.36 0.39 8.00 Yb 1.87 1.75 −6.63 2.42 2.60 7.17 Lu 0.26 0.24 −8.00 0.28 0.30 6.90 Y 18.2 16.8 −8.00 19.6 21.2 7.84 -
[1] 代涛,高天明,文博杰. 元素视角下的中国稀土供需格局及平衡利用策略[J]. 中国科学院院刊,2022,37(11):1586−1594. doi: 10.16418/j.issn.1000-3045.20220830002
Dai T,Gao T M,Wen B J. China’s rare earth supply and demand pattern and balanced utilization strategy from perspective of elements[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11):1586−1594. doi: 10.16418/j.issn.1000-3045.20220830002
[2] 何伟,吴亮,魏向成,等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试,2022,41(6):962−977.
He W,Wu L,Wei X C,et al. Geochemical characteristics of three kinds of rare elements in middle Jurassic Yan’an Formation of Ningdong coalfield and their indicative significance to sedimentary environment[J]. Rock and Mineral Analysis, 2022, 41(6):962−977.
[3] 朱文博,张训华,曲中党,等. 赣东—浙西下寒武统荷塘组稀土元素特征及其地质意义[J]. 海洋地质与第四纪地质,2021,41(2):88−99.
Zhu W B,Zhang X H,Qu Z D,et al. REE composition and its geological implications of the Hetang Formation mudstones in the East Jiangxi and West Zhejiang,China[J]. Marine Geology & Quaternary Geology, 2021, 41(2):88−99.
[4] 李瑞,王建荣,凌恳,等. 粤东丰顺—揭西地区离子吸附型重稀土矿床内生成矿条件探讨[J]. 华南地质,2021,37(2):177−192.
Li R,Wang J R,Ling K,et al. Discussion on ore-forming conditions of ion-adsorption-type heavy rare rarth deposits in the Fengshun—Jiexi area of eastern Guangdong Province[J]. South China Geology, 2021, 37(2):177−192.
[5] Balaram V. Rare earth elements:A review of applications,occurrence,exploration,analysis,recycling,and environmental impact[J]. Geoscience Frontiers, 2019, 10:1285−1303. doi: 10.1016/j.gsf.2018.12.005
[6] 兰明国,陆迁树,张先昌. 溶样方法对电感耦合等离子体质谱法测定岩石和土壤中稀土元素的影响[J]. 冶金分析,2018,38(6):31−38.
Lan M G,Lu Q S,Zhang X C. Influence of sample dissolution method on determination of rare earth elements in rock and soil by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6):31−38.
[7] 杨小丽,李小丹,邹棣华. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析,2016,36(7):56−62.
Yang X L,Li X D,Zou D H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2016, 36(7):56−62.
[8] 王斌,郑少锋,李伟才,等. 高基体样品进样系统-电感耦合等离子体质谱法测定进口铜精矿中稀土元素的含量[J]. 光谱学与光谱分析,2022,42(6):1822−1826.
Wang B,Zheng S F,Li W C,et al. Determination of rare earth elements in imported copper concentrate by inductively coupled plasma mass spectrometry with high matrix injection system[J]. Spectroscopy and Spectral Analysis, 2022, 42(6):1822−1826.
[9] 马亮帮,张大勇,腾格尔,等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定煤中稀土元素[J]. 中国无机分析化学,2019,9(4):27−30.
Ma L B,Zhang D Y,Borjigin T ,et al. Determination of rare earth elements in coal by inductively coupled plasma-mass spectrometry with high pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):27−30.
[10] Satyanarayanan M,Balaram V,Sawant S S,et al. Rapid determination of REEs,PGEs,and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1):1−15. doi: 10.46770/AS.2018.01.001
[11] 周凯红,张立锋,李佳. 电感耦合等离子体质谱法测定白云鄂博矿石中15种稀土元素总量及其分量[J]. 冶金分析,2022,42(8):87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751
Zhou K H,Zhang L F,Li J. Determination of total amount of fifteen rare earth elements and its component in Bayan Obo ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(8):87−95. doi: 10.13228/j.boyuan.issn1000-7571.011751
[12] 王贵超,刘荣丽,王志坚,等. 微波消解-电感耦合等离子体质谱法测定深海沉积物中稀土总量[J]. 理化检验(化学分册),2021,57(7):627−632.
Wang G C,Liu R L,Wang Z J,et al. Determination of total content of rare earths in deep-sediments by inductively coupled plasma-mass spectrometry after microwave digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(7):627−632.
[13] 张宏丽,高小飞,姚明星,等. 微波消解-电感耦合等离子体质谱法测定赤泥中稀土总量及分量[J]. 稀土,2019,40(3):96−101.
Zhang H L,Gao X F,Yao M X,et al. Microwave dissolving-inductively coupled plasma mass spectrometric determination of total and individual ree in red mud[J]. Chinese Rare Earths, 2019, 40(3):96−101.
[14] Naga B K,Deb S B,Saxena M K,et al. Quantification of trace level rare earth elements in al matrices by ICP-MS[J]. Radiochim Acta, 2019, 107(3):215−220. doi: 10.1515/ract-2018-3019
[15] 门倩妮,沈平,甘黎明,等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试,2020,39(1):59−67.
Men Q N,Shen P,Gan L M,et al. Determination of rare earth elements and Nb,Ta,Zr,Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1):59−67.
[16] 杨惠玲,杜天军,王书勤,等. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素[J]. 冶金分析,2022,42(5):8−14.
Yang H L,Du T J,Wang S Q,et al. Determination of rare earth and scattered elements in metallic ores by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(5):8−14.
[17] 《岩石矿物分析》编委会. 岩石矿物分析: 第3分册[M]. 北京: 地质出版社, 2011: 476.
The editorial committee of <Rock and Mineral Analysis>. Rock and Mineral Analysis (The Fourth Edition)[M]. Beijing: Geological Publishing House, 2011: 476.
[18] 龚仓,丁洋,陆海川,等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试,2021,40(3):340−348.
Gong C,Ding Y,Lu H C,et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3):340−348.
[19] 辛文彩,朱志刚,宋晓云,等. 应用电感耦合等离子体质谱测定深海富稀土沉积物中稀土元素方法研究[J]. 海洋地质前沿,2022,38(9):92−96.
Xin W C,Zhu Z G,Song X Y,et al. On pretreatment method for the determination of rare earth elements in deep sea REE-rich sediments by inductively coupled plasma-mass spectrometry[J]. Marine Geology Frontiers, 2022, 38(9):92−96.
[20] 吴葆存,于亚辉,闫红岭,等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析,2016,36(7):39−45.
Wu B C,Yu Y H,Yan H L,et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma-mass spectrometry coupled with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7):39−45.
[21] 董学林,何海洋,储溱,等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试,2019,38(6):620−630.
Dong X L,He H Y,Chu Q,et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6):620−630.
[22] 张庆,李诚至,林钰涓,等. 全自动石墨消解-电感耦合等离子体质谱法测定水稻粮食作物中8种元素的微量残留[J]. 理化检验(化学分册),2022,58(6):677−681.
Zhang Q,Li C Z,Lin Y J,et al. Determination of trace residues of 8 elements in rice grain crop by inductively coupled plasma mass spectrometry with automatic graphite digestion[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2022, 58(6):677−681.
[23] 王昆. 自动石墨消解–电感耦合等离子体质谱法同时测定左氧氟沙星胶囊中7种金属元素[J]. 化学分析计量,2020,29(2):67−70.
Wang K. Simultaneous determination of 7 metal elements in levofloxacin capsules by automatic graphite digestion–inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(2):67−70.
[24] 罗琼,胡建民,李芳,等. 全自动石墨消解-电感耦合等离子体质谱法同时测定灌溉水中20种元素[J]. 分析科学学报,2021,37(2):259−263.
Luo Q,Hu J M,Li F,et al. Determination of 20 elements in irrigation water by automatic graphite digestion-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Science, 2021, 37(2):259−263.
[25] 刘静波,张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室,2018,37(2):207−211.
Liu J B,Zhang G Y. Determination of Be,Ba,Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2):207−211.
[26] 王东,胡珊. 全自动石墨消解电感耦合等离子质谱法测定土壤中的重金属[J]. 中国资源综合利用,2018,36(4):27−28,37.
Wang D,Hu S. Determination of heavy metals in soil by inductively coupled plasma mass spectrometry with automatic graphite digestion[J]. China Resources Comprehensive Utilization, 2018, 36(4):27−28,37.
[27] 曾美云,何启生,邵鑫. 全自动石墨消解-电感耦合等离子体质谱法测定土壤中 22 种微量元素[J]. 华南地质,2022,38(2):350−357.
Zeng M Y,He Q S,Shao X. Determination of 22 trace elements in soil by inductively coupled plasma mass spectrometry with automatic graphite digestion[J]. South China Geology, 2022, 38(2):350−357.
[28] 陆建华,顾志权,钱卫飞,等. 反王水消解法测定土壤中重金属的方法研究[J]. 矿物岩石地球化学通报,2007,26(1):70−73.
Lu J H,Gu Z Q,Qian W F,et al. Determination of heavy metals in soils by digestion of reverse aqua regia[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2007, 26(1):70−73.
[29] 吴石头,王亚平,孙德忠,等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试,2014,33(1):12−19. doi: 10.15898/j.cnki.11-2131/td.2014.01.003
Wu S T,Wang Y P,Sun D Z,et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry:A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1):12−19. doi: 10.15898/j.cnki.11-2131/td.2014.01.003
[30] 贾双琳, 赵平, 杨刚, 等. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素[J]. 岩矿测试,2014,33(2):186−191.
Jia S L, Zhao P, Yang G, et al. Quick determination of rare earth elements in geological samples with open acid digestion or high-pressure closed digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2):186−191.
-