-
摘要:
锰矿中有毒有害元素对锰提纯工艺、生产环境和产品质量的影响,一直是困扰锰行业发展的技术难题,也是实验测试亟需解决的质量基础共性技术问题。目前,国内外现有的锰矿石成分分析标准物质共有10个,定值成分有Mn、Fe、Al2O3和SiO2等17种,均缺乏Cl、F、Pb、Cd、Co、Cr、Hg和As等有害成分的定值,从而无法满足锰提纯工艺研发、环境监测评估、锰矿进口监督、检测方法评价等需要。本文研制了2个锰矿石成分分析标准物质(GBW07139、GBW07140),候选物样品采自湖南省和新疆自治区的3个大型锰矿区,根据矿床类型采用单独或组合方式进行样品制备,样品全部通过97μm标准筛和均匀性初检,并分装为最小包装单元。通过对随机抽取的2×30瓶样品进行均匀性检验,F实测值均小于F0.05(29, 60)=1.59,且相对标准偏差为0.45%~6.44%,表明样品的均匀性好。在一年时间内进行长期和短期稳定性检验,采用线性模型/平均值一致性数据统计,未发现统计学意义的明显差异,表明样品的稳定性好。通过10家实验室对Mn、MnO2、SiO2、Al2O3、Fe、CaO、MgO、K2O、Na2O、TiO2、S、P、Cu、Co、Zn、Ni、Pb、Cd、Hg、Cr、As、Cl、F共23种成分进行协作定值,2个锰矿石成分分析标准物质中Mn质量分数分别为21.63%和41.55%,Cl质量分数为38×10-6和1214×10-6,Ni质量分数为1075×10-6和30.9×10-6,具有较宽泛的含量范围和代表性。该批锰矿石成分分析标准物质实现了锰矿石成分分析标准物质中Cl、F、Pb、Cd、Cr、Co、Hg和As成分的定值,适用于锰相关分析检测质量控制。
Abstract:BACKGROUND The toxic and hazardous elements in manganese ore not only affect manganese purification, production environment and product quality, but have also always been a technical problem in the manganese industry and particularly in experimental testing. At present, there are a total of 10 existing manganese ore composition analysis standard materials in the world, all of which lack the certified values of harmful components such as Cl, F, Co, Cr, Hg and As. Therefore, they do not meet the needs of manganese purification research, environmental monitoring, manganese ore import and detection method research.
OBJECTIVES To prepare manganese ore composition analysis standard materials with quantitative values for Cl, F, As, Pb, Cd, Cr and Hg.
METHODS Two certified chemical composition reference materials of manganese ore (GBW07139, GBW07140) were prepared by collecting samples from 3 large-scale manganese mining areas in Hunan Province and Xinjiang Autonomous Region. According to the type of deposit, all the samples passed the 97μm standard sieve and the initial uniformity inspection, and were packed into the smallest packaging unit individually or in combination.
RESULTS For the uniformity test of randomly selected 2×30 bottles, the measured values of F were all less than F0.05(29, 60)=1.59, and the relative standard deviation was between 0.45% and 6.44%, indicating good uniformity of the samples. The long-term stability/short-term stability test was carried out within one year, and the linear model/average consistency data showed no significant difference, indicating good stability of samples. Ten laboratories participated in the collaborative certified value research, which included 23 components such as Mn, MnO2, SiO2, Al2O3, Fe, CaO, MgO, K2O, Na2O, TiO2, S, P, Cu, Co, Zn, Ni, Pb, Cd, Hg, Cr, As, Cl and F. In the two manganese ore composition analysis standard materials, the mass fractions of Mn were 21.63% and 41.55%, Cl were 38×10-6 and 1214×10-6, Ni were 1075×10-6 and 30.9×10-6, respectively.
CONCLUSIONS This batch of manganese ore composition analysis standard materials contain certified values of Cl, F, Pb, Cd, Cr, Co, Hg and As, and is suitable for quality control of manganese-related analysis and testing.
-
Key words:
- manganese ore /
- component analysis /
- reference material /
- certified value /
- chlorine
-
-
表 1 候选物的采集与制备
Table 1. Collection and preparation of candidates
候选物编号 样品采集与粗样制备 样品配制与细样制备 原矿编号 质量(kg) 粒度(μm) 锰含量①(n=10) 分取量(kg) 总质量(kg) 粒度(μm) 锰含量②(n=10) 分装(瓶) 平均值(%) RSD (%) 平均值(%) RSD (%) MnBW-1 Y-Mn-1 145 1000 21.59 0.70 110 110 97 21.65 0.89 1006 MnBW-2 Y-Mn-2 95 1000 41.34 0.50 55 110 97 41.49 0.71 1005 Y-Mn-3 76 1000 41.91 0.67 55 注:① 1000μm粗样测定结果及相对标准偏差;② 97μm细样测定结果及相对标准偏差。 表 2 候选物均匀性检验结果
Table 2. Results of homogeneity test for the candidates
样品编号 统计项目 Mn MnO2 SiO2 Al2O3 Fe CaO MgO K2O Na2O TiO2 S P x(×10-2) 21.50 31.63 28.96 4.94 14.51 0.48 0.45 0.60 0.032 0.15 0.013 0.29 MnBW-1 RSD(%) 1.35 0.99 1.02 1.51 0.79 3.66 2.94 1.34 3.98 4.81 5.32 3.80 F实测值 1.32 1.24 0.99 1.02 1.38 0.95 0.77 0.76 0.81 0.90 1.56 1.03 x(×10-2) 41.41 15.02 15.16 0.92 0.62 3.62 2.01 0.018 0.23 0.050 0.25 0.18 MnBW-2 RSD(%) 0.45 1.82 0.78 5.04 2.92 1.72 2.84 6.44 4.65 5.80 4.75 8.19 F实测值 0.59 1.08 1.06 0.90 0.92 1.09 0.60 1.37 0.41 0.64 0.94 1.22 样品编号 统计项目 Cu Ni Zn Pb Cd Cr Hg Co As Cl F x(×10-6) 165 1075 514 46.8 13.9 226 0.60 176 130 36.1 249 MnBW-1 RSD(%) 1.96 1.48 2.81 4.57 1.95 3.81 4.31 2.73 2.60 4.94 3.54 F实测值 1.33 1.34 0.68 0.82 1.01 0.76 0.85 1.57 0.63 0.72 1.05 x(×10-6) 196 31.0 28.8 17.0 0.21 61.7 0.035 13.7 129 1214 401 MnBW-2 RSD(%) 2.28 3.16 4.05 7.26 6.40 3.01 5.30 2.33 2.10 0.97 3.83 F实测值 1.18 1.48 0.38 0.51 0.48 0.64 1.05 1.04 0.95 0.75 1.07 表 3 候选物长期稳定性检验结果
Table 3. Results of long-term stability test for the candidates
组分 样品MnBW-1 样品MnBW-2 x(×10-2) RSD(%) b1 t0.05×s(b1) x(×10-2) RSD(%) b1 t0.05×s(b1) Mn 21.46 0.64 -0.02322 0.03081 41.59 0.10 -0.00278 0.01577 MnO2 31.67 0.45 0.00095 0.05447 14.99 0.95 -0.00546 0.05335 SiO2 28.96 0.089 0.00236 0.00882 15.16 0.36 -0.00185 0.02049 Al2O 4.93 0.57 -0.00141 0.01032 0.94 1.11 0.00073 0.00370 Fe 14.62 0.24 -0.00633 0.00693 0.64 1.50 0.00089 0.00322 CaO 0.48 0.74 -0.000054 0.00134 3.65 0.79 0.00089 0.01090 MgO 0.46 1.36 0.000021 0.00240 1.99 0.93 0.00278 0.00486 K2O 0.59 0.54 0.00042 0.00094 0.018 2.21 -0.0000046 0.00015 Na2O 0.031 2.09 0.000012 0.00025 0.24 1.26 0.00018 0.00110 TiO2 0.15 2.87 0.00014 0.00162 0.050 2.62 -0.000060 0.00048 S 0.013 4.47 -0.000073 0.00018 0.25 2.35 0.00051 0.00206 P 0.29 1.75 0.00014 0.00188 0.18 2.52 0.00052 0.00142 组分 样品MnBW-1 样品MnBW-2 x(×10-6) RSD(%) b1 t0.05×s(b1) x(×10-6) RSD(%) b1 t0.05×s(b1) Cu 166 1.09 -0.1180 0.6521 192 1.33 -0.2978 0.8054 Ni 1077 0.26 -0.3387 0.8540 31.9 2.33 0.0490 0.2670 Zn 519 0.59 -0.1845 1.1111 29.4 2.66 -0.0942 0.2419 Pb 46.5 2.11 0.0771 0.3448 17.2 3.50 0.1034 0.1283 Cd 14.1 1.00 -0.0113 0.0492 0.21 1.92 -0.00028 0.00144 Cr 226 1.32 0.4871 0.6965 61.9 1.26 -0.0974 0.2378 Hg 0.59 0.81 0.000655 0.00136 0.032 1.01 -0.000030 0.00011 Co 176 0.55 0.0354 0.3600 13.7 0.92 -0.0216 0.0271 As 130 0.88 -0.0390 0.4301 129 1.27 -0.0544 0.6170 Cl 36.5 2.00 -0.1084 0.1923 1230 1.12 -1.8913 3.9344 F 249 0.92 -0.3201 0.6451 403 1.34 -0.7024 1.6043 注:x为测定结果的平均值;s为标准偏差;b1为回归系数。 表 4 锰矿石成分分析标准物质各组分定值方法
Table 4. Determination methods of components in certified reference materials for composition analysis of manganese ore
组分 数据组数 测试方法代码 组分 数据组数 测试方法代码 Mn 10 VOL(8),ICP-OES(2) Cu 10 ICP-OES(4),ICP-MS(6) MnO2 9 VOL(9) Ni 10 ICP-OES(5),ICP-MS(5) SiO2 10 GR(7),ICP-OES(1),XRF(2) Zn 9 ICP-OES(3),ICP-MS(6) Al2O3 10 VOL(2),COL(1),ICP-OES(5),XRF(2) Pb 10 ICP-OES(1),ICP-MS(9) Fe 10 VOL(2),ICP-OES(6),XRF(1),FSSA(1) Cd 10 ICP-MS(10) CaO 10 ICP-OES(8),FAAS(1),XRF(1) Co 10 ICP-OES(4),ICP-MS(6) MgO 10 ICP-OES(8),FAAS(1),XRF(1) Cr 10 ICP-OES(7),ICP-MS(3) K2O 10 ICP-OES(8),FAAS(1),XRF(1) Hg 10 AFS(9),FAAS(1) Na2O 10 ICP-OES(8),FAAS(2) As 10 AFS(10) TiO2 10 ICP-OES(8),COL(1),XRF(1) Cl 10 COL(1),XRF(9) P 10 ICP-OES(7),COL(2),XRF(1) F 10 ISE(10) S 10 VOL(8),HCS(2) 注:ICP-OES—电感耦合等离子体发射光谱法;ICP-MS—电感耦合等离子体质谱法;AFS—原子荧光光谱法;FAAS—火焰原子吸收光谱法;XRF—X射线荧光光谱法; VOL—容量法;COL—分光光度法;GR—重量法;HCS—高频燃烧-红外吸收光谱法;ISE—离子选择电极法。“测试方法代码”一列括号内数据表示方法参与统计的测定数据组数。 表 5 锰矿石成分分析标准物质的不确定度统计
Table 5. Uncertainty statistics of certified reference materials for composition analysis of manganese ore
组分 样品MnBW-1 样品MnBW-2 uchar(×10-2) ubb(×10-2) us(×10-2) UCRM(×10-2) uchar(×10-2) ubb(×10-2) us(×10-2) UCRM(×10-2) Mn 0.05951 0.07933 0.07569 0.25 0.1123 0.0383 0.0244 0.25 MnO2 0.09126 0.07459 0.07837 0.29 0.2750 0.0375 0.0769 -- SiO2 0.09798 0.05722 0.06175 0.26 0.0591 0.0141 0.0230 0.13 Al2O 0.02076 0.00472 0.01658 0.06 0.0134 0.0091 0.0072 0.04 Fe 0.09012 0.03353 0.02663 0.20 0.0080 0.0035 0.0062 0.03 CaO 0.01076 0.00338 0.00385 0.03 0.0284 0.0092 0.0158 0.07 MgO 0.00444 0.00264 0.00257 0.02 0.0081 0.0116 0.0131 0.04 K2O 0.00485 0.00160 0.00186 0.02 0.0011 0.00050 0.00043 0.003 Na2O 0.00178 0.00044 0.00048 0.004 0.0086 0.0023 0.0022 0.02 TiO2 0.00278 0.00284 0.00326 0.02 0.00089 0.00059 0.00073 0.003 S 0.00013 0.00053 0.00032 0.002 0.0056 0.0032 0.0032 0.02 P 0.00506 0.00099 0.00231 0.02 0.0035 0.0033 0.0031 0.02 组分 样品MnBW-1 样品MnBW-2 uchar(×10-6) ubb(×10-6) us(×10-6) UCRM(×10-6) uchar(×10-6) ubb(×10-6) us(×10-6) UCRM(×10-6) Cu 2.7295 0.8974 1.3742 7 2.6358 0.9302 1.9429 7 Ni 12.9093 4.4777 2.9923 28 1.3540 0.3211 0.5394 3.0 Zn 7.1592 2.9051 2.8455 17 1.0832 0.2446 0.6047 2.6 Pb 0.7789 0.4222 0.5435 2.1 0.4340 0.2535 0.4664 1.4 Cd 0.4105 0.01207 0.0876 0.9 0.0031 0.0028 0.0031 0.02 Cr 2.9547 1.7101 1.9615 8 3.5384 0.3757 0.4822 7.2 Hg 0.0142 0.00511 0.00543 0.04 0.0018 0.00022 0.00042 0.004 Co 3.8196 1.7021 0.9015 9 0.2748 0.03173 0.1339 0.7 As 2.9718 0.6847 0.6864 7 1.9242 0.5267 0.6872 5 Cl 1.7164 0.3574 0.4233 3.7 25.8127 2.3417 8.6719 55 F 4.3435 1.0101 1.6828 10 4.2268 2.0363 3.7801 12 表 6 锰矿石成分分析标准物质的标准值和不确定度
Table 6. Standard values and uncertainties of certified reference materials for composition analysis of manganese ore
组分 标准值和不确定度(×10-2) 组分 标准值和不确定度(×10-6) MnBW-1 MnBW-2 MnBW-1 MnBW-2 Mn 21.63±0.25 41.55±0.25 Cu 168±7 196±7 MnO2 31.60±0.29 (14.61) Ni 1075±28 30.9±3.0 SiO2 28.92±0.26 15.16±0.13 Zn 516±17 31.3±2.6 Al2O3 4.96±0.06 0.96±0.04 Pb 45.2±2.1 16.8±1.4 Fe 14.48±0.20 0.62±0.03 Cd 13.4±0.9 0.21±0.02 CaO 0.47±0.03 3.61±0.07 Cr 230±8 61.7±7.2 MgO 0.45±0.02 1.98±0.04 Hg 0.61±0.04 0.035±0.004 K2O 0.60±0.02 0.018±0.003 Co 176±9 13.7±0.7 Na2O 0.032±0.004 0.23±0.02 As 127±7 130±5 TiO2 0.15±0.02 0.048±0.003 Cl 38.0±3.7 1214±55 S 0.014±0.002 0.24±0.02 F 252±10 408±12 P 0.29±0.02 0.18±0.02 表 7 标准物质各组分的标准值与实测值对比
Table 7. Comparison of analytical results and certified results of components in certified reference materials
组分 标准物质编号 标准值(×10-2) 实测值(×10-2) 组分 标准物质编号 标准值(×10-6) 实测值(×10-6) Mn GBW07261 45.39 45.50 45.18 Cu GBW07262 140 142 143 GBW07264 25.00 25.09 24.97 GBW07263 360 355 361 MnO2 GBW07263 48.01 47.78 47.85 Ni GBW07262 190 189 184 GBW07264 36.93 37.03 36.86 GBW07263 990 1011 996 SiO2 GBW07261 16.16 16.06 16.20 Zn GBW07262 290 302 285 GBW07262 22.24 22.15 22.03 GBW07263 640 648 633 Al2O3 GBW07264 8.97 8.84 8.99 Pb GBW07401 98 98.6 95.0 GBW07265 1.68 1.71 1.68 GBW07402 20 21.1 18.0 Fe GBW07263 11.24 11.25 11.40 Cd GBW07401 4.3 4.4 4.2 GBW07265 1.40 1.32 1.41 GBW0702 0.071 0.076 0.072 CaO GBW07261 1.06 1.03 1.08 Cr GBW07401 62 63.8 63.3 GBW07262 3.60 3.51 3.71 GBW07404 370 376 378 MgO GBW07261 0.64 0.64 0.65 Hg GBW07404 0.59 0.59 0.59 GBW07262 1.44 1.47 1.45 GBW07456 0.116 0.116 0.121 K2O GBW07261 1.00 0.98 1.01 Co GBW07404 22 21.5 22.5 GBW07262 0.46 0.45 0.48 GBW07407 97 102 98 Na2O GBW07261 0.044 0.044 0.045 As GBW07311 188 190 188 GBW07262 0.048 0.049 0.050 GBW07312 115 112 112 TiO2 GBW07261 0.063 0.060 0.067 Cl GBW07401 70 72 68.3 GBW07262 0.10 0.106 0.11 GBW07452 6300 6239 6300 S GBW07265 0.21 0.21 0.22 F GBW07403 246 237 249 GBW07266 0.27 0.20 0.27 P GBW07263 0.207 0.20 0.21 GBW07407 321 332 316 GBW07264 0.275 0.27 0.28 -
[1] Xiang J, Chen J P, Bagas L, et al. Southern China's manganese resource assessment: An overview of resource status, mineral system and prediction model[J]. Ore Geology Reviews, 2020, 116: 1-13.
[2] Peterson M J, Hapugoda S. Microhardness characterisation of manganese ore minerals—Implications for downstream processing[J]. Minerals Engineering, 2020, 157: 1-17.
[3] Singh V, Biswas A, Sahu N. Development of a smelting reduction process for low-grade ferruginous manganese ores to produce valuable synthetic manganese ore and pig iron[J]. Mining, Metallurgy & Exploration, 2020, 37(5): 1681-1692.
[4] 张旭, 冯雅丽, 张小伟. 黄铁矿-微生物体系还原浸出低品位氧化锰矿工艺过程研究[J]. 矿冶工程, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026
Zhang X, Feng Y L, Zhang X W. Reductive leaching process of low-grade manganese oxide ore by pyrite-microorganism system[J]. Mining and Metallurgical Engineering, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026
[5] 丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm
Cong Y, Dong Q J, Xiao K Y, et al. Characteristics and predicted potential of Mn resources in China[J]. Earth Science Frontiers, 2018, 25(3): 118-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803013.htm
[6] 梅光贵, 张文山, 曾湘波, 等. 中国锰业技术[M]. 长沙: 中南大学出版社, 2011: 27-31.
Mei G G, Zhang W S, Zeng X B, et al. Technology of China manganese industry[M]. Changsha: Central South University Publishing, 2011: 27-31.
[7] 林顺达, 李康强, 李鑫培, 等. 软锰矿还原技术研究现状[J]. 湿法冶金, 2019, 38(6): 432-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201906002.htm
Lin S D, Li K Q, Li X P, et al. Research status on reduction technology of pyrolusite[J]. Hydrometallurgy of China, 2019, 38(6): 432-437. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201906002.htm
[8] 肖红艳, 徐晓晴, 王斐, 等. 新型捕收剂RA-92在低品位碳酸锰矿选矿中的应用[J]. 岩矿测试, 2016, 35(3): 284-289. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.011
Xiao H Y, Xu X Q, Wang F, et al. Application of novel collector dosage RA-92 in the flotation procedure of low-grade carbonate manganese ore[J]. Rock and Mineral Analysis, 2016, 35(3): 284-289. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.011
[9] 曹默雷, 陈建平. 由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例[J]. 沉积学报, doi: 10.14027/j.issn.1000-0550.2021.020.
Cao M L, Chen J P. The analysis of the sedimentary process for Datangpo-type manganese ores from the point of sequence stratigraphy: A case of the minle manganese deposits in northwestern Hunan[J]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2021.020.
[10] 高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8): 2341-2358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm
Gao Y B, Teng J X, Li W Y, et al. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, northwest China[J]. Acta Petrologica Sinica, 2018, 34(8): 2341-2358. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808010.htm
[11] 袁爱群, 郭雨桐, 李维健, 等. 杂质离子对锰电解电流效率的影响[J]. 湿法冶金, 2020, 39(4): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202004014.htm
Yuan A Q, Guo Y T, Li W J, et al. Effect of impurity ions on current efficiency during manganese electrolysis[J]. Hydrometallurgy of China, 2020, 39(4): 325-328. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202004014.htm
[12] 贾宝亮, 孙亚峰, 王小钊, 等. 陕西镇安某高磷混合型铁锰矿选矿实验研究[J]. 矿产综合利用, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013
Jia B L, Sun Y F, Wang X Z, et al. Experimental study on beneficiation of a high phosphorus mixed ferromanganese ore in Zhenan, Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013
[13] 王杨, 伍成波, 岳林, 等. 高磷菱锰矿焙烧-氨浸实验研究[J]. 矿冶工程, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026
Wang Y, Wu C B, Yue L, et al. Experimental research on roasting and ammonia leaching of high phosphorus rhodochrosite[J]. Mining and Metallurgical Engineering, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026
[14] 吕东亚, 马保中, 陈永强, 等. 盐酸法富集低品位锰矿及酸介质高值再生工艺[J]. 工程科学学报, 2020, 42(5): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202005006.htm
Lyu D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high value regeneration of acid medium[J]. Chinese Journal of Engineering, 2020, 42(5): 578-585. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202005006.htm
[15] 张帆, 王芳, 解雪, 等. 锰矿中氯离子的去除工艺研究[J]. 中国资源综合利用, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006
Zhang F, Wang F, Xie X, et al. Study on dechlorination of manganese ore[J]. China Resources Comprehensive Utilization, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006
[16] 张钰钰, 朱鹏, 苏仕军, 等. 用锰冶金铁铝废渣从模拟废水中吸附铅离子试验研究[J]. 湿法冶金, 2021, 40(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202101012.htm
Zhang Y Y, Zhu P, Su S J, et al. Adsorption of Pb2+ using iron-aluminum slag adsorbent from simulated wastewater[J]. Hydrometallurgy of China, 2021, 40(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202101012.htm
[17] 任军, 刘方, 朱健, 等. 锰矿废渣区苔藓物种多样性及其重金属污染监测[J]. 安全与环境学报, 2020, 20(6): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202006048.htm
Ren J, Liu F, Zhu J, et al. Diversity of the bryophytes and heavy metal pollution monitoring in manganese ore waste area[J]. Journal of Safety and Environment, 2020, 20(6): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202006048.htm
[18] 李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201911230162
Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201911230162
[19] 姚露, 杨林, 邹敏杰, 等. 氧化锰矿浆脱除电解锰渣煅烧烟气二氧化硫工艺研究[J]. 工程科学与技术, 2020, 52(5): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005029.htm
Yao L, Yang L, Zou M J, et al. Study on flue gas desulfurization with oxide manganese slurry for electrolytic manganese calcining[J]. Advanced Engineering Sciences, 2020, 52(5): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005029.htm
[20] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103004.htm
Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103004.htm
[21] 孙倩芸, 李锋丽, 杨焕蝶, 等. 锰纯度定值及其单元素溶液标准物质的研制[J]. 化学分析计量, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001
Sun Q Y, Li F L, Yang H D, et al. Certification of the purity of Mn and preparation of Mn solution reference material[J]. Chemical Analysis and Meterage, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001
[22] 吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712060189
Wu L, Liu Y B, Wang J S, et al. Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201712060189
[23] 秦毅, 田宗平, 方俊杰, 等. 氧化锰矿石还原焙烧过程中铁还原率评价方法研究[J]. 湿法冶金, 2017, 36(5): 427-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201705018.htm
Qin Y, Tian Z P, Fang J J, et al. Evaluation of iron reduction rate during reduction roasting of manganese oxide ore[J]. Hydrometallurgy of China, 2017, 36(5): 427-429. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201705018.htm
[24] 王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010006.htm
Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202010006.htm
[25] 曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094
Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorus iron ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201808150094
[26] 彭君, 易晓明, 王干珍, 等. 锰矿中氯的XRF测定方法确认与运用[J]. 中国锰业, 2020, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202004017.htm
Peng J, Yi X M, Wang G Z, et al. Confirmation and application of determination of chlorine in manganese ore by X-ray fluorescence spectrometry[J]. China's Manganese Industry, 2020, 38(4): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202004017.htm
[27] 李津, 唐索寒, 马健雄, 等. 磁铁矿铁同位素标准物质的研制[J]. 岩石矿物学杂志, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007
Li J, Tang S H, Ma J X, et al. The preparation of reference material for Fe isotope measurement of magnetite samples[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007
-