中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

坦桑尼亚绿碧玺的矿物学特征及颜色成因

陶隆凤, 金翠玲, 张芊葚, 韩秀丽. 坦桑尼亚绿碧玺的矿物学特征及颜色成因[J]. 岩矿测试, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127
引用本文: 陶隆凤, 金翠玲, 张芊葚, 韩秀丽. 坦桑尼亚绿碧玺的矿物学特征及颜色成因[J]. 岩矿测试, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127
TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127
Citation: TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127

坦桑尼亚绿碧玺的矿物学特征及颜色成因

  • 基金项目:
    国家自然科学基金项目(51574105)
详细信息
    作者简介: 陶隆凤,博士研究生,讲师,主要从事宝石及矿物材料研究。E-mail: 47156792@qq.com
    通讯作者: 韩秀丽,硕士,教授,主要从事地质学及矿物材料研究。E-mail: hanxl1965@126.com
  • 中图分类号: P57

Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania

More Information
  • 不同产地绿碧玺的产出特征、化学成分、致色机理和形成条件都存在差异。目前关于坦桑尼亚绿碧玺的矿物种属及颜色成因等问题还未得到解决,对其科学鉴定和品质评级造成了一定影响。本文采用红外光谱、拉曼光谱、电子探针、紫外可见光谱等测试技术,对坦桑尼亚绿碧玺宝石矿物学特征及颜色成因进行探究。结果表明:坦桑尼亚绿碧玺呈单晶体产出,无解理、裂理发育,颗粒较小,可作为宝石材料;根据晶体化学式初步判定坦桑尼亚绿色碧玺为镁电气石,而其他产地绿碧玺一般为锂电气石。该地区绿碧玺的主要化学成分为SiO2、Al2O3、MgO和B2O3,平均含量分别为37.52%、36.26%、9.65%和8.42%,此外FeO含量偏低,并含有微量的Cr2O3和TiO2,结合紫外可见光谱中存在以440nm和600nm为中心的宽吸收带及680nm的吸收线,认为其绿色是由微量Cr3+进入晶格中替代Al3+所致。本研究基本确定了坦桑尼亚绿碧玺的宝石矿物学特征及颜色成因,可为该地区绿碧玺的科学鉴定、品质评价及开发利用提供数据支撑。

  • 加载中
  • 图 1  测试的绿碧玺样品(a—BX-1; b—BX-2; c—BX-3)

    Figure 1. 

    图 2  绿碧玺样品的红外光谱图

    Figure 2. 

    图 3  绿碧玺样品BX-1的拉曼光谱图

    Figure 3. 

    图 4  绿碧玺样品的偏光显微镜照片

    Figure 4. 

    图 5  绿碧玺样品的紫外可见光谱(a—BX-1; b—BX-2; c—BX-3)

    Figure 5. 

    表 1  绿碧玺样品的化学成分

    Table 1.  Components in green tourmaline

    成分 绿碧玺样品中各成分的含量(%)
    样品BX-201 样品BX-202 样品BX-203 样品BX-204 平均值
    SiO2 37.15 38.20 37.43 37.30 37.52
    TiO2 0.45 0.66 0.43 0.40 0.46
    Al2O3 36.44 35.98 36.23 36.39 36.26
    B2O3 8.46 8.58 8.39 8.25 8.42
    Cr2O3 0.06 0.16 0.05 0.07 0.08
    MgO 9.73 9.55 9.70 9.63 9.65
    CaO 0.76 0.74 0.68 0.72 0.73
    FeO 0.06 0.12 0.10 0.05 0.08
    Na2O 2.07 2.24 2.03 2.08 2.11
    MnO 0.00 0.00 0.00 0.00 0.00
    K2O 0.09 0.23 0.13 0.11 0.14
    总和 95.27 96.22 95.17 95.00 95.42
    下载: 导出CSV
  • [1]

    王长秋, 张丽葵. 珠宝玉石学[M]. 北京: 地质出版社, 2017: 407-413.

    Wang C Q, Zhang L K. Gemmology[M]. Beijing: Geological Publishing House, 2017: 407-413.

    [2]

    李胜荣. 结晶学与矿物学[M]. 北京: 地质出版社, 2018: 141-142.

    Li S R. Crystallgraphy and mineralogy[M]. Beijing: Geological Publishing House, 2018: 141-142.

    [3]

    林森, 孙仕勇, 申珂璇, 等. 电气石的环境功能属性及其复合材料应用研究[J]. 材料导报, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017

    Lin S, Sun S Y, Shen K X, et al. Environmental functionalities of tourmaline and applications of its functional composites[J]. Materials Reports, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017

    [4]

    孙健鑫, 廖建彬, 戴乐阳. 高能球磨电气石红外辐射特性[J]. 造船技术, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005

    Sun J X, Liao J B, Dai L Y. Infrared radiation characteristics of high energy ball milling tourmaline[J]. Marine Technology, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005

    [5]

    陈杰, 崔弘妍, 张启忠. 电气石改性研究[J]. 广州化工, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015

    Chen J, Cui H Y, Zhang Q Z. Study on modification of tourmaline[J]. Guangzhou Chemical Industry, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015

    [6]

    Liang Y F, Tang X J, Zhu Q, et al. A review: Application of tourmaline in environmental fields[J]. Chemosphere, 2021, 281: 130780. doi: 10.1016/j.chemosphere.2021.130780

    [7]

    戴苏兰, 曲蔚, 夏玉梅, 等. 碧玺充填处理鉴定与充填程度分级研究[J]. 矿物岩石, 2017, 37(3): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201703002.htm

    Dai S L, Qu W, Xia Y M, et al. Research on the identification of filled tourmaline and its filling grade[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201703002.htm

    [8]

    李长城, 李可. 内蒙古突泉县电气石矿矿体特征及成因分析[J]. 现代矿业, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017

    Li C C, Li K. Characteristics and genesis of tourmaline ore body in Tuquan County, Inner Mongolia[J]. Modern Mining, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017

    [9]

    李真真, 秦克章, 裴斌, 等. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14

    Li Z Z, Qin K Z, Pei B, et al. Mineralogical features of tourmaline in Baiyinchagan Sn-Ag-Pb-Zn deposit, southern great Xing'an Range, and its implications for magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14

    [10]

    郭佳, 严海波, 凌明星, 等. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报, 2020, 36(1): 171-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001016.htm

    Guo J, Yan H B, Ling M X, et al. Chemical composition of tourmaline in the biotite granite, the Dachang district: Insights into magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(1): 171-183. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001016.htm

    [11]

    张文弢. 新疆阿尔泰碧玺(电气石)成矿区域地质条件综述[J]. 西部资源, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036

    Zhang W T. A summary of regional geological conditions for tourmaline mineralization in Altay, Xinjiang[J]. Western Resources, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036

    [12]

    Patel S, Upadhyay D, Mishra B, et al. Multiple episodes of hydrothermal alteration and uranium mineralization in the Singhbhum Shear Zone, eastern India: Constraints from chemical and boron isotope composition of tourmaline[J]. Lithos, 2021, 388-389: 106084. doi: 10.1016/j.lithos.2021.106084

    [13]

    Liu T, Jiang S Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J]. American Mineralogist, 2021, 106(6): 994-1008. doi: 10.2138/am-2021-7473

    [14]

    Vereshchagin O, Wunder B, Britvin S, et al. Synthesis and crystal structure of Pb-dominant tourmaline[J]. American Mineralogist, 2020, 105(10): 1589-1592.

    [15]

    廖秦镜, 黄伟志, 张倩, 等. 莫桑比克棕黄色碧玺的宝石学及光谱学表征[J]. 光谱学与光谱分析, 2019, 39(12): 3844-3848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201912037.htm

    Liao Q J, Huang W Z, Zhang Q, et al. Gemological and spectral characterization of brownish yellow tourmaline from Mozambique[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3844-3848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201912037.htm

    [16]

    仲佩佩, 沈锡田. 赞比亚墨绿色电气石的颜色成因初探[J]. 宝石和宝石学杂志, 2017, 19(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201706002.htm

    Zhong P P, Shen X T. Colour origin of dark green tourmaline from Zambia[J]. Journal Gems and Gemmology, 2017, 19(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB201706002.htm

    [17]

    Martin K, Bernd W, Iris W, et al. Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline[J]. American Mineralogist, 2021, 106(6): 872-882. doi: 10.2138/am-2021-7758

    [18]

    Spivak A V, Borovikova E Y, Setkova T V. Raman spec-troscopy and high pressure study of synthetic Ga, Ge-rich tourmaline[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 1-12.

    [19]

    Physics R. Color change of tourmaline by heat treatment and electron beam irradiation: UV-visible, EPR, and mid-IR spectroscopic analyses[J]. Journal of Technology & Science, 2016, 68(1): 83-92.

    [20]

    孙麟, 杨明星, 吴改. 近期市场出现的铬碧玺宝石学性质及谱学特征[J]. 宝石和宝石学杂志, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005

    Sun L, Yang M X, Wu G. Gemmological and spectroscopic characteristics of chrome tourmaline appeared on the market recently[J]. Journal Gems and Gemmology, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005

    [21]

    Liu Y, Shigley J E, Halvorsen A, 等. 坦桑尼亚Umba谷电气石的变色效应[J]. 宝石和宝石学杂志, 1999, 1(3): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199903013.htm

    Liu Y, Shigley J E, Halvorsen A, et al. Usambara effect of tourmaline from Umba Valley, Tanzania[J]. Journal Gems and Gemmology, 1999, 1(3): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB199903013.htm

    [22]

    刘俊涛, 贾秀阁, 刘灵钰. 新疆阿勒泰地区碧玺宝石学特征[J]. 现代矿业, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017

    Liu J T, Jia X G, Liu L Y. Gemological characteristics of the tourmaline in Altay area, Xinjiang[J]. Modern Mining, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017

    [23]

    田亮光, 黄文慧, 程佑法, 等. 高折射率电气石的鉴定[J]. 宝石和宝石学杂志, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003

    Tian L G, Huang W H, Cheng Y F, et al. Identification of a tourmaline with high refractive index[J]. Journal Gems and Gemmology, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003

    [24]

    黄文清, 金绪广, 左锐, 等. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征[J]. 岩矿测试, 2019, 38(4): 403-410. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201807230087

    Huang W Q, Jin X G, Zuo R, et al. Identification characteristics of natural and synthetic amethyst by infrared and polarized Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(4): 403-410. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201807230087

    [25]

    宁珮莹, 张天阳, 马泓, 等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640-648. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201903050033

    Ning P Y, Zhang T Y, Ma H, et al. Characterization of hydrous mineral inclusions in ruby and sapphire by infrared spectroscopy and microscopic confocal laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201903050033

    [26]

    Qiu K F, Yu H C, Hetherington C, et al. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes[J]. American Mineralogist, 2021, 106(7): 1033-1044. doi: 10.2138/am-2021-7495

    [27]

    Bačík P, Fridrichová J. Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals[J]. American Mineralogist, 2021, 106(6): 851-861. doi: 10.2138/am-2021-7804

    [28]

    Hawhorrne F C, Henry D J. Classification of the minerals of the tourmaline group[J]. European Journal of Mineralogy, 1999, 11(2): 201-215. doi: 10.1127/ejm/11/2/0201

    [29]

    杨莉, 祖恩东. 红色碧玺的色度学研究[J]. 中国锰业, 2018, 36(1): 177-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201801046.htm

    Yang L, Zu E D. Colorimetry research on red tourmaline[J]. China's Manganese Industry, 2018, 36(1): 177-179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201801046.htm

    [30]

    杨育玲, 郭颖, 谭咏婷, 等. 不同标准光源对碧玺红色的影响[J]. 矿物学报, 2016, 36(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602009.htm

    Yang Y L, Guo Y, Tan Y T, et al. The influence of different standard illuminants on tourmaline color red[J]. Acta Mineralogica Sinica, 2016, 36(2): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201602009.htm

    [31]

    宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202003160036

    Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow-green alunite jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202003160036

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1596
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2020-09-28
修回日期:  2021-06-24
录用日期:  2021-10-22
刊出日期:  2022-03-28

目录