中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨

张元, 王文东, 卢兵, 赵文志, 杨园, 吕胜男. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057
引用本文: 张元, 王文东, 卢兵, 赵文志, 杨园, 吕胜男. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057
ZHANG Yuan, WANG Wen-dong, LU Bing, ZHAO Wen-zhi, YANG Yuan, LV Sheng-nan. Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057
Citation: ZHANG Yuan, WANG Wen-dong, LU Bing, ZHAO Wen-zhi, YANG Yuan, LV Sheng-nan. Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057

碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨

  • 基金项目:
    中国地质调查局地质调查项目“松嫩盆地西缘及大兴安岭盆山结合关键带区域地质调查”(DD20208004)
详细信息
    作者简介: 张元, 工程师, 主要从事地球化学样品测试研究工作。E-mail: zhyuanlexus@163.com
  • 中图分类号: O657.63

Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation

  • 多目标地球化学填图是多目标区域地球化学调查中重要的区域性基础性工作之一,为了更好地反映出地球化学背景变化,要求分析方法具有更高的准确度、精密度以及更低的检出限。地球化学调查样品中的硼锗溴钼锡碘钨主要采用单独或分组熔矿的方法进行制备和测定,操作流程长且涉及6种测定方法。本文基于前人研究,对以上7种元素的分析方法进行系统总结,采用过氧化钠-氢氧化钠碱熔,分取溶液加入柠檬酸,利用阳离子交换树脂,静态交换2~3h,除去溶液中大量的阳离子减少基体干扰,利用电感耦合等离子体质谱法(ICP-MS)测定硼锗溴钼锡碘钨含量。结果表明:7种元素的检出限分别为0.66、0.096、0.78、0.11、0.15、0.29、0.27μg/g,相对标准偏差(RSD,n=11)在2.1%~7.5%之间,均小于10%。该方法操作简便、快速,应用成本低,并且整合了相关6种分析配套方法,应用于测定厚覆盖区地球化学调查样品,精密度和准确度均满足《多目标区域地球化学调查规范(1:250000)》(DZ/T 0258-2014)要求。

  • 加载中
  • 图 1  不同的(a)树脂用量和(b)交换时间与计数率关系

    Figure 1. 

    表 1  不同模式Mo和W的测定结果

    Table 1.  Analytical results of Mo and W determined with different modes

    标准物质编号 元素 标准值(μg/g) 碰撞模式测定值(μg/g) 普通模式测定值(μg/g)
    GBW07404 Mo 2.6±0.3 2.58 2.74
    W 6.2±0.5 6.06 6.32
    GBW07424 Mo 0.52±0.04 0.51 0.58
    W 1.66±0.10 1.69 1.75
    GBW07364 Mo 1.7±0.1 1.65 1.58
    W 0.97±0.11 0.95 1.08
    GBW07366 Mo 1.56±0.20 1.63 1.66
    W 15.5±0.8 15.2 16.7
    下载: 导出CSV

    表 2  标准物质中各元素测定结果

    Table 2.  Analytical results of each element in standard samples

    标准物质编号 元素 标准值(μg/g) 测定平均值(μg/g) ΔlgC RSD (%)
    GBW07978 B 39±3 35.9 -0.040 3.9
    Ge 1.39±0.06 1.47 0.024 2.1
    Br 8.5±0.5 7.99 -0.027 4.3
    Mo 0.68±0.03 0.64 -0.026 7.5
    Sn 3.4±0.2 3.28 -0.016 3.2
    I 3.49±0.15 3.61 0.015 2.3
    W 2.1±0.3 1.95 -0.032 4.6
    GBW07980 B 85±4 80.8 -0.022 4.2
    Ge 2.3±0.3 2.57 0.048 2.8
    Br 3.3±0.3 3.68 0.047 5.9
    Mo 12.2±0.6 13.5 0.044 6.3
    Sn 411±36 398.2 -0.014 4.1
    I 3.42±0.17 3.35 -0.009 3.1
    W 164±9 179.0 0.038 4.4
    GBW07309 B 54±6 58.4 0.034 3.2
    Ge 1.3±0.2 1.37 0.023 2.2
    Br 1.2±0.3 1.28 0.028 3.9
    Mo 0.64±0.11 0.68 0.026 5.8
    Sn 2.6±0.4 2.71 0.018 2.6
    I 0.63±0.09 0.57 -0.043 4.1
    W 1.8±0.2 1.69 -0.027 6.3
    GBW07384 B 10.4±1.0 9.61 -0.034 2.7
    Ge 1.79±0.10 1.71 -0.020 5.4
    Br 3.7±0.5 3.82 0.014 6.3
    Mo 2.59±0.15 2.88 0.046 3.9
    Sn 5.19±0.41 4.87 -0.028 3.2
    I 2.95±0.36 3.14 0.027 4.2
    W 4.73±0.27 4.87 0.013 3.5
    下载: 导出CSV

    表 3  加标回收实验结果

    Table 3.  Recovery tests of the method

    样品编号 元素 测定值(μg/g) 加标量(μg/g) 加标后测定值(μg/g) 加标回收率(%)
    S1 B 29.3 30 58.2 96.3
    Ge 1.52 2 3.42 95.0
    Br 3.31 4 7.44 103.3
    Mo 0.77 1 1.68 91.0
    Sn 4.33 4 7.94 90.3
    I 0.96 1 1.89 93.0
    W 1.98 2 4.12 107.0
    S2 B 27.2 30 56.6 98.0
    Ge 1.44 2 3.63 109.5
    Br 5.24 5 9.77 90.6
    Mo 0.71 1 1.65 94.0
    Sn 12.3 10 21.6 93.0
    I 1.64 2 3.66 101.0
    W 2.08 2 3.93 92.5
    S3 B 9.78 10 18.9 91.2
    Ge 1.47 2 3.32 92.5
    Br 5.09 5 9.53 88.8
    Mo 0.93 1 2.09 116.0
    Sn 2.89 4 6.56 91.8
    I 3.32 4 7.76 111.0
    W 1.58 2 3.97 119.5
    S4 B 9.55 10 21.1 115.5
    Ge 1.43 2 3.52 104.5
    Br 4.84 5 10.7 117.2
    Mo 0.93 1 1.92 99.0
    Sn 3.65 4 8.21 114.0
    I 2.45 2 4.73 114.0
    W 1.43 2 3.74 115.5
    S5 B 15.4 20 33.1 88.5
    Ge 1.43 2 3.28 92.5
    Br 4.89 5 9.76 97.4
    Mo 0.83 1 1.77 94.0
    Sn 3.67 4 7.98 107.8
    I 3.21 4 7.69 112.0
    W 1.36 2 3.7 117.0
    下载: 导出CSV

    表 4  本文方法与文献相同和不同方法的对比

    Table 4.  Comparison of analytical results of elements determined with the same method and different methods in the literatures

    分析元素 前处理方法 分析方法 检出限(μg/g) RSD (%)
    B Ge Br Mo Sn I W
    7种元素(本文方法) 碱熔 ICP-MS 0.66 0.096 0.78 0.11 0.15 0.29 0.27 2.1~7.5
    B、Ge、Mo、Sn、I、W[14] 碱熔 ICP-MS 0.57 0.092 - 0.13 0.11 0.22 0.3 0.99~5.9
    B、Ge、Sn、I[24] 碱熔 ICP-MS 0.92 0.09 - - 0.29 0.1 - 1.49~4.94
    B、Sn[2] - 原子发射光谱 3.6 - - - 0.63 - - 6.0~12.0
    Mo、W[31] 碱熔 极谱 - - - 0.141 - - 0.104 3.37~4.06
    Mo、W[32] 碱熔-离子交换 ICP-OES - - - 11 - - 15 1.1~2.3
    Ge[33] 酸溶 AFS - 0.037 - - - - - 4.0~7.1
    Br、I[8] 酸溶 ICP-MS - - 0.21 - - 0.15 - 1.2~5.0
    I[34] 酸溶 ICP-MS - - - - - 0.012 - 4.88~9.19
    Br[7] 粉末压片 XRF - - 0.61 - - - - 3.1~4.7
    下载: 导出CSV

    表 5  实际样品测定结果

    Table 5.  Analytical results of real samples

    样品编号 元素 测定值(μg/g) RSD (%) 样品编号 元素 测定值(μg/g) RSD (%)
    S1 B 30.23 3.08 S6 B 25.1 1.65
    Ge 1.25 2.24 Ge 1.43 2.09
    Br 3.77 1.32 Br 5.72 5.70
    Mo 0.91 5.98 Mo 1.04 2.98
    Sn 4.21 9.44 Sn 4.13 9.21
    I 1.22 3.56 I 3.28 3.65
    W 2.15 6.05 W 1.54 4.03
    S2 B 27.5 8.67 S7 B 22.4 4.67
    Ge 1.46 1.76 Ge 1.31 2.98
    Br 4.37 1.14 Br 5.03 5.88
    Mo 0.71 8.28 Mo 0.88 4.98
    Sn 10.2 1.93 Sn 4.02 7.83
    I 1.25 4.28 I 3.09 3.60
    W 2.65 7.95 W 1.83 8.21
    S3 B 8.97 2.67 S8 B 28.8 3.64
    Ge 1.28 9.76 Ge 1.60 1.82
    Br 6.04 8.92 Br 6.77 3.46
    Mo 0.84 6.33 Mo 0.76 3.03
    Sn 3.09 2.65 Sn 3.62 2.26
    I 3.61 1.23 I 3.33 2.60
    W 1.48 7.21 W 2.50 4.32
    S4 B 12.5 4.28 S9 B 21.1 7.35
    Ge 1.56 2.09 Ge 1.63 4.74
    Br 4.65 4.67 Br 6.13 9.22
    Mo 0.75 3.82 Mo 0.82 3.54
    Sn 3.72 6.01 Sn 3.45 2.09
    I 3.11 2.65 I 3.52 3.18
    W 1.32 2.78 W 3.04 6.03
    S5 B 13.8 6.02 S10 B 26.2 7.32
    Ge 1.16 3.02 Ge 1.47 2.44
    Br 4.21 4.88 Br 9.02 8.87
    Mo 0.79 4.50 Mo 0.97 6.52
    Sn 3.89 2.89 Sn 4.06 4.59
    I 3.40 1.04 I 3.48 3.85
    W 1.27 5.01 W 2.63 6.77
    下载: 导出CSV

    表 6  本法与标准方法的准确度和精密度对比

    Table 6.  Comparison of accuracy and precision between this method and the standard method

    元素 GBW07978 GBW07980
    标准值(μg/g) 本方法(n=11) 对比方法(n=11) 标准值(μg/g) 本方法(n=11) 对比方法(n=11)
    测定值(μg/g) ΔlgC RSD (%) 测定值(μg/g) ΔlgC RSD (%) 测定值(μg/g) ΔlgC RSD (%) 测定值(μg/g) ΔlgC RSD (%)
    B 39±3 35.9 -0.04 3.9 40.2 0.013 5.3 85±4 80.8 -0.022 4.2 92.4 0.036 3.8
    Ge 1.39±0.06 1.47 0.024 2.1 1.44 0.015 0.8 2.3±0.3 2.57 0.048 2.8 2.19 -0.021 1.3
    Br 8.5±0.5 7.99 -0.027 4.3 8.76 0.013 2.2 3.3±0.3 3.68 0.047 5.9 3.45 0.019 1.3
    Mo 0.68±0.03 0.64 -0.026 7.5 0.67 -0.006 3.6 12.2±0.6 13.5 0.044 6.3 11.3 -0.032 2.1
    Sn 3.4±0.2 3.28 -0.016 3.2 3.54 0.018 3.8 411±36 398.2 -0.014 4.1 426 0.016 4.4
    I 3.49±0.15 3.61 0.015 2.3 3.41 -0.01 1.7 3.42±0.17 3.35 -0.009 3.1 3.69 0.033 3.7
    W 2.1±0.3 1.95 -0.032 4.6 2.29 0.038 5.0 164±9 179 0.038 4.4 158.3 -0.015 5.2
    B 54±6 58.4 0.034 3.2 57.3 0.026 4.4 10.4±1.0 9.61 -0.034 2.7 9.67 -0.032 4.2
    Ge 1.3±0.2 1.37 0.023 2.2 1.28 -0.007 0.6 1.79±0.10 1.71 -0.02 5.4 1.85 0.014 2.4
    Br 1.2±0.3 1.28 0.028 3.9 1.32 0.041 6.8 3.7±0.5 3.82 0.014 6.3 3.46 -0.029 1.9
    Mo 0.64±0.11 0.68 0.026 5.8 0.61 -0.02 1.7 2.59±0.15 2.88 0.046 3.9 2.52 -0.012 0.9
    Sn 2.6±0.4 2.71 0.018 2.6 2.47 -0.022 3.2 5.19±0.41 4.87 -0.028 3.2 5.47 0.023 2.9
    I 0.63±0.09 0.57 -0.043 4.1 0.67 0.027 2.8 2.95±0.36 3.14 0.027 4.2 2.89 -0.009 1.6
    W 1.8±0.2 1.69 -0.027 6.3 1.96 0.037 6.8 4.73±0.27 4.87 0.013 3.5 4.56 -0.016 3.9
    注:B、Sn为DZ/T 0279—2016的第11部分,采用粉末进样,交流电弧-发射光谱法测定;Ge、Mo分别为DZ/T 0279—2016的第16、07部分,采用酸溶ICP-MS法测定;Br为DZ/T 0279—2016的第10部分,采用粉末压片XRF法测定;I为DZ/T 0279—2016的第24部分,采用半熔ICP-MS法测定;W为DZ/T 0279—2016的第30部分,采用碱熔ICP-MS法测定。
    下载: 导出CSV
  • [1]

    王安齐. 多目标地球化学调查样品中41种元素分析方案设计与应用[D]. 长春: 吉林大学, 2014.

    Wang A Q. Design and application of 41 element analysis schemes in multi-purpose geochemical survey samples[D]. Changchun: Jilin University, 2014.

    [2]

    龚仓, 帅林阳, 夏祥, 等. 交流电弧直读光谱法快速测定地质样品中银、锡、钼、硼和铅[J]. 理化检验(化学分册), 2020, 56(12): 1320-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202012017.htm

    Gong C, Shuai L Y, Xia X, et al. Rapid determination of silver, tin, molybdenum, boron and lead in geological samples by AC arc direct-reading spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1320-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202012017.htm

    [3]

    《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 517-519(第三分册), 536-538 (第二分册), 201-206 (第一分册).

    Editorial board of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011, 517-519 (Vol. Ⅲ), 536-538 (Vol. Ⅱ), 201-206 (Vol. Ⅰ).

    [4]

    张计东, 罗善霞, 焦圣兵, 等. 地球化学样品中微量锗的分析进展[J]. 冶金分析, 2014, 34(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201402007.htm

    Zhang J D, Luo S X, Jiao S B, et al. Analysis progress of trace germanium in geochemical samples[J]. Metallurgical Analysis, 2014, 34(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201402007.htm

    [5]

    侍金敏, 冯廷建, 付鹏飞, 等. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素[J]. 岩矿测试, 2019, 38(6): 631-639. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805300066

    Shi J M, Feng T J, Fu P F, et al. Simultaneous determination of rare elements in metal sulfide ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 631-639. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805300066

    [6]

    杨小斌, 张鑫, 文嘉明, 等. 混合酸溶样氢化物发生-原子荧光光谱法同时测定土壤中的硒和锗[J]. 化学分析计量, 2020, 29(5): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202005024.htm

    Yang X B, Zhang X, Wen J M, et al. Hydride generation of mixed acid-dissolved samples-simultaneous determination of selenium and germanium in soil by atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(5): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202005024.htm

    [7]

    赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104004.htm

    Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, chlorine, fluorine, phosphorus and sulfur in soil and water system sediments by powder compaction sample preparation-wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2021, 41(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104004.htm

    [8]

    王啸, 展向娟, 高航, 等. 逆王水微波消解-电感耦合等离子体质谱法测定地球化学样品中的碘和溴[J]. 化学分析计量, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013

    Wang X, Zhan X J, Gao H, et al. Microwave digestion of reverse aqua regia-determination of iodine and bromine in geochemical samples by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013

    [9]

    郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103008.htm

    Guo X R, Wang T T, Zhang H L, et al. Determination of niobium, tantalum, tungsten and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202103008.htm

    [10]

    冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm

    Feng X J. Application of inductively coupled plasma mass spectrometry in the analysis of domestic ores andminerals[J]. Metallurgical Analysis, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm

    [11]

    徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201802013.htm

    Xu J L, Xing X, Liu B, et al. Determination of trace molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201802013.htm

    [12]

    贾维斯K E, 格雷A L, 霍克R S(著). 尹明, 李冰(译). 电感耦合等离子体质谱手册[M]. 北京: 原子能出版社, 1997: 160-161.

    Jarvis K E, Gray A L, Houk R S(Editor). Yin M, Li B(Translators). Handbook of inductively coupled plasma-mass spectrometry[M]. Beijing: Geological Publishing House, 1997: 160-161.

    [13]

    刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006110089

    Liu W, Hu J D, Yang H X, et al. Application progress of inductively coupled plasma mass spectrometry in element speciation analysis[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006110089

    [14]

    金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm

    Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkali fusion-strong acid cation exchange resin separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm

    [15]

    杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    Yang H L, Xia H, Du T J, et al. Simultaneous determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 http://www.ykcs.ac.cn/article/id/12fc9719-0e4a-4249-be27-2e067212525c

    [16]

    宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007 http://www.ykcs.ac.cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0

    Song W J, Dai S F, Zhao L, et al. Determination of boron in coal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007 http://www.ykcs.ac.cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0

    [17]

    高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005 http://www.ykcs.ac.cn/article/id/ykcs_20090505

    Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate rock by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005 http://www.ykcs.ac.cn/article/id/ykcs_20090505

    [18]

    李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ. 不同介质及不同阴离子形态对测定信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001 http://www.ykcs.ac.cn/article/id/ykcs_20010351

    Li B, He H L, Shi S Y, et al. Simultaneous determination of trace amounts of iodine, bromine, selenium, and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅰ. The influence of different media and different anion forms on the determination signal[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001 http://www.ykcs.ac.cn/article/id/ykcs_20010351

    [19]

    黄光明, 窦银萍, 张静梅, 等. 电感耦合等离子体质谱法同时测定地下水中硼溴碘[J]. 岩矿测试, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007 http://www.ykcs.ac.cn/article/id/ykcs_20080110

    Huang G M, Dou Y P, Zhang J M, et al. Simultaneous determination of boron, bromine and iodine in groundwater by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007 http://www.ykcs.ac.cn/article/id/ykcs_20080110

    [20]

    Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICP-MS[J]. Analytical Chemistry, 1997, 69: 3754-3759. doi: 10.1021/ac970383s

    [21]

    Al-Ammar A S, Reitznerova E, Barnes R M. Feasibility of using beryllium as internal reference to reduce nonspectroscopic carbon species matrix effect in the inductively coupled plasma-mass spectrometry (ICPMS) determination of boron in biological samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54: 1813-1820. doi: 10.1016/S0584-8547(99)00124-X

    [22]

    程仕群, 朱文亮, 占文慧, 等. 电感耦合等离子体质谱法测定酱油中硼含量[J]. 食品与机械, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027

    Cheng S Q, Zhu W L, Zhan W H, et al. Determination of boron in soy sauce by inductively coupled plasma mass spectrometry[J]. Food & Machinery, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027

    [23]

    赵立凡, 唐宏兵, 欧阳运富, 等. 电感耦合等离子体质谱法测定那曲肝素钙中痕量硼[J]. 药物分析杂志, 2012, 32(10): 1842-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201210032.htm

    Zhao L F, Tang H B, Ouyang Y F, et al. Determination of trace boron in natreheparin calcium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Pharmaceutical Analysis, 2012, 32(10): 1842-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201210032.htm

    [24]

    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    [25]

    靳兰兰, 王秀季, 李会来, 等. 电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016, 36(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607001.htm

    Jin L L, Wang X J, Li H L, et al. Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J]. Metallurgical Analysis, 2016, 36(7): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201607001.htm

    [26]

    姚海云, 谭靖, 郭冬发, 等. 同位素稀释电感耦合等离子体质谱法测定高纯石英中痕量硼[J]. 质谱学报, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004

    Yao H Y, Tan J, Guo D F, et al. Determination of trace boron in high purity quartz by isotope dilution inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004

    [27]

    李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005: 146.

    Li B, Yang H X. Principle and application of inductively coupled plasma mass spectrometry[M]. Beijing: Geological Publishing House, 2005: 146.

    [28]

    郝原芳, 刘新, 宋丽华, 等. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J]. 岩矿测试, 2016, 35(4): 378-383. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.007

    Hao Y F, Liu X, Song L H, et al. Determination of trace impurity elements cadmium and tin in lead alloy by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 378-383. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.007

    [29]

    唐碧玉, 施意华, 杨仲平, 等. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J]. 岩矿测试, 2018, 37(4): 371-378. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711250186

    Tang B Y, Shi Y H, Yang Z P, et al. Determination of gallium, germanium and indium in coal by ashing acid dissolution-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201711250186

    [30]

    张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.007

    Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2017.01.007

    [31]

    贾玉萍, 王湘玲, 肖建平. 改进的极谱法测定化探样品中的钨钼[J]. 岩矿测试, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020 http://www.ykcs.ac.cn/article/id/ykcs_20090520

    Jia Y P, Wang X L, Xiao J P. Determination of tungsten and molybdenum in geochemical exploration samples by improved polarography[J]. Rock and Mineral Analysis, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020 http://www.ykcs.ac.cn/article/id/ykcs_20090520

    [32]

    姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by alkali fusion-ion exchange resin separation-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201809008.htm

    [33]

    何海洋, 曲少鹏, 黄钢, 等. 氢化物发生-原子荧光光谱法测定稀土矿石中的锗[J]. 稀土, 2019, 40(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201902015.htm

    He H Y, Qu S P, Huang G, et al. Determination of germanium in rare earth ores by hydride generation-atomic fluorescence spectrometry[J]. Rare Earths, 2019, 40(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201902015.htm

    [34]

    任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009

    Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soil sediments and rocks by closed acid dissolution-hydroxylamine hydrochloride reduction ICP-MS method[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009

  • 加载中

(1)

(6)

计量
  • 文章访问数:  1861
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2021-04-30
修回日期:  2021-07-30
录用日期:  2021-09-21
刊出日期:  2022-01-28

目录