-
摘要:
目前土壤有效硼分析方法主要有分光光度法和电感耦合等离子体发射光谱法(ICP-OES)。分光光度法流程长、操作繁琐,分析效率较低且易带来环境污染,对分析人员的经验要求高,测定结果不稳定。现有的ICP-OES法主要有浸提时间长、浸提温度高等缺点,对大批量样品分析效率低、浪费电能且操作时存在烫伤危险。本文使用聚乙烯具塞塑料瓶代替石英锥形瓶加回流装置,加入超纯热水作为浸提剂,在热水浴中浸提后使用ICP-OES法测定有效硼的含量。通过实验确定了最佳提取条件为:使用85℃超纯热水作为浸提剂,土液比1∶2,水浴浸提温度85℃,浸提时间6min,趁热离心后使用ICP-OES法测定有效硼含量。方法检出限为0.02mg/kg,相对标准偏差(RSD,n=12)小于3%,对土壤有效态成分分析标准物质NSA-1、NSA-2、NSA-3、NSA-6以及GBW07497(HTSB-5)、GBW07498(HTSB-6)进行实验,有效硼测定结果相对误差均小于4%,与标准值基本相符。
-
关键词:
- 有效硼 /
- 土壤 /
- 热水浴 /
- 电感耦合等离子体发射光谱法
Abstract:BACKGROUND At present, the main methods of soil available boron analysis are spectrophotometry and inductively coupled plasma-optical emission spectrometry (ICP-OES). The spectrophotometric method has a long process, cumbersome operation, low analysis efficiency and easy environmental pollution, high requirements on the experience of the analyst, and unstable measurement results. The existing ICP-OES method has shortcomings such as long extraction time and high extraction temperature. It has low efficiency in analyzing large quantities of samples, wastes electrical energy and has the risk of scalding during operation.
OBJECTIVES In order to improve the ICP-OES method with water bath extraction for determination of available boron in soil.
METHODS The polyethylene stoppered plastic bottle was used instead of a quartz conical flask and a reflux device. Ultrapure hot water was added as the extractant. After leaching in a hot water bath, the ICP-OES method was used to determine the available boron content.
RESULTS The optimal extraction conditions were determined through experiments: using 85℃ ultrapure hot water as the extractant, soil-liquid ratio of 1∶2, water bath extraction temperature of 85℃, extraction time of 6min, using ICP-OES method after hot centrifugation to determine the available boron content. The detection limit of the method was 0.02mg/kg, the precision (RSD, n=12) was less than 3%, and the standard substances NSA-1, NSA-2, NSA-3, NSA-6 and GBW07497 (HTSB-5) and GBW07498 (HTSB-6) were tested, and the relative errors of the measurement results were all less than 4%, which was consistent with the recommended value.
CONCLUSIONS This method can be used to determine available boron in soil with quick, efficient, safe and cost-effective potentials.
-
表 1 土壤有效态成分分析标准物质信息
Table 1. Standard material information for soil active component analysis
序号 标准物质编号 土壤性质 研制单位 测试项目 1 NSA-1 黑龙江
黑土中国地质科学院地球物理地球化学勘查研究所 土壤有效态 2 NSA-2 河北
潮土中国地质科学院地球物理地球化学勘查研究所 土壤有效态 3 NSA-3 陕西
黄绵土中国地质科学院地球物理地球化学勘查研究所 土壤有效态 4 NSA-6 广东韶关
红壤土中国地质科学院地球物理地球化学勘查研究所 土壤有效态 5 GBW07497
(HTSB-5)青海
栗钙土陕西地质研究所 土壤有效态 6 GBW07498
(HTSB-6)新疆
棕漠土陕西地质研究所 土壤有效态 表 2 浸提剂初始温度下有效硼测定结果
Table 2. Analytical results of available boron at extractant temperature
标准物质编号 有效硼标准值(mg/kg) 85℃测定平均值(mg/kg) 25℃测定平均值(mg/kg) NSA-1 0.5±0.07 0.51 0.36 NSA-2 0.93±0.18 0.96 0.74 NSA-6 0.16±0.04 0.16 0.13 表 3 不同水浴温度下有效硼测定结果
Table 3. Analytical results of available boron at different water bath temperature
标准物质编号 有效硼标准值(mg/kg) 75℃测定平均值(mg/kg) 85℃测定平均值(mg/kg) 95℃测定平均值(mg/kg) NSA-1 0.5±0.07 0.35 0.51 0.56 NSA-2 0.93±0.18 0.76 0.96 1.17 NSA-6 0.16±0.04 0.14 0.16 0.2 表 4 不同冷却时间下有效硼测定结果
Table 4. Analytical results of available boron at different colding time
标准物质编号 标准值(mg/kg) 0min测定平均值(mg/kg) 30min测定平均值(mg/kg) 60min测定平均值(mg/kg) NSA-1 0.5±0.07 0.51 0.24 0.28 NSA-2 0.93±0.18 0.96 0.55 0.61 NSA-6 0.16±0.04 0.16 0.08 0.08 表 5 方法精密度和准确度
Table 5. Precision and accuracy tests of the method
序号 标准物质编号 硼含量标准值(mg/kg) 硼含量测定平均值(mg/kg) RSD(%) 相对误差(%) 1 NSA-1 0.50±0.07 0.51 1.3 2.0 2 NSA-2 0.93±0.07 0.96 0.9 3.2 3 NSA-3 0.33±0.07 0.34 1.4 3.0 4 NSA-6 0.16±0.07 0.16 2.1 0.0 5 HTSB-5 1.54±0.12 1.52 0.6 -1.9 6 HTSB-6 4.41±0.22 4.56 1.5 2.7 表 6 方法对比
Table 6. Comparison between methods
方法参数 本文方法 煮沸浸提,ICP-OES光谱法 煮沸浸提, 比色法 方法精密度(RSD,%) <3.0
(n=12)<8.5
(n=3)<6.0
(n=6)方法准确度(%) <4 <10.3 <1.6 检出限(mg/kg) 0.02 0.0049 - 浸提时间(min) 6 12 15 -
[1] 穆童, 卢秀萍, 许自成, 等. 罗平烟区土壤有效硼、钼含量与烟叶硼、钼含量的关系分析[J]. 中国土壤与肥料, 2020(6): 44-50.
Mu T, Lu X P, Xu Z C, et al. The relationship between the contents of available boron and available molybdenum in soil with the contents of boron and molybdenum of tobacco leaf in Luoping[J]. Soiland Fertilizer Sciences in China, 2020(6): 44-50.
[2] 张世昌, 张加明, 冯发华, 等. 福建耕地土壤有效硼空间分布及影响因素[J]. 中国农技推广, 2021, 37(5): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNT202105022.htm
Zhang S C, Zhang J M, Feng F H, et al. Spatial distribution and influencing factors of soil available boron on cultivated land in Fujian[J]. China Agricultural Technology Extension, 2021, 37(5): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNT202105022.htm
[3] 王慧, 王峰. 土壤有效品的测定方法及注意事项[J]. 现代农业科技, 2008(16): 223-225.
Wang H, Wang F. Determination method of soil available boron and matters needing attention[J]. Modern Agricultural Science and Technology, 2008(16): 223-225.
[4] 张敏敏, 徐详玉, 张映杰, 等. 攀枝花烟区土壤有效硼含量极其硼肥适宜用量研究[J]. 江苏农业科学, 2019, 47(16): 293-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201916063.htm
Zhang M M, Xu X Y, Zhang Y J, et al. Study on the content of soil available boron and the appropriate amount of boron fertilizer in Panzhihua Tobacco area[J]. Jiangsu Agricultural Sciences, 2019, 47(16): 293-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201916063.htm
[5] 王佳佳, 王雪峰, 王勍勍, 等. 快速测定土壤有效硼的方法[J]. 湖南农业科学, 2021(7): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202107023.htm
Wang J J, Wang X F, Wang Q Q. A fast method for determination of available boron in soil[J]. Hunan Agricultural Science, 2021(7): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202107023.htm
[6] 杨红霞, 李冰, 郭琳. 直接煮沸和水浴浸提-电感耦合等离子体质谱法测定土壤中有效硼的对比研究[J]. 质谱学报, 2004, 25(4): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200404004.htm
Yang H X, Li B, Guo L. Determination of available boron in soil by direct seething and boiling water bath using inductively coupled plasma mass spectrometry[J]. Journal of Chinese Spectrometry Society, 2004, 25(4): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB200404004.htm
[7] 张鹏鹏, 胡梦颖, 陈进力, 等. 沸水浸提-电感耦合等离子体发射光谱仪测定土壤中的有效硼[J]. 光谱学与光谱分析, 2021, 41(6): 1926-1929. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202106050.htm
Zhang P P, Hu M Y, Chen J L, et al. Determination of available boron in soil by ICP-OES with boiling water extraction[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1926-1929. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202106050.htm
[8] 唐友云, 李海露, 孙玉桃, 等. 土壤有效硼测定研究进展[J]. 湖南农业科学, 2019(8): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201908032.htm
Tang Y Y, Li H L, Sun Y T, et al. Research progress on determination of available boron in soil[J]. Hunan Agricultural Sciences, 2019(8): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201908032.htm
[9] 周李倩, 沈云飞, 孙晨悦. 聚乙烯水浴浸提-比色法测定土壤有效硼[J]. 广州化工, 2020, 48(21): 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA202021034.htm
Zhou L Q, Shen Y F, Sun C Y. Determination of available boron in soil by water bath extraction colorimetry with polyethylene centrifuge tube[J]. Gaungzhou Chemical Industry, 2020, 48(21): 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA202021034.htm
[10] 刘宇, 魏双. 关于硼的测定综述[J]. 微量元素与健康研究, 2018, 35(2): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201802034.htm
Liu Y, Wei S. A summary of the determination of boron[J]. Studies of Trace Elements and Health, 2018, 35(2): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK201802034.htm
[11] 马玲, 刘军, 程丽娅. 沸水浸提-ICP法直接测定土壤有效硼[J]. 安徽地质, 2007, 17(3): 193-195. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200703008.htm
Ma L, Liu J, Cheng L Y. Boiling water extraction-ICP method directly used for measurement of effective boron in soil[J]. Geology of Anhui, 2007, 17(3): 193-195. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200703008.htm
[12] 唐碧玉, 唐荣盛, 阳兆鸿, 等. 超声加热浸提-电感耦合等离子体质谱法测定土壤有效硼[J]. 矿产与地质, 2019, 33(5): 910-914. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201905021.htm
Tang B Y, Tang R S, Yang Z H, et al. Analysis of effective boron in soil by ultrasonic heating-soaking-extraction combined with inductively coupled plasma mass spectrometry[J]. Mineral Resources and Geology, 2019, 33(5): 910-914. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201905021.htm
[13] 易田芳, 彭礼枚, 向勇. 水浴加热振荡提取-电感耦合等离子体发射光谱法测定土壤中有效硼[J]. 理化检验(化学分册), 2019, 55(8): 972-975. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201908025.htm
Yi T F, Peng L M, Xiang Y. Determination of effective boron in soil by inductively coupled plasma atomic emission spectrometry with heating water bath and vibration extraction[J]. Physical Testing and Chemical Analysis (Part B: Chamical Analysis), 2019, 55(8): 972-975. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201908025.htm
[14] 朱江, 邹德伟, 张美华, 等. ICP-AES法同时测定土壤中有效态的硫和硼[J]. 分析试验室, 2013, 32(9): 108-111. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201309028.htm
Zhu J, Zou D W, Zhang M H, et al. Simultaneous determination of available sulfur and boron in soil by ICP-AES[J]. Chinese Journal of Analysis Laboratory, 2013, 32(9): 108-111. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201309028.htm
[15] 宋时奎, 李文华, 严红, 等. 土壤性质与硼有效性的关系[J]. 东北农业大学学报, 2013, 35(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN200401023.htm
Song S K, Li W H, Yan H, et al. The cocreation between soil characters and boron availability[J]. Journal of Northeast Agricultural University, 2013, 35(1): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDN200401023.htm
[16] 宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. http://www.ykcs.ac.cn/cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0
Song W J, Dai S F, Zhao L, et al. Determination of boron in coal samples with microwave digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. http://www.ykcs.ac.cn/cn/article/id/578312dc-f30f-4dd0-94f7-ab986acd1de0
[17] 李雪莲, 梁惠贞. 青海某区域土壤中有效硼的测定[J]. 当代化工, 2017, 46(9): 1954-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201709062.htm
Li X L, Liang H Z. Determination of available boron in soil in a certain area of Qinghai[J]. Contemporary Chemical Industry, 2017, 46(9): 1954-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201709062.htm