Determination of Iodine in Geochemical Samples by ICP-MS with Sodium Carbonate-Zinc Oxide Semi-melting
-
摘要:
应用电感耦合等离子体质谱法(ICP-MS)测定地球化学调查样品中的碘,主要采用封闭溶样、混合酸溶、碱熔和半熔法进行样品处理,但由于碘在土壤和沉积物中的存在形态较为复杂,有高碘酸根、碘酸根、碘离子,且碘为卤族元素,第一电离能较高,在样品处理及上机测定环节中存在溶出不彻底、记忆效应强、稳定性较差等问题。本文采用碳酸钠-氧化锌半熔法处理样品,乙醇-沸水提取后用732型阳离子交换树脂将溶液中大量阳离子分离,采用内标法ICP-MS测定样品溶液中的碘。通过优化溶样程序提升了样品溶出效果,优化测定介质及内标元素消除记忆效应,提升了结果稳定性,建立了一套完善的ICP-MS测定碘的方法。使用土壤和沉积物国家一级标准物质进行方法验证,方法检出限为0.045μg/g,方法检测下限为0.15μg/g,方法精密度(RSD,n=12)≤5.93%,方法准确度△logC≤0.01,符合地球化学调查样品分析测试要求,可推广应用于地球化学调查中大批量土壤和沉积物样品的分析测试。
-
关键词:
- 电感耦合等离子体质谱法 /
- 地球化学样品 /
- 碳酸钠-氧化锌 /
- 阳离子交换树脂 /
- 碘
Abstract:BACKGROUND The determination of iodine in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS) is treated mainly by closed sample melting, mixed acid solution, alkali fusion and semi-melting method. However, due to the complex existent morphology of iodine in soil and sediment samples, including periodate, iodate and iodide ions, and the first ionization energy of iodine being high as a halogen group element, there are problems such as incomplete dissolution, strong memory effect and poor precision during sample processing and measurement.
OBJECTIVES To improve the determination of iodine in geochemical samples by ICP-MS.
METHODS The samples were treated by sodium carbonate-zinc oxide semi-melting method, extracted with boiling water-ethanol, and separated by 732 cation exchange resin. Following this, iodine in the solution was determined by ICP-MS using an internal standard method.
RESULTS The optimized detection limit of iodine was 0.045μg/g, the lower limit of detection was 0.15μg/g. The precision (RSD, n=12) and the accuracy (△logC) of the method were ≤5.93% and ≤0.01, respectively, which satisfied the analysis standards of geochemical survey sample.
CONCLUSIONS This method meets the requirements of sample analysis for geochemical investigation, and can be used for the analysis of iodine in large quantities of soil and sediment samples.
-
表 1 ICP-MS工作参数
Table 1. Working parameters for ICP-MS instrument
工作参数 数值 工作参数 数值 RF发射功率 1550W 扫描方式 跳峰 冷却气(Ar)流速 13L/min 通道数 3 载气(Ar)流速 0.85L/min 扫描次数 30 采样锥(Ni)孔径 1.0mm 驻留时间 20ms 截取锥(Ni)孔径 0.4mm 质量分辨率 0.6~0.75u 采样深度 100mm 氧化物产率 <2.5% 蠕动泵泵速 40r/min 双电荷产率 <2% 表 2 溶样程序的影响
Table 2. Effect of sample melting program
标准物质编号 碘含量标准值(μg/g) 程序1碘含量测量值(μg/g) 程序2碘含量测量值(μg/g) GBW07407 19±2 17.1 19.2 17.5 19.2 17.4 18.1 17.7 18.3 GBW07305a 2.4±0.4 2.17 2.45 2.27 2.39 2.06 2.38 2.13 2.41 GBW07358 0.47±0.08 0.41 0.48 0.41 0.49 0.39 0.46 0.43 0.45 GBW07451 8.6±0.7 8.13 8.88 8.15 8.83 8.09 8.72 8.09 8.69 表 3 还原剂实验(标准物质)
Table 3. Effect of reducing agent (reference materials)
标准物质编号 碘含量标准值(μg/g) 加入抗坏血酸碘含量测定值(μg/g) 未加入抗坏血酸碘含量测定值(μg/g) GBW07407 19±2 17.6 19.2 17.4 19.2 18.4 18.8 17.7 19.3 GBW07305a 2.4±0.4 2.27 2.45 2.13 2.39 2.21 2.38 2.06 2.41 GBW07358 0.47±0.08 0.40 0.46 0.41 0.49 0.41 0.47 0.43 0.46 GBW07451 8.6±0.7 8.07 8.88 8.17 8.83 7.94 8.72 7.82 8.69 表 4 方法精密度和准确度
Table 4. Precision and accuracy tests of the method (n=12)
样品序号 GBW07407 GBW07305a GBW07358 GBW07451 1 18.8 2.36 0.49 8.57 2 19.1 2.41 0.49 8.98 3 18.9 2.37 0.45 8.84 4 19.7 2.33 0.46 8.97 5 19.5 2.45 0.51 8.67 6 18.9 2.52 0.48 8.68 7 19.0 2.38 0.43 8.86 8 19.4 2.38 0.47 9.02 9 19.4 2.46 0.47 9.12 10 19.0 2.34 0.53 8.53 11 20.3 2.51 0.51 9.03 12 18.4 2.48 0.46 8.83 碘含量测定平均值(μg/g) 19.2 2.42 0.48 8.84 碘含量标准值(μg/g) 19 2.4 0.47 8.6 相对标准偏差RSD(%) 2.46 2.73 5.93 2.17 准确度(△logC) 0.005 0.003 0.01 0.01 表 5 实际样品测试结果比对
Table 5. Comparison of analytical results in actual samples
样品检测编号 样品类型 碘含量测定值(μg/g) 样品检测编号 样品类型 碘含量测定值(μg/g) 本文方法 分光光度法 封闭酸溶法 本文方法 分光光度法 封闭酸溶法 21T002-022 土壤 3.80 3.51 3.75 20C011-031 沉积物 2.67 2.25 2.66 21T002-035 土壤 1.13 1.25 1.13 20C011-086 沉积物 1.85 1.21 1.83 21T002-046 土壤 1.01 0.83 1.06 20C011-121 沉积物 1.63 1.97 1.66 21T002-052 土壤 6.43 6.38 6.51 20C011-154 沉积物 0.72 0.55 0.77 21T002-088 土壤 3.99 3.52 3.89 20C011-182 沉积物 0.51 0.73 0.52 21T002-102 土壤 0.74 0.57 0.78 20C011-243 沉积物 2.28 1.92 2.24 21T002-115 土壤 1.05 0.94 1.01 20C011-244 沉积物 6.19 6.28 6.21 21T002-154 土壤 12.4 12.68 12.3 20C011-280 沉积物 1.20 1.03 1.24 21T002-199 土壤 0.45 0.27 0.49 20C011-311 沉积物 8.33 8.25 8.24 21T002-348 土壤 2.02 2.28 2.01 20C011-315 沉积物 4.47 4.10 4.54 21T002-412 土壤 9.83 10.06 9.76 20C011-343 沉积物 3.55 3.14 3.61 21T002-424 土壤 12.7 13.15 12.6 20C011-380 沉积物 0.84 0.93 0.89 -
[1] 《岩石矿物分析》编委会. 岩石矿物分析[M]. 北京: 地质出版社, 1974: 148.
The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis[M]. Beijing: Geological Publishing House, 1974: 148.
[2] 程素敏, 王娟, 张岩, 等. 分光光度法测定土壤中碘的方法改进[J]. 无机分析化学, 2015, 5(4): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504012.htm
Cheng S M, Wang J, Zhang Y. Method improvement on the determination of iodine in soil by spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2015, 5(4): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504012.htm
[3] 刘德慧. 汞型活性碳纸富集——XRF法测定地质样品中的痕量碘[J]. 岩矿测试, 1990, 9(3): 175-178. http://www.ykcs.ac.cn/cn/article/id/ykcs_19900361
Liu D H. Preconcentration of trace iodine with a disk of[Hg2+·ACP] and determination by XRFA[J]. Rock and Mineral Analysis, 1990, 9(3): 175-178. http://www.ykcs.ac.cn/cn/article/id/ykcs_19900361
[4] 方容, 佘小林, 钟展环. 几种样品中溴与碘的离子色谱安培法测定[J]. 分析化学, 1993, 21(3): 364.
Fang R, She X L, Zhong Z H. The determination of bromine and iodine in several samples by ampere in the ion chromatography[J]. Chinese Journal of Analytical Chemistry, 1993, 21(3): 364.
[5] 李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷Ⅰ. 不同阴离子形态及不同介质对分析信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010351
Li B, He H L, Shi S Y, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry. Ⅰ. Singal response of different anion species in mediums[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010351
[6] 李冰, 史世云, 何红蓼, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷Ⅱ. 土壤及沉积物标准物质分析[J]. 岩矿测试, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471
Li B, Shi S Y, He H L, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅱ. Analysis of soil and sediment standard reference materials[J]. Rock and Mineral Analysis, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471
[7] 沈璐佳, 董亚红. 电感耦合等离子体质谱法同时测定矿泉水中痕量溴和碘[J]. 无机分析化学, 2012, 2(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201204010.htm
Shen L J, Dong Y H. Simultaneous determination of bromine and iodine in mineral water samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 2(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201204010.htm
[8] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200205003.htm
He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid degistion-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200205003.htm
[9] 阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055
Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055
[10] 万兵, 孙立欣, 贾雨薇, 等. 电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的碘[J]. 中国无机分析化学, 2017, 7(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704013.htm
Wan B, Sun L X, Jia Y W, et al. Determination of iodine in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. China Inorganic Analytical Chemistry, 2017, 7(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704013.htm
[11] 安华娟, 张明杰, 戴雪峰, 等. 电感耦合等离子体质谱法测定地质样品中的碘[J]. 理化检验(化学分册), 2010, 46(6): 692-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201006039.htm
An H J, Zhang M J, Dai X F, et al. Inductively coupled plasma-mass spectrometry for the determination of trace iodine in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2010, 46(6): 692-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201006039.htm
[12] 宋萍, 温宏利. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘[J]. 岩矿测试, 2016, 35(4): 384-388. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.008
Song P, Wen H L. Determination of bromine and iodine in rock and soil sediment by liquid nitrogen condensation absorption pyrolysis-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 384-388. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.008
[13] 高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090505
Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate ore by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090505
[14] 金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm
Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkaline fusion-strong acid cation exchange resin separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm
[15] 安国荣, 张启云, 陈辉, 等. ICP-MS测定溴、碘、砷和硒在多目标样品中的应用[J]. 光谱实验室, 2013, 30(6): 3306-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201306143.htm
An G R, Zhang Q Y, Chen H, et al. Determination of bromine, iodine, arsenic and selenium in multi-purpose by ICP-MS[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6): 3306-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201306143.htm
[16] 邰文亮, 王攀峰, 王斌, 等. 等离子体质谱法测定土壤样品中的溴和碘[J]. 世界核地质科学, 2020, 37(4): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202004009.htm
Tai W L, Wang P F, Wang B, et al. Simultaneous determination of bromide and iodine in soil by inductively coupled plasma-mass spectrometry[J]. World Nuclear Geoscience, 2020, 37(4): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202004009.htm
[17] 冯先进, 屈太原. 电感耦合等离子体质谱法(ICP-MS)最新应用进展[J]. 中国无机分析化学, 2011, 1(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201101013.htm
Feng X J, Qu T Y. The last application progress of inductively coupled plasma-mass spectrometry[J]. China Inorganic Analytical Chemistry, 2011, 1(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201101013.htm
[18] 任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009
Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soils, sediments and rocks by ICP-MS after pressurized acid digestion-hydroxylamine hydrochloride reduction[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201901170009
[19] 马景治, 胡伟康, 董学兵, 等. 树脂交换分离-电感耦合等离子体质谱法测定土壤中碘硼锗锡砷锑铌钽钨[J]. 分析仪器, 2021(3): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202103007.htm
Ma J Z, Hu W K, Dong X B, et al. Determination of iodine, boron, germanium, tin, arsenic, antimony, niobium, tantalum and tungsten in soil by ICP-MS with resin exchange separation[J]. Analutical Instru-mentation, 2021(3): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202103007.htm
[20] 王月华. 电感耦合等离子体质谱法测定土壤中的碘[J]. 新疆有色金属, 2020, 43(2): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS202002041.htm