中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊

董淑霞, 谢宁宁, 韩继庆, 熊俊彪, 吴少尉. 悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊[J]. 岩矿测试, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127
引用本文: 董淑霞, 谢宁宁, 韩继庆, 熊俊彪, 吴少尉. 悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊[J]. 岩矿测试, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127
DONG Shuxia, XIE Ningning, HAN Jiqing, XIONG Junbiao, WU Shaowei. Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling[J]. Rock and Mineral Analysis, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127
Citation: DONG Shuxia, XIE Ningning, HAN Jiqing, XIONG Junbiao, WU Shaowei. Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling[J]. Rock and Mineral Analysis, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127

悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊

  • 基金项目:
    国家自然科学基金项目(21565013);湖北省硒食品营养与健康工程中心开放项目(PT082016)
详细信息
    作者简介: 董淑霞,硕士研究生,从事食品药品元素组学分析研究。E-mail: 1163672504@qq.com
    通讯作者: 吴少尉,博士,教授,从事原子光谱/质谱联用分析技术研究。E-mail: 2361130534@qq.com
  • 中图分类号: O657.63

Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling

More Information
  • 油菜籽品质及重金属污染程度直接关系到人类健康,对油菜籽中As、Sb、Cd和Tl等有毒元素含量进行监测有助于对食用油生产原材料的提前监控。避开强酸消解前处理的繁琐,为了实现快速测定菜籽中As、Sb、Cd和Tl等易挥发有毒元素的准确含量,以及解决粮油食品脂肪含量高对前处理的挑战,本文采用一种悬浮-乳化协同制样技术,详细考察了影响悬浮-乳化的诸多条件,制得均匀稳定的悬浮-乳化试液(Slurry-Emulsion Solution,SES)体系。在进样效率高的电热蒸发器(ETV)中,优化程序升温参数和改进剂硝酸钯的用量,SES直接进样,采用电感耦合等离子体质谱(ICP-MS)测定了油菜籽中As、Sb、Cd和Tl。该方法对As、Sb、Cd和Tl的相对标准偏差(RSD)分别为10.1%、8.8%、8.9%、6.4% [c=0.5%(m/V),n=5]。在最佳实验条件下,As、Sb、Cd和Tl检出限(3σ)分别为40.0ng/L、20.0ng/L、50.0ng/L和10.0ng/L,对应原始固体样品的检出限(3σ)分别为8.0ng/g、4.0ng/g、10.0ng/g和2.0ng/g。菜籽样品中As、Sb、Cd和Tl含量的测定范围分别在50.4~90.5ng/g、28.0~59.9ng/g、51.3~69.1ng/g、91.3~216.6ng/g。本文建立的悬浮-乳化协同处理高油脂含量菜籽的分析方法简便快速、成本低,充分发挥ETV进样优势,助推了ETV-ICP-MS固体进样分析应用。

  • 加载中
  • 图 1  悬乳液微粒粒径分布[菜籽试样浓度0.5%(m/V)]

    Figure 1. 

    图 2  曲拉通X-100浓度对目标物信号强度的影响[菜籽0.5%(w/V)并添加10ng/mL As、Cd、Sb]

    Figure 2. 

    图 3  实验条件对目标物信号强度测定结果的影响

    Figure 3. 

    图 4  菜籽浓度对目标物信号强度的影响(样品YLS-3)

    Figure 4. 

    表 1  悬乳液进样-电热蒸发-电感耦合等离子体质谱工作条件

    Table 1.  Operation parameters of SES-ETV-ICP-MS

    ICP-MS等离子体工作参数 条件 ETV加热过程工作参数 条件
    射频功率 1250W 干燥 110℃,爬升10s,保持20s
    外部气体流量 15L/min 灰化 600℃,爬升15s,保持20s
    中间气体流量 0.9L/min 蒸发 2400℃,爬升0s,保持6s
    辅助载气流量 0.6L/min 冷却 50℃, 爬升0s,保持5s
    取样深度 7.0mm 清洁 2600℃,爬升0s,保持3s
    采样锥(镍锥)直径 1.0mm 载气流速 0.4L/min
    截取锥(镍锥)直径 0.4mm
    数据采集参数 条件 悬乳液准备参数 条件
    扫描模式 时间分辨分析 样品溶液体积 5.0mL
    积分模式 峰面积 酸度 3.0% (V/V) 硝酸
    停留时间 20ms 分散乳化剂曲拉通X-100浓度 1.0% (V/V)
    每个谱峰点数 1 改进剂硝酸钯浓度 300μg/mL
    每次读取的扫描次数 1
    分析元素 75As、111Cd、121Sb、205Tl
    采样量 10μL
    下载: 导出CSV

    表 2  样品测定分析结果(n=3)

    Table 2.  Analytical results of elements in rapeseeds (n=3)

    油菜籽样品编号 悬乳液ETV-ICP-MS外标法测定值(ng/g) 加酸消解DC-ICP-MS外标法测定值(ng/g)
    As Sb Cd Tl As Sb Cd Tl
    JS-1 61.2±5.6 31.3±2.7 51.3±4.5 91.3±6.1 68.7±4.0 33.9±2.0 50.8±3.0 89.7±6.0
    BD-2 70.9±6.4 52.9±4.6 69.1±5.8 161.7±11.2 74.6±5.2 54.9±3.2 67.0±3.9 159.8±7.9
    YLS-3 90.5±9.1 28.0±2.3 58.4±5.6 119.7±8.2 95.1±6.1 25.4±1.5 55.9±3.1 126.4±7.5
    YLS-4 50.4±5.1 59.9±5.3 60.2±5.3 216.6±13.6 55.7±3.3 56.9±3.6 54.7±2.9 188.9±10.1
    注:悬乳液为水溶液标准(含有3%硝酸、1%曲拉通X-100、300μg/mL硝酸钯溶液)校准。
    下载: 导出CSV
  • [1]

    Ghane E T, Poormohammadi A, Khazaei S, et al. Concentration of potentially toxic elements in vegetable oils and health risk assessment: A systematic review and meta-analysis[J]. Biological Trace Element Research, 2022, 200(1): 437-446. doi: 10.1007/s12011-021-02645-x

    [2]

    Shah N S, Soylak M. Advanced methodologies for trace elements in edible oil samples: A review[J]. Critical Reviews in Analytical Chemistry, 2021, 1895710: 1-20.

    [3]

    贺小敏, 王敏, 王小东, 等. 微波消解-石墨炉原子吸收光谱法测定菜籽及饼粕中铅和镉[J]. 光谱学与光谱分析, 2007, 27(11): 2353-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200711050.htm

    He X M, Wang M, Wang X D, et al. Determination of lead and cadmium in rapeseed and meal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2353-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200711050.htm

    [4]

    López-García I, Vicente-Martínez Y, Hernández-Córdoba M. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction[J]. Talanta, 2014, 124(13): 106-110.

    [5]

    张友峰, 吕和霖, 郑盼茜, 等. 油菜籽皮仁中重金属、多环芳烃和硫苷含量分布[J]. 中国油脂, 2021, 46(7): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYZZ202107015.htm

    Zhang Y F, Lyu H L, Zheng P Q, et al. Distribution of heavy metal polycyclic aromatic hydrocarbons and glucosinolates in rapeseed kernels[J]. China Oils and Fats, 2021, 46(7): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYZZ202107015.htm

    [6]

    刘全吉, 杨慧, 毛雪飞, 等. 测定油菜籽中4种形态砷的前处理方法研究[J]. 农产品质量与安全, 2015(5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

    Liu Q J, Yang H, Mao X F, et al. Study on the pretreatment method for the determination of four forms of arsenic in rapeseed[J]. Quality and Safety of Agro-Products, 2015(5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

    [7]

    刘玲娅, 刘信平, 廖红华, 等. 食用油菜籽中硒和铊的分布形态分析[J]. 药物分析杂志, 2017, 37(5): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201705019.htm

    Liu L Y, Liu X P, Liao H H, et al. Distribution and speciation analysis of selenium and thallium in edible rapeseed[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(5): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201705019.htm

    [8]

    武琳霞, 丁小霞, 李培武, 等. 我国油菜镉污染及菜籽油质量安全性评估[J]. 农产品质量与安全, 2016(1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

    Wu L X, Ding X X, Li P W, et al. Cadmium pollution of rapeseed and quality and safety evaluation of rapeseed oil in China[J]. Quality and Safety of Agro-Products, 2016(1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

    [9]

    Huang S, Jiang S. Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2001, 16(6): 664-668. doi: 10.1039/b101387o

    [10]

    Medek P, Pavlí ková J, Zbíral J, et al. Inductively coupled plasma mass spectrometric (ICP/MS) determination of thallium in soils and winter rapeseeds[J]. International Journal of Environmental Analytical Chemistry, 2001, 81(3): 207-219. doi: 10.1080/03067310108044343

    [11]

    Llorent-Martínez E J, Ortega-Barrales P M, Fernández-de Córdova L, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J]. Food Chemistry, 2011, 127(3): 1257-1262. doi: 10.1016/j.foodchem.2011.01.064

    [12]

    张飞鸽, 元艳, 周顺超, 等. 微波消解-电感耦合等离子体质谱法测定油菜籽中的六种重金属含量[J]. 资源环境与工程, 2017, 31(6): 811-814. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201706029.htm

    Zhang F G, Yuan Y, Zhou S C, et al. Determination of six heavy metals in rapeseed by microwave digestion-inductively coupled plasma mass spectrometry[J]. Resources, Environment and Engineering, 2017, 31(6): 811-814. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201706029.htm

    [13]

    乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素[J]. 岩矿测试, 2020, 39(1): 99-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907170107

    Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by solid direct injection electrothermal evaporation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907170107

    [14]

    García-Mesa J C, Montoro-Leal P, Rodríguez-Moreno R M A, et al. Direct solid sampling for speciation of Zn2+ and ZnO nanoparticles in cosmetics by graphite furnace atomic absorption spectrometry[J]. Talanta, 2021, 223(1): 121795.

    [15]

    Schreiter N, Wiche O, Aubel I, et al. Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling[J]. Journal of Geochemical Exploration, 2021, 220: 106674. doi: 10.1016/j.gexplo.2020.106674

    [16]

    林建奇. 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006180093

    Lin J Q. Determination of trace mercury in rocks by dual channel atomic fluorescence spectrometry and solid injection cold atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006180093

    [17]

    高捷, 盛成, 朱月琴, 等. 悬浮液进样-全反射X射线荧光光谱法测定食品中的多无机元素[J]. 光谱学与光谱分析, 2020, 40(3): 945-949. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003057.htm

    Gao J, Sheng C, Zhu Y Q, et al. Determination of polyinorganic elements in food by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 945-949. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003057.htm

    [18]

    王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm

    Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201804009.htm

    [19]

    Harrington J M, Haines L G, Essader A S, et al. Quan-titation of total vanadium in rodent plasma and urine by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. Analytical Letters, 2021, 54(17): 2777-2788. doi: 10.1080/00032719.2021.1890107

    [20]

    Liu T, Bolea-Fernandez E, Mangodt C, et al. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells[J]. Analytica Chimica Acta, 2021, 1177: 338797. doi: 10.1016/j.aca.2021.338797

    [21]

    王佳翰, 李正鹤, 杨峰. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F. Lithium metaborate alkali melting-inductively coupled plasma mass spectrometry for simultaneous determination of 48 elements in marine sediments[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    [22]

    Markovic S, Ursic K, Cemazar M, et al. High spatial resolution imaging of cisplatin and Texas Red cisplatin in tumour spheroids using laser ablation isotope dilution inductively coupled plasma mass spectrometry and confocal fluorescence microscopy[J]. Analytica Chimica Acta, 2021, 1162: 338424. doi: 10.1016/j.aca.2021.338424

    [23]

    Ansberque C, Chew D M, Drost K, et al. Apatite fission-track dating by LA-Q-ICP-MS imaging[J]. Chemical Geology, 2021, 560: 1-13.

    [24]

    Kovacs R, Schlosser S, Staub S P. Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(4): 476-483. doi: 10.1039/b819685k

    [25]

    Qiao L, Wu Z W, Li Y, et al. A novel calibration strategy for the analysis of airborne particulate matter by direct solid sampling ETV-ICP-MS[J]. Microchemical Journal, 2020, 159: 105474. doi: 10.1016/j.microc.2020.105474

    [26]

    Scheffler G L, Makonnen Y, Pozebon D, et al. Solid sampling analysis of a Mg alloy using electrothermal vaporization inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 2041-2045. doi: 10.1039/C7JA00203C

    [27]

    Au M, Karbach H, Bell A M, et al. Determination of metal uptake in single organisms, Corophium volutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laser ablation/inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35(2): 1-10.

    [28]

    Tseng Y J, Tsai Y D, Jiang S J. Electrothermal vapor-ization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples[J]. Analytical & Bioanalytical Chemistry, 2007, 387(8): 2849-2855.

    [29]

    Masson P, Dauthieu M, Trolard F, et al. Application of direct solid analysis of plant samples by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry: Determination of Cd and Si for environmental purposes[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(3): 224-230. doi: 10.1016/j.sab.2007.01.004

    [30]

    Liao H C, Jiang S J. EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(10): 1583-1588. doi: 10.1039/a905328j

    [31]

    Li P C, Jiang S J. Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determin-ation of Cr, Cu, Cd, Hg and Pb in rice flour[J]. Analytica Chimica Acta, 2003, 495(1-2): 143-150. doi: 10.1016/S0003-2670(03)00874-2

    [32]

    Borges D, Welz B, Curtius A J. Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standards[J]. Microchimica Acta, 2007, 159(1-2): 19-26. doi: 10.1007/s00604-006-0730-7

    [33]

    Zhang Y F, Jiang Z C, He M, et al. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J]. Environmental Pollution, 2007, 148(2): 459-467. doi: 10.1016/j.envpol.2006.12.004

    [34]

    Sun Y, Ko C J. Combining electrothermal vaporization inductively coupled plasma mass spectrometry with in situ TMAH thermochemolysis for the direct determination of trace impurities in a polymer-based photoresist[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(3): 311-316. doi: 10.1039/b512233c

    [35]

    Hsu W H, Jiang S J, Sahayam A C. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier[J]. Talanta, 2013, 117: 268-272. doi: 10.1016/j.talanta.2013.09.013

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1727
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2021-09-25
修回日期:  2022-01-22
录用日期:  2022-03-13
刊出日期:  2022-05-28

目录