中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素

李晓云, 王羽, 金婵, 张林娟, 王建强. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素[J]. 岩矿测试, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073
引用本文: 李晓云, 王羽, 金婵, 张林娟, 王建强. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素[J]. 岩矿测试, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073
LI Xiaoyun, WANG Yu, JIN Chan, ZHANG Linjuan, WANG Jianqiang. Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073
Citation: LI Xiaoyun, WANG Yu, JIN Chan, ZHANG Linjuan, WANG Jianqiang. Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374-383. doi: 10.15898/j.cnki.11-2131/td.202106090073

微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素

  • 基金项目:
    中国科学院战略性先导科技专项变革性洁净能源关键技术与示范(XDA21000000)
详细信息
    作者简介: 李晓云,硕士,工程师,从事核化学与环境化学分析研究。E-mail:xyli@sinap.ac.cn
    通讯作者: 张林娟,博士,研究员,从事核能材料的先进谱学应用、凝聚态物理研究。E-mail:zhanglinjuan@sinap.ac.cn
  • 中图分类号: O657.63

Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion

More Information
  • 微波消解结合电感耦合等离子体质谱(ICP-MS)是土壤样品中金属元素测定的常用方法,其前处理可以采用不同的消解体系,但是消解体系对分析结果的准确性影响较大。此外,应用ICP-MS测定某些元素时干扰的存在会影响结果的准确性。基于上述问题,本文优选三个酸体系微波消解溶样,采用高分辨电感耦合等离子体质谱(HR-ICP-MS)测定土壤样品中8种金属元素(Cr、Co、Ni、Cu、Zn、Pb、Cd和U)的含量,对比研究了由不同用量硝酸、盐酸、氢氟酸混合组成的三个酸消解体系对国家土壤标准物质的消解效果,确定了最优前处理方法。结果表明:经国家土壤标准物质验证,采用HR-ICP-MS检测,在不需要干扰校正的情况下,酸体系Ⅰ(6mL硝酸+3mL盐酸+3mL氢氟酸)和酸体系Ⅱ(2mL硝酸+6mL盐酸+1mL氢氟酸)的测定值与标准值相吻合,方法检出限为0.001~0.715μg/g,精密度(RSD,n=6)小于7.0%。从消解情况、准确度和精密度比较,酸体系Ⅰ稍优于酸体系Ⅱ;从酸用量比较,酸体系Ⅱ酸用量最少。两种酸体系的样品处理方法均具有较高的适用性和可靠性,都可用于土壤样品中8种金属元素含量的直接测定。

  • 加载中
  • 表 1  微波消解实验条件

    Table 1.  Experimental conditions for microwave digestion

    消解步骤 升温时间(min) 目标温度(℃) 保温时间(min)
    1 5 120 10
    2 10 160 20
    3 10 185 50
    下载: 导出CSV

    表 2  标准物质中金属元素的分析结果

    Table 2.  Analytical results of metal elements in certified reference materials

    金属元素 标准物质编号 标准值(μg/g) 酸体系Ⅰ 酸体系Ⅱ 酸体系Ⅲ
    测定值(μg/g) 相对误差(%) ΔlgC 测定值(μg/g) 相对误差(%) ΔlgC 测定值(μg/g) 相对误差(%) ΔlgC
    Cr GBW07385 80±5 83.3 4.1 0.02 77.5 -3.1 0.01 78.2 -2.3 0.01
    GBW07407 410±23 399 -2.7 0.01 431 5.1 0.02 414 1.0 0
    Co GBW07385 16.0±0.6 15.8 -1.3 0.01 16.0 0 0 14.9 -6.9 0.03
    GBW07407 97±6 102 5.2 0.02 94.6 -2.5 0.01 103 6.2 0.03
    Ni GBW07385 38±2 40.1 5.5 0.02 41.4 8.9 0.04 38.8 2.1 0.01
    GBW07407 276±15 296 7.2 0.03 281 1.8 0.01 293 6.2 0.03
    Cu GBW07385 35±2 36.4 4.0 0.02 37.5 7.1 0.03 33.7 -3.7 0.02
    GBW07407 97±6 104 7.2 0.03 107 10.0 0.04 103 6.2 0.03
    Zn GBW07385 96±4 93.7 -2.4 0.01 95.7 -0.3 0 103 7.3 0.03
    GBW07407 142±11 136 -4.2 0.02 142 0 0 156 9.9 0.04
    Pb GBW07385 32±3 33.0 3.1 0.01 31.7 -0.9 0 28.1 -12.0 0.06
    GBW07407 14±3 13.1 -6.4 0.03 13.0 -7.1 0.03 12.1 -14.0 0.06
    Cd GBW07385 0.28±0.02 0.279 -0.4 0 0.279 -0.4 0 0.267 -4.6 0.02
    GBW07407 0.08±0.02 0.076 -5.0 0.02 0.081 1.3 0.01 0.065 -19.0 0.09
    U GBW07385 2.6±0.1 2.55 -1.9 0 2.70 3.8 0.02 2.55 -1.9 0.01
    GBW07407 2.2±0.4 2.28 3.6 0.02 2.05 -6.8 0.02 2.08 -5.5 0.02
    下载: 导出CSV

    表 3  三种消解体系的方法检出限和定量限

    Table 3.  Limits of detection and limits of quantification for the three acid digestion procedures

    金属元素 酸体系Ⅰ 酸体系Ⅱ 酸体系Ⅲ
    检出限(μg/g) 定量限(μg/g) 检出限(μg/g) 定量限(μg/g) 检出限(μg/g) 定量限(μg/g)
    Cr 0.715 2.38 0.309 1.03 0.887 2.96
    Co 0.002 0.007 0.004 0.012 0.005 0.016
    Ni 0.185 0.615 0.032 0.106 0.160 0.534
    Cu 0.019 0.063 0.044 0.147 0.039 0.129
    Zn 0.125 0.418 0.434 1.45 1.49 4.97
    Pb 0.007 0.023 0.018 0.060 0.056 0.185
    Cd 0.010 0.033 0.009 0.030 0.024 0.081
    U 0.009 0.03 0.001 0.002 0.003 0.011
    下载: 导出CSV

    表 4  三种酸消解体系比较

    Table 4.  Comparison of the three acid digestion procedures

    比较项目 酸体系Ⅰ 酸体系Ⅱ 酸体系Ⅲ
    称样量 0.25g 0.20g 0.10g
    采用试剂 6mL硝酸+ 3mL盐酸+ 3mL氢氟酸 2mL硝酸+ 6mL盐酸+ 1mL氢氟酸 5mL硝酸+2mL盐酸+ 2mL氢氟酸,8~9mL硝酸、氢氟酸,5~10mL 50%硫酸
    酸用量 12mL 9mL >20mL
    消耗时间 3~4h 3~4h >15h
    消解情况 余极少量残渣 余少量残渣 完全消解
    下载: 导出CSV

    表 5  两种消解体系的方法准确度

    Table 5.  Accuracy tests of the two acid digestion procedures

    标准物质编号 金属元素 标准值(μg/g) 酸体系Ⅰ 酸体系Ⅱ
    测定值(μg/g) 相对误差(%) ΔlgC 测定值(μg/g) 相对误差(%) ΔlgC
    GBW07541 Cr 47±2 44.6 -5.1 0.02 51.2 8.9 0.04
    Co 8.9±0.3 8.74 -1.8 0.01 9.54 7.2 0.03
    Ni 22.2±0.7 22.8 2.7 0.01 24.2 9.0 0.04
    Cu 16.9±0.6 16.6 -1.8 0.01 17.2 1.8 0.01
    Zn 53±3 50.1 -5.5 0.02 56.0 5.7 0.02
    Pb 20.0±0.8 20.0 0 0 18.7 -6.5 0.03
    Cd 0.108±0.005 0.099 -8.3 0.04 0.114 5.6 0.02
    U 12.5±0.5 12.3 -1.6 0.01 12.0 -4.0 0.02
    GBW07564 Cr 166±4 151 -9.0 0.04 164 -1.2 0.01
    Co 30.3±1.3 30.9 2.0 0.01 27.5 -9.2 0.04
    Ni 60±2 61.1 1.8 0.01 56.6 -5.7 0.03
    Cu 76±2 81.3 7.0 0.03 72.7 -4.3 0.02
    Zn 181±3 182 0.6 0 196 8.3 0.03
    Pb 71±3 73.1 3.0 0.01 66.6 -6.2 0.03
    Cd 0.69±0.05 0.683 -1.0 0 0.740 7.2 0.03
    U 9.0±0.5 9.58 6.4 0.03 9.58 6.4 0.03
    GBW07568 Cr 34±3 34.3 0.9 0 30.8 -9.4 0.04
    Co 7.0±0.2 6.46 -7.7 0.03 7.13 3.7 0.01
    Ni 10.7±0.6 10.3 -3.7 0.02 11.0 2.8 0.01
    Cu 15.1±0.5 15.2 0.7 0 15.4 2.0 0.01
    Zn 65±3 59.7 -8.2 0.04 63.3 -2.6 0.01
    Pb 39.5±1.2 40.3 2.0 0.01 38.7 -2.0 0.01
    Cd 0.098±0.005 0.107 9.2 0.04 0.104 6.1 0.03
    U 5.3±0.3 4.93 -7.0 0.03 4.92 -7.2 0.03
    GBW07573 Cr 31±3 31.9 2.9 0.01 29.6 -4.5 0.02
    Co 1.79±0.09 1.69 -5.6 0.02 1.66 -7.3 0.03
    Ni 14.9±0.9 15.8 6.0 0.03 15.4 3.4 0.01
    Cu 9.5±0.8 9.06 -4.6 0.02 8.90 -6.3 0.03
    Zn (19) 17.6 -7.2 0.03 18.2 -6.7 0.02
    Pb 11.3±0.7 12.0 6.2 0.03 11.1 -1.8 0.01
    Cd (0.03) 0.019 -35.0 0.19 0.021 -31.0 0.16
    U 1.45±0.08 1.58 9.0 0.04 1.40 -3.4 0.02
    GSB07-3272-2015 Cr 63.6±5.6 62.5 -1.7 0.01 67.2 5.7 0.02
    Co 11.2±1.6 10.7 -4.5 0.02 12.2 8.9 0.04
    Ni 29.7±3.4 28.5 -4.0 0.02 31.4 5.7 0.02
    Cu 71.8±4.1 70.3 -2.1 0.01 78.3 9.1 0.04
    Zn 523±40 510 -2.5 0.01 504 -3.6 0.02
    Pb 971±99 1002 3.2 0.01 896 -7.7 0.03
    Cd 3.09±0.48 2.84 -8.1 0.04 3.35 8.4 0.04
    U - - - - - - -
    注:带括号数值为参考值;“-”表示标准样品中没有给出该元素的标准值。
    下载: 导出CSV

    表 6  两种消解体系的方法精密度(n=6)

    Table 6.  Precision tests of the two acid digestion procedures (n=6)

    金属元素 GBW07567标准值(μg/g) 酸体系Ⅰ 酸体系Ⅱ
    6次测定值(μg/g) 平均值(μg/g) RSD(%) 6次测定值(μg/g) 平均值(μg/g) RSD(%)
    Cr 118±3 111 109 111 109 111 109 110 1.2 113 118 119 121 119 117 118 2.2
    Co 17.6±0.7 17.2 17.1 17.1 17.3 17.4 17.2 17.2 0.7 17.7 18.4 18.6 19.2 19.1 18.1 18.5 3.2
    Ni 60±2 59.9 57.4 59.1 60.4 61.0 60.4 59.7 2.2 60.1 62.1 61.9 61.9 61.8 58.3 61.0 2.5
    Cu 41±2 40.7 40.2 41.7 41.6 42.6 41.7 41.4 2.1 43.5 48.9 45.0 45.9 44.5 42.4 45.0 5.0
    Zn 102±2 103 100 102 100 100 101 101 1.2 97.3 100 103 105 105 99.3 102 3.1
    Pb 36.7±1.0 39.0 36.6 37.2 38.2 37.0 38.4 37.7 2.5 36.2 38.0 38.4 40.1 39.8 39.1 38.6 3.6
    Cd 0.30±0.03 0.277 0.313 0.315 0.317 0.292 0.334 0.308 6.5 0.303 0.313 0.366 0.334 0.319 0.320 0.326 6.8
    U 4.0±0.3 3.92 3.46 3.76 3.65 3.60 3.62 3.67 4.3 3.57 3.62 3.95 3.91 3.86 3.68 3.77 4.3
    下载: 导出CSV

    表 7  实际土壤样品中金属元素的分析结果

    Table 7.  Analytical results of metal elements in soil samples

    金属元素 样品编号 酸体系Ⅰ 酸体系Ⅱ 相对偏差(%)
    平均值(μg/g) RSD (%) 平均值(μg/g) RSD (%)
    Cr 样品1 55.6 3.2 56.9 4.7 1.2
    样品2 58.4 0.9 56.4 3.4 1.7
    样品3 52.2 2.1 49.0 0.6 3.2
    Co 样品1 11.5 2.6 13.2 3.0 6.9
    样品2 14.2 2.1 13.1 3.1 4.0
    样品3 10.2 1.0 10.8 0.9 2.9
    Ni 样品1 29.6 2.0 27.9 2.9 3.0
    样品2 32.3 8.4 27.9 3.6 7.3
    样品3 25.8 1.2 23.7 2.1 4.2
    Cu 样品1 26.1 1.5 29.7 2.0 6.5
    样品2 30.8 1.0 29.9 2.3 1.5
    样品3 25.5 0.8 27.6 3.6 4.0
    Zn 样品1 77.9 5.0 79.1 4.0 0.8
    样品2 87.3 0.9 91.2 2.4 2.2
    样品3 94.5 3.1 99.6 1.3 2.6
    Pb 样品1 33.9 2.1 32.1 1.9 2.7
    样品2 49.5 3.8 44.7 6.7 5.1
    样品3 41.2 2.7 37.5 1.9 4.7
    Cd 样品1 0.120 8.3 0.119 8.8 0.4
    样品2 0.186 5.4 0.179 5.6 1.9
    样品3 0.226 4.4 0.225 8.9 0.2
    U 样品1 2.07 2.4 2.11 1.9 1.0
    样品2 2.38 0.8 2.20 0.9 3.9
    样品3 2.37 1.7 2.08 1.0 6.5
    下载: 导出CSV
  • [1]

    Štofejová L, Fazekaš J, Fazekašová D. Analysis of heavy metal content in soil and plants in the dumping ground of magnesite mining factory Jelšava—Lubeník (Slovakia)[J]. Sustainability, 2021, 13(8): 4508-4521. doi: 10.3390/su13084508

    [2]

    Wang Z H, Qin H Y, Liu X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China[J]. Environmental Science and Pollution Research, 2019, 26(6): 5904-5912. doi: 10.1007/s11356-018-3955-1

    [3]

    代鹏飞, 黄德娟, 王帅, 等. 某铀矿区农田土壤重金属污染综合评价[J]. 土壤通报, 2021, 52(1): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202101026.htm

    Dai P F, Huang D J, Wang S, et al. Determination and comprehensive evaluation of heavy metal pllution of farmland soil in a uranium mining area[J]. Chinese Journal of Soil Science, 2021, 52 (1): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202101026.htm

    [4]

    Xu J W, Liu C, Hsu P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10(1): 2440. doi: 10.1038/s41467-019-10472-x

    [5]

    任兰, 胡晓乐, 吴丽娟. 石墨消解-火焰原子吸收光谱法测定土壤和沉积物中铜、锌、镍、铬[J]. 化学分析计量, 2018, 27(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201802011.htm

    Ren L, Hu X L, Wu L J. Determination of Cu, Zn, Ni, Cr in soil and sediment by graphite digestion-flame atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201802011.htm

    [6]

    杨叶琴, 赵昌平, 赵杰. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种金属元素的含量[J]. 理化检验(化学分册), 2019, 55(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201901013.htm

    Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201901013.htm

    [7]

    Martins C A, Scheffler G L, Pozebon D. Straight forward determination of U, Th, and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J]. Analytical Methods, 2016, 8(3): 504-509. doi: 10.1039/C5AY02932E

    [8]

    赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202003150034

    Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202003150034

    [9]

    黄金松, 李正鹤, 王佳翰. 微波消解-ICP-MS测定海洋沉积物中的稀土元素[J]. 化学试剂, 2021, 43(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104021.htm

    Huang J S, Li Z H, Wang J H. Determination of rare earth elements in marine sediments by microwave digestion ICP-MS[J]. Chemical Reagents, 2021, 43(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104021.htm

    [10]

    邱东平, 姚旭松, 赵丽, 等. 石墨仪消解-ICP-MS法测定土壤中9种金属的方法探讨[J]. 中国测试, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056

    Qiu D P, Yao X S, Zhao L, et al. Discussion on detection method of 9 metals in soil by graphite instrument digestion-ICP-MS[J]. China Measurement & Test, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056

    [11]

    Venus M, Puntaric D, Gvozdic V, et al. Determinations of uranium concentrations in soil, water, vegetables and biological samples from inhabitants of war affected areas in eastern Croatia (ICP-MS method)[J]. Journal of Environmental Radioactivity, 2019, 203: 147-153. doi: 10.1016/j.jenvrad.2019.03.004

    [12]

    孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm

    Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm

    [13]

    He D, Zhu Z L, Miao X, et al. Determination of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Microchemical Journal, 2019, 148: 561-567. doi: 10.1016/j.microc.2019.05.042

    [14]

    陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187-195. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005310079

    Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187-195. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005310079

    [15]

    金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm

    Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkaline fusion-strong acid cation[J]. Metallurrgical Analysis, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm

    [16]

    程小会, 邓敬颂. ICP-MS法测定土壤中12种金属元素时的样品前处理方法[J]. 化学分析计量, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028

    Cheng X H, Deng J S. Comparation of pretreatment methods in determination of 12 metal elements in soil by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028

    [17]

    王籼铂, 李义连, 逯雨, 等. 电热板消解不同酸体系对土壤中6种金属元素测定的影响研究[J]. 安全与环境工程, 2019, 26(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201904009.htm

    Wang X B, Li Y L, Lu Y, et al. Effect of different acid systems on determination of six heavy metal elements in soil by electrothermal plate digestion[J]. Safety and Environmental Engineering, 2019, 26(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201904009.htm

    [18]

    许园园, 刘幽燕, 邓超冰, 等. 水系沉积物金属分析前处理方法[J]. 中国环境监测, 2018, 34(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201802015.htm

    Xu Y Y, Liu Y Y, Deng C B, et al. Pretreatment method for heavy metal analysis of stream sediment[J]. Environmental Monitoring in China, 2018, 34(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201802015.htm

    [19]

    廖菽欢, 赵志南, 严冬, 等. 常压硫酸体系ICP-MS法测定土壤及沉积物中16种稀土元素及Th和U[J]. 环境化学, 2020, 39(1): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001029.htm

    Liao S H, Zhao Z N, Yan D, et al. Determination of 16 rare earth elements and Th and U in soil and sediment by ICP-MS under atmospheric pressure sulfuric acid[J]. Environmental Chemistry, 2020, 39(1): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001029.htm

    [20]

    孙晓慧, 李章, 刘希良. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201411011.htm

    Sun X H, Li Z, Liu X L. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201411011.htm

    [21]

    王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 305-314. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 305-314. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006050085

    [22]

    王佳翰, 李正鹤, 黄金松, 等. 微波消解-ICP-MS同时测定海洋沉积物中50种元素[J]. 海洋环境科学, 2021, 40(4): 611-618, 624. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202104018.htm

    Wang J H, Li Z H, Huang J S, et al. Simultaneous determination of 50 elements in marine sediments by microwave digestion ICP-MS[J]. Marine Environ-mental Science, 2021, 40(4): 611-618, 624. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202104018.htm

    [23]

    杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm

    [24]

    黄晓琴. 微波消解法测试土壤金属含量的方法学研究[J]. 湖北农业科学, 2019, 58(17): 113-115, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201917031.htm

    Huang X Q. Study on the methodology of determination of heavy metal content in soil by microwave digestion[J]. Hubei Agricultural Sciences, 2019, 58(17): 113-115, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201917031.htm

    [25]

    张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

    Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma mass spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014

    [26]

    张玲, 叶红梅, 王刚. 微波消解法测定沉积物中5种金属元素的前处理技术研究[J]. 资源与环境科学, 2013(7): 224-225, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201307154.htm

    Zhang L, Ye H M, Wang G. Sample pretreatment methods for determination of 5 kind of heavy metal elements in sediment by microwave digestion[J]. Modern Agricultural Science and Technology, 2013(7): 224- 225, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201307154.htm

    [27]

    Kiruba K, Satyanarayanan M, Sawant S S, et al. New soil reference material validation for trace and rare-earth elements by high-resolution inductively coupled plasma mass spectrometry[J]. MAPAN—Journal of Metrology Society of India, 2020, 36(1): 147-156.

    [28]

    袁源, 赵平, 陈海杰, 等. 高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定土壤污染状况调查样品中的49种元素[J]. 中国无机分析化学, 2021, 11(1): 12-19.

    Yuan Y, Zhao P, Chen H J, et al. Determination of 49 elements in samples of the soil contamination investigation by high resolution inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 12-19.

    [29]

    马小玲, 邓凤玉, 刘颖. HR-ICP-MS研究黄河三个连续区域段表层沉积物中金属污染的空间分布和季节变化[J]. 光谱学与光谱分析, 2016, 36(8): 2705-2711. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201608070.htm

    Ma X L, Deng F Y, Liu Y. Study on spatial distribution and seasonal variations of trace metal contamination in sediments from the three adjacent areas of the Yellow River using HR-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2705-2711. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201608070.htm

    [30]

    Huang Z Y, Ni Y Y, Wang H, et al. Simultaneous determination of ultra-trace level 237Np and Pu isotopes in soil and sediment samples by SF-ICP-MS with a single column chromatographic separation[J]. Microchemical Journal, 2019, 148: 597-604. doi: 10.1016/j.microc.2019.05.044

    [31]

    张彦辉, 张良圣, 常阳, 等. 增压-微波消解电感耦合等离子体质谱法测定含难溶矿物岩石样品中的微量元素[J]. 铀矿地质, 2018, 34(2): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201802006.htm

    Zhang Y H, Zhang L S, Chang Y, et al. Determining trace elements in rock samples containing refractory minerals by pressurize-microwave inductively coupled plasma mass spectrometry[J]. Uranium Geology, 2018, 34(2): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201802006.htm

    [32]

    张更宇, 刘静波, 闫锋, 等. 四酸消解-电感耦合等离子体质谱法测定土壤中24种稀有元素的含量[J]. 理化检验(化学分册), 2020, 56(4): 428-437. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202004011.htm

    Zhang G Y, Liu J B, Yan F, et al. Determination of 24 rare elements in soil by inductively coupled plasma mass spectrometry with four acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(4): 428-437. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202004011.htm

    [33]

    中国环境监测总站. 土壤元素的近代分析方法[M]. 北京: 中国环境科学出版社, 1992.

    China National Environmental Monitoring Centre. Modern analytical methods of soil elements[M]. Beijing: China Environmental Press, 1992.

    [34]

    王君玉, 吴葆存, 李志伟, 等. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J]. 岩矿测试, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20110409

    Wang J Y, Wu B C, Li Z W, et al. Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010 http://www.ykcs.ac.cn/article/id/ykcs_20110409

    [35]

    Schnetger B. Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions[J]. Fresenius' Journal of Analytical Chemistry, 1997, 359: 468-472. doi: 10.1007/s002160050614

    [36]

    宣肇菲, 徐少才, 房贤文, 等. 四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试, 2015, 34(6): 617-622. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.003

    Xuan Z F, Xu S C, Fang X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis, 2015, 34(6): 617-622. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.06.003

  • 加载中

(7)

计量
  • 文章访问数:  1685
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2021-06-09
修回日期:  2021-08-03
录用日期:  2021-11-04
刊出日期:  2022-05-28

目录