中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

广州新垦莲藕产区莲藕品质与地球化学条件的关系

顾涛, 朱晓华, 赵信文, 江拓, 邱啸飞, 郑小战, 帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
引用本文: 顾涛, 朱晓华, 赵信文, 江拓, 邱啸飞, 郑小战, 帅琴. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
Citation: GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136

广州新垦莲藕产区莲藕品质与地球化学条件的关系

  • 基金项目:
    国家自然科学基金项目(42107485);自然资源部生态地球化学重点实验室开放基金项目(ZSDHJJ202005);中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202019);中国地质调查局地质调查项目"广州多要素城市地质调查"(DD20190291);广州市"岭南英杰工程"人才培养项目
详细信息
    作者简介: 顾涛, 在读博士研究生, 高级工程师, 主要从事环境地球化学方面的研究工作。E-mail: cugyunnangt1@163.com
    通讯作者: 帅琴, 教授, 博士生导师, 主要从事色谱分析、原子光谱分析及其联用技术研究。E-mail: shuaiqin@cug.edu.cn
  • 中图分类号: O657.63;O657.31

Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou

More Information
  • 名优特农产品品质与产区环地质背景条件密切相关。广州新垦莲藕是国家地理标志产品,探讨其产区地质背景与莲藕品质的关系对于新垦莲藕的规模化种植有重要意义。本文通过系统采集新垦莲藕产地藕塘底泥、地表水、新鲜莲藕样品,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)等多种技术进行测试,开展品质评价研究,初步揭示了新垦莲藕品质与产区环境地球化学条件之间的相关性。研究结果表明:藕塘底泥中营养元素锰、锌、钼、钴、钒、铁均处在一等(丰富)等级,硒以适量和高硒等级为主,重金属铬、铜、汞、镍、铅、锌均低于农用地土壤污染风险筛选值;藕塘地表水中铜、锌、硒、硼、汞、镉、砷、六价铬、铅、镍等指标均满足灌溉水质要求;产出的新垦莲藕淀粉、可溶性糖、钾、磷、钙、镁、铁、锌、硒的含量较高,重金属和粗纤维含量较低;莲藕对底泥中不同元素生物富集系数平均值范围为0.0484~65.67,对磷的富集能力最强,对锗的富集能力最弱。藕塘底泥中硼与莲藕中淀粉显著正相关(p≤0.05),钙与蛋白质显著性正相关,砷与可溶性糖显著负相关。藕塘底泥中硼钴铁镁锰钒钙锗的含量较高,有利于莲藕营养组分的积累,产出高品质的莲藕。本文提出在种植过程中重视有机质、钙、氮和锗等养分的补充,关注镉和砷带来的潜在生态安全风险。

  • 加载中
  • 图 1  研究区采样点位置

    Figure 1. 

    图 2  新垦莲藕种植区底泥养分指标分级占比情况(N=45)

    Figure 2. 

    图 3  新垦莲藕种植区藕塘底泥重金属指标分级占比情况(N=45)

    Figure 3. 

    图 4  藕塘底泥元素含量与莲藕营养组分之间的相关系数矩阵热图

    Figure 4. 

    表 1  藕塘不同介质样品测试指标及对应测试方法

    Table 1.  Analysis parameters and methods for various media of the lotus root pond

    样品类型 测试指标分类及测试指标 测试仪器 测试方法
    藕塘底泥 ①养分指标:氮,磷,钾,有机质,钙,镁,铁,硫,硼,锰,铜,锌,钼,钴,钒,锗,硒。
    ②重金属:砷,镉,铬,汞,镍,铅。
    ③其他指标:氯,pH值
    元素分析仪(EA3000);电感耦合等离子体发射光谱仪(ICPA6300);电感耦合等离子体质谱仪(Thermo X2);原子荧光分光光度计(AFS8220);原子荧光分光光度计(XGY-1011A);一米光栅光谱仪(WP-1);X射线荧光光谱仪(Axios Max);pH计(pHS-3c) 《区域地球化学样品分析方法》(DZ/T 0279—2016);
    《区域生态地球化学评价规范》(DZ/T 0289—2015);
    《生态地球化学评价样品分析技术要求》(DD2005-03)
    藕塘水 农田灌溉水质标准控制指标:pH值,化学需氧量,铅,镉,铬(六价),汞,砷,铜,锌,镍,硒,硼,氯 pH计(pHS-3c);电感耦合等离子体质谱仪(Thermo X2);电感耦合等离子体发射光谱仪(iCAP 7000 Series);原子荧光分光光度计(AFS8220);原子荧光分光光度计(XGY-1011A);离子色谱仪(ICS-900) 《食品安全国家标准饮用天然矿泉水检验方法》(GB 8538—2016);
    《地下水质量标准》(GB/T 14848—2017)
    莲藕 ①营养品质指标:淀粉,可溶性糖,粗纤维,干物质,蛋白质。
    ②矿物质营养元素:钙,磷,钾,镁,铁,锌,硒,铜,锗。
    ③重金属指标:铅,镉,镍,铬,砷,汞
    紫外可见分光光度计(Shimadzu UV-1700),电热恒温鼓风干燥箱(WGL-230B);定氮仪(Z20209-F078948);电感耦合等离子体发射光谱仪(iCAP 7000 Series);电感耦合等离子体质谱仪(ICAP RQ);原子荧光分光光度计(AFS8220);原子荧光分光光度计(XGY-1011A) 《生态地球化学评价动植物样品分析方法》(DZ/T 0253—2014);
    《食品安全国家标准样品测定方法》(GB 5009—2016)
    下载: 导出CSV

    表 2  藕塘底泥各组分含量描述性统计(N=45)

    Table 2.  Descriptive statistics of component contents in sediment of the lotus root pond (N=45)

    分析指标 含量极小值 含量极大值 变异系数(%) 含量平均均值 土壤风险筛选值,水田(6.5<pH<7.5) 珠三角表层土壤地球化学背景值[20] 西北江海陆交互相沉积物母质土壤背景值[21]
    氮(mg/g) 0.7978 2.170 23.01 1.314 - 0.9950 1.219
    磷(mg/g) 0.7040 1.405 18.97 0.9639 - 0.4130 0.7740
    钾(mg/g) 15.10 21.00 6.530 18.60 - - 19.09
    有机质(mg/g) 7.400 37.90 33.16 16.90 - 28.40 19.14
    钙(mg/g) 3.960 11.62 25.97 7.851 - - 4.071
    镁(mg/g) 7.700 10.30 6.830 9.000 - - 5.280
    铁(mg/g) 43.50 63.20 6.730 55.80 - - 40.39
    硫(mg/g) 0.3129 3.496 61.97 1.124 - 0.2330 0.3032
    硼(mg/kg) 62.57 88.39 8.440 74.22 - 46.90 63.73
    锰(mg/kg) 732.0 1121 10.36 953.6 - 213.0 593.80
    铜(mg/kg) 40.15 96.08 14.53 62.56 100.0 12.90 46.22
    锌(mg/kg) 108.7 163.9 9.920 128.4 250.0 50.00 122.40
    钼(mg/kg) 0.950 1.700 13.41 1.360 - 1.110 1.17
    钴(mg/kg) 17.97 24.52 7.080 21.29 - 3.800 14.93
    钒(mg/kg) 121.9 193.5 8.440 165.1 - - -
    锗(mg/kg) 1.220 2.830 21.16 1.640 - 1.510 -
    硒(μg/kg) 260.0 570.0 16.80 380.0 - 510.0 490.0
    砷(mg/kg) 14.75 27.97 11.45 23.05 25.00 9.000 16.53
    镉(μg/kg) 390.0 940.0 22.90 610.0 600.0 69.00 383.94
    铬(mg/kg) 80.17 123.8 7.460 102.5 300.0 40.00 75.53
    汞(μg/kg) 86.00 514.0 54.65 162.9 600.0 84.00 139.06
    镍(mg/kg) 33.14 54.12 8.970 46.28 100.0 9.500 30.40
    铅(mg/kg) 34.40 86.37 18.52 45.61 140.0 37.00 43.65
    氯(mg/kg) 42.20 1059 63.22 393.9 - 62.00 -
    pH 6.630 7.860 3.850 7.400 - 5.280 -
    注:“-”表示无相关结果。
    下载: 导出CSV

    表 3  莲藕样品各组分含量描述性统计(鲜重含量,N=15)

    Table 3.  Descriptive statistics of components in the lotus root samples (fresh weight, N=15)

    组分 含量极小值 含量极大值 变异系数(%) 含量均值 雄安新区莲藕[28] 山东济南莲藕[29] 河南新郑莲藕[29] 湖北武汉莲藕[29] 湖北洪湖莲藕[29] 湖北汉川莲藕[29] 广西柳州莲藕[29] 浙江金华莲藕[29] 浙江余杭莲藕[29] 江苏淮安莲藕[30] 山东菏泽莲藕[30] 四川眉山莲藕[30] 湖北荆州莲藕[30] 云南红河莲藕[30] 湖南湘潭莲藕[30] 河南三门峡莲藕[30] 广西贵港莲藕[30] 安徽蚌埠莲藕[30] 陕西富平莲藕[30] 中国食物成分表-莲藕[31] 食品中污染物限量
    干物质 12.60 24.50 18.51 17.63 - - - - - - - - - - - - - - - - - - - - -
    淀粉 6.700 13.90 28.61 9.810 - - - - - - - - - 1.250 7.425 13.14 3.555 13.69 10.26 7.124 9.319 8.077 4.156 -
    可溶性糖 2.190 4.140 17.52 3.200 - - - - - - - - - 1.170 7.135 4.788 6.016 2.941 4.278 3.175 3.944 6.108 2.874 - -
    蛋白质 1.450 8.580 64.41 2.630 - - - - - - - - - - - - - - - - - - - 1.200 -
    粗纤维 0.5000 3.300 83.22 0.8100 - - - - - - - - - 4.647 6.984 2.343 1.588 2.940 1.383 2.687 2.283 3.247 2.722 - -
    2259 4673 16.62 3765 - - - - - - - - - 2260 4050 3020 2700 4070 3650 3440 3540 3090 2960 2930 -
    384.8 738.1 14.20 585.1 - - - - - - - - - 223.0 552.0 494.0 303.0 557.0 539.0 613.0 415.0 454.0 573.0 450.0 -
    193.7 312.5 15.99 251.2 - - - - - - - - - - - - - - - - - - - 180.0 -
    148.3 271.6 18.58 211.9 - - - - - - - - - - - - - - - - - - - 140.0 -
    9.960 111.9 79.22 30.32 - - - - - - - - - 59.50 50.40 28.40 92.20 507.0 163.0 158.0 47.80 209.0 98.30 3.000 -
    1633 3235 16.66 2430 - - - - - - - - - - - - - - - - - - - 2400 -
    549.8 1217 21.46 810.8 - - - - - - - - - - - - - - - - - - - 900.0 -
    37.76 530.1 81.90 167.2 - - - - - - - - - - - - - - - - - - - - 500.0
    18.83 514.0 140.0 86.07 100.0 40.00 50.00 210.0 200.0 230.0 20.00 30.00 10.00 - - - - - - - - - - - 200.0
    37.57 153.6 41.61 81.51 - - - - - - - - - - - - - - - - - - - - -
    10.77 163.4 77.70 59.96 180.0 220.0 550.0 350.0 320.0 330.0 440.0 580.0 280.0 - - - - - - - - - - - 500.0
    2.200 17.00 44.24 9.660 20.00 50.00 50.00 20.00 20.00 10.00 30.00 30.00 10.00 - - - - - - - - - - 100.0
    4.280 10.26 26.01 6.210 - - - - - - - - - - - - - - - - - - - 1.700 -
    0.5400 1.090 17.67 0.7500 - - - - - - - - - - - - - - - - - - - - -
    0.4300 0.7300 17.00 0.3600 - 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 - - - - - - - - - - - 10.00
    注:“-”表示无相关结果。干物质、淀粉、可溶性糖、蛋白质、粗纤维含量单位为%;钾、磷、钙、镁、铁含量单位为mg/kg;其余指标含量单位为μg/kg。
    下载: 导出CSV

    表 4  藕塘地表水样各组分含量描述性统计(N=15)

    Table 4.  Descriptive statistics of component contents in surface water samples of the lotus pond (N=15)

    组分 含量极小值(mg/L) 含量极大值(mg/L) 变异系数(%) 含量均值(mg/L) 《农田灌溉水质标准》 (GB 5084—2021)限值
    33.50 298.0 67.60 125.7 350.0
    40.00 280.0 68.85 100.0 -
    10.40 125.0 43.89 67.71 1000
    六价铬 10.00 60.00 58.79 30.00 100.0
    3.050 20.30 60.47 8.270 50.00
    0.6300 4.350 49.93 1.820 500.0
    0.7400 3.320 42.88 1.610 -
    0.4600 1.700 33.35 0.8500 20.00
    注:灌溉水样品中部分样品铅、锌、镉、汞指标含量低于检出限,未参与统计。“-”表示无相关结果。
    下载: 导出CSV

    表 5  底泥-莲藕部分组分生物富集系数(BCF)

    Table 5.  Bioconcentration factor (BCF) of some elements in the lotus root and sediment

    组分 新垦莲藕BCF值 相关产地莲藕BCF值
    极小值 极大值 平均值 山东济南莲藕[29] 河南新郑莲藕[29] 湖北武汉莲藕[29] 湖北洪湖莲藕[29] 湖北汉川莲藕[29] 广西柳州莲藕[29] 浙江金华莲藕[29] 浙江余杭莲藕[29]
    49.23 89.49 65.67 - - - - - - - -
    12.06 25.15 20.42 - - - - - - - -
    1.746 6.872 3.214 - - - - - - - -
    1.653 2.985 2.330 - - - - - - - -
    1.459 2.477 1.931 - - - - - - - -
    1.012 2.502 1.700 - - - - - - - -
    0.5215 3.189 1.584 20.55 46.67 14.03 8.700 9.260 5.030 23.78 8.210
    0.8567 1.942 1.350 - - - - - - - -
    0.1194 0.7337 0.4497 3.440 4.970 4.580 7.200 4.670 2.420 3.230 3.550
    0.0522 0.6296 0.2641 1.930 6.680 5.200 3.680 2.890 2.460 4.590 3.050
    0.0371 1.1626 0.1928 0.1200 0.2400 0.7700 1.070 1.820 0.030 0.070 0.020
    0.0877 0.3470 0.1833 - - - - - - - -
    0.0365 0.5347 0.1711 - - - - - - - -
    0.0193 0.2045 0.0556 - - - - - - - -
    0.0293 0.0652 0.0484 - - - - - - - -
    注:“-”表示无相关结果。
    下载: 导出CSV
  • [1]

    Ferretti C G. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the dolomites of northern Italy[J]. CATENA, 2019, 179: 74-84. doi: 10.1016/j.catena.2019.03.044

    [2]

    Zhou G H, Zhu L X, Ren T X, et al. Geochemical characteristics affecting the cultivation and quality of Longjing Tea[J]. Journal of Geochemical Exploration, 1995, 55(1-3): 183-191. doi: 10.1016/0375-6742(95)00017-8

    [3]

    黎旭荣, 朱鑫, 张高强, 等. 广东四会优质沙糖桔产地生态地球化学特征[J]. 现代地质, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

    Li X R, Zhu X, Zhang G Q, et al. Eco-geochemical characteristics of the high-quality Shatang Citrus producing area in Sihui, Guangdong[J]. Geoscience, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

    [4]

    Amarante C V T D, de Fátima Ferreira Da Rosa E, Albuquerque J A, et al. Soil attributes and fruit quality in organic and conventional apple production systems in southern Brazil[J]. Artigo Científico, 2015, 46(1): 99-109. http://www.ccarevista.ufc.br/seer/index.php/ccarevista/article/download/3341/1068

    [5]

    Kumssa D B, Joy E J, Young S D, et al. Variation in the mineral element concentration of Moringa oleifera Lam, and M. stenopetala (Bak. f. ) Cuf. : Role in human nutrition[J]. PLOS ONE, 2017, 12(4): e175503.

    [6]

    严洪泽, 周国华, 孙彬彬, 等. 福建龙海杨梅产地元素地球化学特征[J]. 中国地质, 2018, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm

    Yan H Z, Zhou G H, Sun B B, et al. Geochemical characteristics of the bayberry producing area in Longhai, Fujian[J]. Geology in China, 45(6): 1155-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806007.htm

    [7]

    王卫星, 曹淑萍, 李攻科. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905025.htm

    Wang W X, Cao S P, Li G K. Chemical composition analysis and soil geochemical characteristics of Mopan persimmon in Panshan, Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1131-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201905025.htm

    [8]

    任娜欧, 王数, 张凤荣, 等. 北京妙峰山优质玫瑰生长的农业地质背景[J]. 中国农业大学学报, 2018, 23(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201807013.htm

    Ren N O, Wang S, Zhang F R, et al. Study on the agricultural geological background of high quality rose growth in Miaofeng Mountain in Beijing[J]. Journal of China Agricultural University, 2018, 23(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201807013.htm

    [9]

    王金龙, 孙彬彬, 周国华, 等. 漳州水仙花产地生态地球化学特征[J]. 桂林理工大学学报, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

    Wang J L, Sun B B, Zhou G H, et al. Ecological and geochemical characteristics of Zhangzhou narcissus planting area[J]. Journal of Guilin University of Technology, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

    [10]

    孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6): 1646-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006005.htm

    Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 2020, 47(6): 1646-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006005.htm

    [11]

    孙厚云, 卫晓锋, 孙晓明, 等. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 2021, 46(7): 2621-2645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107027.htm

    Sun H Y, Wei X F, Sun X M, et al. Element migration and accumulation characteristics of bedrock-regolith-soil-fruit plant continuum of the earth's critical zone in Chengde almond producing area[J]. Earth Science, 2021, 46(7): 2621-2645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107027.htm

    [12]

    Zhu F. Structures, properties, and applications of lotus starches[J]. Food Hydrocolloids, 2017, 63: 332-348. doi: 10.1016/j.foodhyd.2016.08.034

    [13]

    Zhang Y, Lu X, Zeng S, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn. ) seeds: A review[J]. Phytochemistry Reviews, 2015, 14(3): 321-334. doi: 10.1007/s11101-015-9401-9

    [14]

    罗满, 张灿明, 李有志, 等. 洞庭湖区莲藕重金属污染特征[J]. 农业资源与环境学报, 2016, 33(6): 554-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606008.htm

    Luo M, Zhang C M, Li Y Z, et al. Characteristics of heavy metals contamination in lotus root in the Dongting Lake area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 554-559. https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201606008.htm

    [15]

    张文胜, 吴永中, 龙伟, 等. 广州新垦莲藕品种应用现状、问题与对策[J]. 长江蔬菜, 2016(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201603008.htm

    Zhang W S, Wu Y Z, Long W, et al. Application status, problems and countermeasures of Xinken lotus root varieties in Guangzhou[J]. Journal of Changjiang Vegetables, 2016(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201603008.htm

    [16]

    张文胜. 风味独特的新垦莲藕[J]. 长江蔬菜, 2016(12): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201612044.htm

    Zhang W S. Xinken lotus root with unique flavor[J]. Journal of Changjiang Vegetables, 2016(12): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201612044.htm

    [17]

    Rai G K, Bhat B A, Mushtaq M, et al. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies[J]. Physiologia Plantarum, 2021: 1-18. http://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ppl.13433

    [18]

    Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere, 2021, 271: 129458. doi: 10.1016/j.chemosphere.2020.129458

    [19]

    Rehman A U, Nazir S, Irshad R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455

    [20]

    窦磊, 杜海燕, 游远航, 等. 珠江三角洲经济区生态地球化学评价[J]. 现代地质, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

    Dou L, Du H Y, You Y H, et al. Eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province, China[J]. Geoscience, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

    [21]

    杜海燕, 赖启宏, 周国华, 等. 广东省珠江三角洲经济区区域生态地球化学评价报告[R]. 2011.

    Du H Y, Lai Q H, Zhou G H, et al. Report on eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province[R]. 2011.

    [22]

    赵亚楠, 周玉蓉, 王红梅. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报, 2018, 29(11): 3577-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201811010.htm

    Zhao Y N, Zhou Y R, Wang H M. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3577-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201811010.htm

    [23]

    崔昆, 赵庚星, 王卓然, 等. 黄河三角洲夏季典型田块土壤盐分的多尺度空间变异[J]. 应用生态学报, 2020, 31(5): 1451-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005004.htm

    Cui K, Zhao G X, Wang Z R, et al. Multi-scale spatial variability of soil salinity in typical fields of the Yellow River Delta in summer[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1451-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005004.htm

    [24]

    刘子宁, 窦磊, 张伟. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012, 31(1): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201201021.htm

    Liu Z N, Dou L, Zhang W. Distribution and origin of cadmium in the Quaternary sediments of the Pearl River Delta Plain, Guangdong Province, southern China[J]. Geological Bulletin of China, 2012, 31(01): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201201021.htm

    [25]

    陈丹青, 谢志宜, 张雅静, 等. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 2016, 25(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201606016.htm

    Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201606016.htm

    [26]

    徐慧秋, 黄银华, 吴志峰, 等. 广州市农业土壤As和Cd污染及其对景观异质性的多尺度响应[J]. 应用生态学报, 2016, 27(10): 3283-3289. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201610027.htm

    Xu H Q, Huang Y H, Wu Z F, et al. Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3283-3289. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201610027.htm

    [27]

    涂静. 莲藕品质评价及其冻结特性研究[D]. 无锡: 江南大学, 2014.

    Tu J. Study on the quality evaluation and freezing characteristics of lotus root[D]. Wuxi: Jiangnan University, 2014.

    [28]

    高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2): 362-370. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202002009.htm

    Gao P P, Xiao B, Liu W J, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2): 362-370. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202002009.htm

    [29]

    Xiong C, Zhang Y, Xu X, et al. Lotus roots accumulate heavy metals independently from soil in main production regions of China[J]. Scientia Horticulturae, 2013, 164: 295-302. http://or.nsfc.gov.cn/bitstream/00001903-5/228194/1/1000008898862.pdf

    [30]

    程婷婷, 惠小涵, 尚欣欣, 等. 10个产地莲藕营养成分分析与品质综合评价[J]. 食品工业科技, 2021, 42(8): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202108047.htm

    Cheng T T, Hui X H, Shang X X, et al. Nutrient composition analysis and quality comprehensive evaluation of lotus root in 10 producing areas[J]. Science and Technology of Food Industry, 2021, 42(8): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202108047.htm

    [31]

    杨月欣. 中国食物成分表(标准版)[M]. 北京: 北京大学医学出版社, 2018: 1-363.

    Yang Y X. China food composition tables (The Standard Edition)[M]. Beijing: Peking University Medical Press, 2018: 1-363.

    [32]

    马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm

    Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environment Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm

    [33]

    Ng C C, Boyce A N, Abas M R, et al. Phytoassessment of vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminated soil[J]. Environmental Monitoring and Assessment, 2019, 191(434): 1-16. doi: 10.1007%2Fs10661-019-7573-2

    [34]

    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron iodine tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201805070055

    [35]

    Al-Mayahi A M W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm 'Barhee'[J]. Canadian Journal of Plant Science, 2020, 100(4): 357-364. http://www.nrcresearchpress.com/doi/abs/10.1139/cjps-2019-0084

    [36]

    Wang Q, Zhang W, Xiao H, et al. Involvement of boron transporter BOR1 in growth under low boron and high nitrate conditions in Arabidopsis thaliana[J]. Physiologia Plantarum, 2021, 171(4): 703-713. http://onlinelibrary.wiley.com/doi/10.1111/ppl.13249

    [37]

    Burger A, Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants'potential for bioremediation[J]. Science of The Total Environment, 2018, 618: 1459-1485.

    [38]

    Tang R, Zhao F, Yang Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants, 2020, 6(4): 384-393. http://www.nature.com/articles/s41477-020-0692-5?utm_source=other&utm_medium=other&utm_content=null

    [39]

    Nakamura T, Shimada Y, Takeda T, et al. Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds[J]. Future Medicinal Chemistry, 2015, 7(10): 1233-1246. http://www.onacademic.com/detail/journal_1000038262881310_4955.html

    [40]

    刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm

    Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 931-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201508001.htm

  • 加载中

(4)

(5)

计量
  • 文章访问数:  1082
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2021-09-29
修回日期:  2021-11-05
录用日期:  2021-11-12
刊出日期:  2021-11-28

目录