Application of Electron Probe Microanalyzer in Exploring the Occurrence Characteristics of Scandium in Different Minerals of the Bayan Obo Deposit
-
摘要:
随着对钪资源需求的不断增加,世界各国近年陆续开展钪成矿机理研究及找矿工作,核心内容之一是厘清钪的赋存特征。据前人研究,各类钪矿床中钪主要以类质同象、离子吸附形式存在,目前发现的含钪矿物种类已逾800种。对于白云鄂博矿床,钪资源储量较大,无独立钪矿物产出,钪以类质同象形式进入其他矿物,分布分散、含量低。囿于测试技术及取样限制,目前尚无利用精确定量技术系统探究钪在白云鄂博矿床不同矿物中赋存特征,因而主要富钪矿物查明程度不够,难以进一步探讨钪在矿床中富集机制,亦不利于下一步钪资源的利用和勘查找矿。为了解决这一问题,本文利用电子探针技术,对白云鄂博矿床34种矿物进行系统测定。测试结果表明,6种矿物中钪(Sc2O3)平均含量大于0.100%,从高到低为铌钇矿(2.485%)、铌铁矿(1.263%)、铌锰矿(0.251%)、黑紫色萤石(0.181%)、方钍石(0.145%)、富钇易解石(0.124%),其中铌钇矿是各矿物中单点钪含量最高的矿物(3.093%);16种矿物中钪含量介于0.004%~0.067%,分别为褐钇铌矿(0.067%)、碱性角闪石(0.062%)、铁钍石(0.060%)、黄绿石(0.049%)、铌钙矿(0.031%)、氟碳铈矿(0.028%)、磷灰石(0.028%)、铈硅磷灰石(0.025%)、独居石(0.023%)、霓石(0.02%)、黑云母(0.019%)、硅镁石(0.011%)、褐铈铌矿(0.008%)、钾长石(0.007%)、磁铁矿(0.005%)、钠长石(0.004%);12种矿物未检出钪。通过分析发现:①本次研究矿区钪含量最高的矿物为铌钇矿,主要6种富钪矿物为铌钇矿、铌铁矿、铌锰矿、黑紫色萤石、方钍石、富钇易解石;②34种矿物中,22种矿物钪含量高于电子探针检出限,钪呈稀散分布;③钪的赋存与钛、钇及钍有关,钪与钛、钇、钍的相关系数分别为0.869、0.835、0.720。主要分布在铌、铁、钍稀有氧化物、黑紫色萤石、钛铌酸盐的复杂氧化物和链状硅酸盐中,进入矿物时与矿物晶体结构可能有相关性;④钪与铌铁矿、铌钙矿、铌锰矿、富钇易解石等铌矿物关系密切,可考虑将钪资源与铌资源同时综合利用。
Abstract:BACKGROUND With the increasing demand for scandium resources, countries around the world have carried out scandium metallogenic mechanism research and prospecting in recent years. One of the key research contents is to clarify the occurrence characteristics of scandium. According to previous studies, scandium mainly exists in the form of isomorphism and ion adsorption in various scandium deposits. At present, more than 800 kinds of scandium-bearing minerals have been found. The scandium resource of the Bayan Obo deposit is large, which has the characteristics of dispersed distribution and low content. Scandium enters other minerals in the form of isomorphism and no independent scandium mineral is found. Due to the limitation of testing technology and sampling, there is no accurate quantitative research to systematically explore the occurrence characteristics of scandium in different minerals in the Bayan Obo deposit. Therefore, the identification of the main scandium-bearing minerals is insufficient, which is not conducive to further exploration of the enrichment mechanism of scandium and the utilization of scandium resources in the deposit.
OBJECTIVES To understand the occurrence of Sc in different minerals of the Bayan Obo deposit.
METHODS 34 kinds of minerals in the Bayan Obo deposit were systematically determined by electron probe microanalyzer (EPMA) technology.
RESULTS The test results showed that the average scandium content (Sc2O3) in 6 minerals was more than 0.100%. They were samarskite (with average Sc2O3 content of 2.485%), columbite (1.263%), manganocolumbite (0.251%), dark purple fluorite (0.181%), thorianite (0.145%) and Y-rich aeschynite (0.124%) from high to low. Samarskite had the highest scandium content (3.093%). The content of scandium in 16 minerals ranged from 0.004% to 0.067%, which were fergusonite (with average Sc2O3 content of 0.067%), alkaline amphibole (0.062%), ferrothorite (0.060%), pyrochlore (0.049%), fersmite (0.031%), bastnaesite (0.028%), apatite (0.028%), britholite (0.025%), monazite (0.023%), aegirine (0.02%), biotite (0.019%), humite (0.011%), fergusonite-(Ce) (0.008%), feldspar (0.007%), magnetite (0.005%), albite (0.004%). Scandium was not detected in the other 12 minerals.
CONCLUSIONS Samarskite has the highest scandium content in the deposit, and the 6 main scandium-bearing minerals are samarskite, columbite, manganocolumbite, dark purple fluorite, thorianite and Y-rich aeschynite. Among the 34 minerals, the content of scandium in 22 minerals is higher than the detection limit of EPMA, and scandium is distributed in a dilute manner. The occurrence of scandium is related to titanium, yttrium and thorium, and the correlation coefficients are 0.869, 0.835 and 0.720, respectively. Scandium is closely related to niobium minerals such as columbite, manganocolumbite, fersmite and Y-rich aeschynite. It can be considered to comprehensively utilize scandium and niobium resources at the same time.
-
-
图 1 白云鄂博主、东矿区地质及构造分布图(据文献[27]修改)
Figure 1.
表 1 不同矿物中Sc2O3平均含量
Table 1. Average content of Sc2O3 in different minerals
矿物种类 序号 矿物名称 采样位置 测试点数量(个) Sc2O3平均含量(%) 同一矿物大类中Sc2O3平均含量 卤化物 1 黑紫色萤石 主矿 7 0.181 0.181 铁、锰氧化物 2 磁铁矿 东矿 3 0.005 0.001 3 赤铁矿 主矿 3 ND 4 钛铁矿 主矿 3 ND 5 红钛锰矿 主矿 3 ND 普通氧化物 6 金红石 主矿 3 ND ND 7 石英 西矿 3 ND 铌铁钍稀有氧化物 8 方钍石 东部接触带 3 0.145 1.036 9 铌铁矿 主矿 5 1.263 10 铌钇矿 主矿 3 2.485 11 铌锰矿 主矿 5 0.251 钛铌酸盐的复杂氧化物 12 褐钇铌矿 东矿 4 0.067 0.047 13 褐铈铌矿 东矿 7 0.008 14 易解石 主矿 9 ND 15 富钇易解石 主矿 3 0.124 16 铌钙矿 东部接触带 6 0.031 17 黄绿石 东部接触带 4 0.049 氟碳酸盐 18 氟碳铈矿 主矿 9 0.028 0.014 19 氟碳钙铈矿 主矿 3 ND 磷酸盐 20 独居石 主矿 10 0.023 0.025 21 磷灰石 主矿 6 0.028 22 铈硅磷灰石 东矿 15 0.025 岛状硅酸盐 23 铁钍石 主矿 3 0.060 0.024 24 硅镁石 东部接触带 10 0.011 25 榍石 东部接触带 4 ND 硅氧双四面体硅酸盐 26 钡铁钛石 西矿 4 ND ND 27 硅钛铈矿 主矿 4 ND ND 28 褐帘石 主矿 4 ND ND 环状硅酸盐 29 包头矿 西矿 4 ND ND 链状硅酸盐 30 霓石 主矿 7 0.020 0.041 31 碱性角闪石 东矿 4 0.062 层状硅酸盐 32 黑云母 主矿 5 0.019 0.019 架状硅酸盐 33 钾长石 东部接触带 3 0.007 0.006 34 钠长石 东部接触带 3 0.004 注:表中“ND”表示未检出。 表 2 6种主要富钪矿物EPMA测试结果
Table 2. EPMA data of six Sc-rich minerals
元素 铌钇矿(%) 铌铁矿(%) 铌锰矿(%) 黑紫色萤石(%) 方钍石(%) 富钇易解石(%) Sc2O3 3.093 2.158 2.205 1.696 1.614 1.471 1.443 0.089 0.145 0.193 0.187 0.235 0.496 0.294 0.271 0.053 0.307 0.289 0.043 0.011 0.195 0.173 0.067* 0.110 0.116 0.147 F - - - - - - - - - - - - - 46.508 47.021 47.833 47.046 48.334 48.121 47.950 0.061 0.011 0.152* ND ND 0.002 SrO ND ND ND 0.035 0.012 0.022 ND 1.985 ND ND ND ND ND 0.266 0.101 0.088 0.051 0.155 0.222 0.176 ND ND ND* ND 0.026 ND SiO2 0.095 0.178 0.394 1.335 1.282 1.032 1.377 1.058 0.025 0.027 0.016 0.030 0.030 ND ND ND ND ND ND ND 0.032 0.017 0.027* 5.475 5.316 3.139 Al2O3 ND ND ND 0.166 0.277 0.395 0.167 0.015 ND 0.011 ND ND ND 0.033 0.010 0.012 ND ND 0.005 0.001 ND ND - 0.053 0.050 0.100 La2O3 0.103 0.063 ND 0.079 0.053 ND 0.043 0.744 ND ND ND ND ND 0.006 0.021 ND 0.05 0.022 0.024 ND 0.057 0.101 0.077* ND ND ND CaO 0.573 0.642 0.912 1.816 1.647 0.928 1.413 1.383 0.058 0.070 0.037 0.113 0.057 67.641 69.074 68.337 68.08 67.907 68.621 69.336 ND 0.023 0.055* 3.618 3.417 3.607 Y2O3 12.587 13.778 12.102 4.107 2.418 4.322 4.703 0.059 0.665 0.614 0.285 0.314 0.480 0.869 0.175 0.088 0.069 0.079 0.097 0.064 0.016 ND ND 4.644 4.808 4.597 P2O5 0.031 0.036 0.079 0.130 0.105 0.207 0.079 0.011 ND 0.013 ND ND ND 0.029 0.042 0.012 0.009 0.036 0.017 0.012 0.019 0.007 0.046* 0.233 0.198 0.234 Eu2O3 0.466 0.073 0.255 0.575 0.196 0.398 0.514 0.212 0.585 0.403 0.494 0.468 0.435 0.022 ND 0.052 ND ND ND ND 0.053 ND - 0.826 0.555 0.797 Dy2O3 ND ND ND 1.885 1.376 1.607 1.787 1.203 ND ND ND ND ND 0.089 0.014 ND ND 0.004 0.068 0.016 ND ND ND 3.698 4.542 3.858 Er2O3 0.769 0.844 0.782 0.422 0.289 0.428 0.485 ND ND 0.178 0.104 0.031 0.155 0.025 ND 0.052 ND 0.011 ND ND ND ND - 0.176 0.857 0.723 Nb2O5 55.088 57.545 59.185 59.065 59.477 57.858 57.995 67.419 76.193 75.348 75.776 75.768 76.076 ND 0.005 ND ND ND ND ND ND ND ND 25.795 31.437 38.709 K2O - ND 0.002 ND 0.033 0.022 0.012 0.008 0.019 0.005 0.001 0.011 0.023 0.005 0.001 ND ND ND ND 0.004 0.023 0.059 - 2.566 0.096 0.026 BaO 0.811 0.604 0.761 1.151 1.312 0.913 1.034 0.575 0.097 0.030 0.469 0.329 0.109 0.406 0.624 ND 0.224 ND 0.027 ND ND ND ND 0.568 0.554 0.330 Ce2O3 0.854 0.457 0.446 0.766 0.678 1.123 1.397 2.302 0.319 0.319 ND 0.088 ND 0.978 0.200 ND 0.158 0.031 ND 0.003 0.461 0.865 0.578* 4.532 2.763 7.801 Tb2O3 ND ND ND ND 0.047 ND 0.012 ND ND 0.012 ND ND 0.058 0.285 0.168 0.091 ND 0.013 0.051 0.245 0.350 0.175 - 0.083 ND ND FeO 11.094 12.145 12.006 15.200 15.557 19.306 17.114 6.153 5.686 6.404 8.509 4.910 5.914 0.016 0.023 0.110 0.106 ND 0.058 0.010 0.008 ND ND 4.928 5.598 4.207 MnO 0.094 0.143 0.274 1.174 1.426 0.694 0.845 3.390 13.639 13.309 11.545 15.717 13.364 0.015 ND ND ND ND 0.018 0.026 ND 0.119 - 0.055 0.109 0.152 TiO2 1.974 1.307 1.601 2.510 2.105 1.418 1.601 0.648 1.902 2.094 1.938 0.935 1.480 ND 0.083 ND 0.071 0.035 ND ND ND ND - 17.029 17.529 13.936 Lu2O3 0.495 0.434 0.182 0.086 0.238 ND 0.158 ND 0.059 ND 0.118 ND ND ND 0.066 ND ND ND 0.087 ND 0.021 0.159 - 0.344 0.852 0.496 Yb2O3 0.100 0.206 0.142 ND ND ND 0.013 ND ND ND ND ND 0.182 0.108 0.094 0.087 0.058 ND ND ND ND ND - 0.387 0.387 0.246 Ho2O3 1.102 1.249 0.841 0.270 0.021 0.261 0.417 ND ND ND ND ND ND 0.008 ND ND ND ND 0.008 ND ND ND - 0.816 1.021 1.006 Na2O - - - - - - - - - - - - - 0.242 0.014 ND ND 0.049 ND 0.016 ND ND - ND ND ND MgO ND ND ND 0.145 0.224 0.06 0.096 3.467 0.385 0.453 0.562 0.411 0.332 ND 0.019 0.009 0.033 ND ND 0.020 ND ND - 0.037 0.04 0.004 Tm2O3 0.084 0 0.087 ND 0.106 ND ND ND ND 0.104 ND ND ND ND ND ND ND ND ND 0.006 ND ND - 0.172 ND ND Nd2O3 1.361 0.579 0.566 ND ND 0.169 0.039 ND ND ND ND ND ND ND ND ND 0.047 0.033 0.031 ND 0.098 0.059 0.056* 0.913 0.972 2.478 Pr2O3 0.105 0.086 0.119 ND 0.059 ND ND 0.219 ND ND 0.053 0.054 ND ND 0.032 ND ND 0.028 ND ND 0.161 ND 0.081* 0.166 0.098 0.305 Sm2O3 1.578 1.301 0.898 0.108 ND 0.377 0.372 0.018 0.013 0.074 0.117 0.058 ND 0.045 ND ND ND ND ND 0.049 0.064 0.071 0.035* 1.162 1.226 1.870 Gd2O3 2.070 2.038 1.618 ND ND ND ND ND ND ND ND ND ND 0.059 0.021 0.093 ND ND ND 0.001 ND ND - 1.309 1.519 1.696 UO2 ND ND ND ND ND ND ND 1.113 ND ND ND ND ND ND ND ND ND ND ND ND 1.626 1.588 1.342* 2.739 ND ND ThO2 0.444 0.287 0.549 1.112 1.262 1.390 1.570 0.150 ND ND ND 0.058 ND ND ND 0.001 0.006 0.034 ND 0.004 97.507 97.221 98.723* 3.422 3.218 1.678 PbO ND ND ND 0.686 1.441 1.052 0.789 ND ND ND ND ND ND ND 0.034 0.001 ND 0.008 0.004 0.007 0.207 0.226 - 0.139 0.257 0.322 Ta2O5 0.051 0.017 ND ND ND 0.022 0.006 0.141 0.044 0.055 0.098 0.098 0.005 0.138 ND 0.022 0.027 ND 0.016 ND ND 0.092 - ND ND ND Cl - 0.012 0.013 0.014 0.01 0.005 ND 0.001 0.009 ND 0.007 0.004 0.004 0.001 0.006 0.003 0.003 ND 0.003 0.004 ND ND - ND ND 0.004 总计 95.02 96.18 96.02 94.53 93.27 95.48 95.48 92.36 99.84 99.71 100.31 99.63 99.20 118.09 118.12 116.94 116.35 117.07 117.52 117.96 100.96 100.97 101.24* 86.00 87.56 92.47 注:表中“ND”表示未检出;“-”表示未检;标注“*”的一列数据在河北省区域地质矿产调查研究所测得,其余数据均在中国地质科学院矿产资源研究所测得。 表 3 34种矿物中各元素相关系数
Table 3. Correlation coefficients of correlation of elements in 34 minerals
组分 Sc2O3 Y2O3 ThO2 FeO ∑REE F SrO SiO2 Al2O3 CaO P2O5 K2O BaO MnO TiO2 Na2O MgO Nb2O5 UO2 PbO Ta2O5 Cl Sc2O3 1 Y2O3 0.835 1 ThO2 0.720 0.953 1 FeO -0.095 -0.406 -0.424 1 ∑REE -0.596 -0.519 -0.547 -0.524 1 F 0.748 0.965 0.997 -0.454 -0.519 1 SrO 0.530 0.885 0.881 -0.715 -0.168 0.894 1 SiO2 -0.025 -0.303 -0.377 0.920 -0.474 -0.410 -0.631 1 Al2O3 -0.612 -0.605 -0.576 -0.441 0.953 -0.556 -0.307 -0.419 1 CaO 0.731 0.960 0.998 -0.455 -0.519 1 0.897 -0.411 -0.556 1 P2O5 -0.606 -0.528 -0.550 -0.497 0.977 -0.523 -0.198 -0.457 0.947 -0.523 1 K2O -0.613 -0.510 -0.588 -0.424 0.943 -0.559 -0.171 -0.374 0.831 -0.557 0.953 1 BaO 0.026 0.508 0.693 -0.318 -0.341 0.647 0.639 -0.301 -0.350 0.668 -0.322 -0.356 1 MnO -0.622 -0.556 -0.576 -0.495 0.999 -0.549 -0.208 -0.457 0.962 -0.548 0.977 0.937 -0.353 1 TiO2 0.869 0.972 0.959 -0.412 -0.527 0.975 0.840 -0.368 -0.561 0.968 -0.535 -0.569 0.462 -0.558 1 Na2O 0.711 0.954 0.999 -0.457 -0.516 0.998 0.899 -0.412 -0.553 0.999 -0.520 -0.556 0.691 -0.546 0.960 1 MgO -0.051 -0.334 -0.368 0.946 -0.509 -0.405 -0.654 0.983 -0.429 -0.406 -0.512 -0.450 -0.266 -0.487 -0.372 -0.405 1 Nb2O5 0.716 0.956 0.999 -0.455 -0.519 0.999 0.898 -0.411 -0.556 1 -0.523 -0.557 0.686 -0.548 0.962 1 -0.404 1 UO2 0.109 0.530 0.724 -0.535 -0.172 0.693 0.662 -0.505 -0.116 0.708 -0.123 -0.259 0.909 -0.185 0.541 0.726 -0.482 0.721 1 PbO -0.400 -0.478 -0.388 -0.253 0.609 -0.386 -0.376 -0.228 0.797 -0.387 0.694 0.463 -0.217 0.625 -0.384 -0.384 -0.245 -0.386 0.121 1 Ta2O5 -0.337 -0.508 -0.452 0.495 -0.077 -0.447 -0.519 0.147 -0.040 -0.447 -0.01 0.044 -0.295 -0.043 -0.424 -0.451 0.195 -0.447 -0.389 -0.044 1 Cl 0.238 -0.038 -0.009 0.509 -0.510 0.004 -0.238 0.176 -0.454 -0.005 -0.483 -0.450 -0.228 -0.485 0.087 -0.018 0.251 -0.012 -0.310 -0.343 0.804 1 -
[1] 朱凯, 王祝堂. 钪的研究进展及其在铝合金中的应用[J]. 轻合金加工技术, 2021, 49(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ202102001.htm
Zhu K, Wang Z T. Research progress of Sc and its application in aluminum alloys[J]. Light Alloy Fabrication Technology, 2021, 49(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ202102001.htm
[2] 李力, 姜锋, 李汉广. 新世纪钪的应用开发和科技发展前景[J]. 稀有金属与硬质合金, 2002(3): 38-41. doi: 10.3969/j.issn.1004-0536.2002.03.011
Li L, Jiang F, Li H G. The trend of application and development of scandium in the new century[J]. Rare Metals and Cemented Carbides, 2002(3): 38-41. doi: 10.3969/j.issn.1004-0536.2002.03.011
[3] 董方, 高利坤, 陈龙, 等. 钪的资源及回收提取技术发展现状[J]. 矿产综合利用, 2016(4): 21-26. doi: 10.3969/j.issn.1000-6532.2016.04.005
Dong F, Gao L K, Chen L, et al. Scandium resources and status of scandium extraction and recycling technology[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 21-26. doi: 10.3969/j.issn.1000-6532.2016.04.005
[4] 赵宏军, 陈秀法, 李娜, 等. 全球钪资源供需分析及对策建议[J]. 中国矿业, 2019, 28(4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201904011.htm
Zhao H J, Chen X F, Li N, et al. Analysis of global distribution of scandium resources supply and demand status and suggestions[J]. China Mining Magazine, 2019, 28(4): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201904011.htm
[5] Giovanni M, Roberto B, Erwan G, et al. Geochemistry of the apulian allochthonous karst bauxite, southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri—Tethyan palaeogeography[J]. Ore Geology Reviews, 2016, 77: 246-259. doi: 10.1016/j.oregeorev.2016.03.002
[6] Rudnick R L, Gao S. Composition of the continental crust, in Turekian and Holland[M]. Oxford: Elsevier, 2014: 1-51.
[7] Williams-Jones A E, Vasyukova O V. The economic geology of scandium, the runt of the rare earth element litter[J]. Economic Geology, 2018, 113(4): 973-988. doi: 10.5382/econgeo.2018.4579
[8] 陶旭云, 王佳新, 孙嘉, 等. 钪矿床主要类型与成矿机制[J]. 矿床地质, 2019, 38(5): 1023-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905005.htm
Tao X Y, Wang J X, Sun J, et al. Main types and metallogenic mechanism of scandium deposits[J]. Mineral Deposits, 2019, 38(5): 1023-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905005.htm
[9] Wang Z C, Li M Y L, Liu Z R, et al. Scandium: Ore deposits, the pivotal role of magmatic enrichment and future exploration[J]. Ore Geology Reviews, 2021, 128: 103906. doi: 10.1016/j.oregeorev.2020.103906
[10] 王佳媛, 郭静粉, 袁志宝. 各类钪矿床中钪的赋存特征与研究前景[J]. 中国资源综合利用, 2019, 37(6): 71-73. doi: 10.3969/j.issn.1008-9500.2019.06.023
Wang J Y, Guo J F, Yuan Z B. Occurrence characteristics and research prospects of scandium invarious types of scandium deposits[J]. China Resources Comprehensive Utilization, 2019, 37(6): 71-73. doi: 10.3969/j.issn.1008-9500.2019.06.023
[11] 肖军辉, 王进明, 王振. 川西含钪稀土矿中钪的赋存状态研究[J]. 稀土, 2018, 39(2): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201802006.htm
Xiao J H, Wang J M, Wang Z. Study on occurrence state of scandium of scandium-containing rare earth ore in western of Sichuan Province[J]. Chinese Rare Earths, 2018, 39(2): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201802006.htm
[12] 郭彩莲, 成来顺, 宁新霞, 等. 陕西省洋县毕机沟钒钛磁铁矿中钪的赋存状态研究[J]. 矿产保护与利用, 2020, 40(5): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202005009.htm
Guo C L, Cheng L S, Ning X X, et al. Study on the occurence state of scandium in Bijigou vanadium-titanium magnetite in Yang County, Shaanxi Province[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202005009.htm
[13] 李春龙, 李小钢, 徐广尧. 白云鄂博共伴生矿资源综合利用技术开发与产业化[J]. 稀土, 2015, 36(5): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201505030.htm
Li C L, Li X G, Xu G Y. Technology development and industrialization of resources comprehensive utilization of intergrowth and associated ore in Baiyun Obo[J]. Chinese Rare Earths, 2015, 36(5): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201505030.htm
[14] 刘璞, 卢虎生, 王路, 等. 稀土资源投资决策研究——以白云鄂博氧化钪为例[J]. 稀土, 2021, 42(4): 148-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202104019.htm
Liu P, Lu H S, Wang L. Research on investment decisions of rare earth resources-taking scandium oxide of Bayan Obo mine as an example[J]. Chinese Rare Earths, 2021, 42(4): 148-158. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202104019.htm
[15] Li B W, Deng L B, Zhang X F, et al. Structure and perfor-mance of glass-ceramics obtained by Bayan Obo tailing and fly ash[J]. Journal of Non-Crystalline Solids, 2013, 380: 103-108.
[16] 梁有彬. 白云鄂博矿床中钪的分布特征及综合利用问题[J]. 稀土, 1986, 7(6): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ198606011.htm
Liang Y B. Distribution characteristics and compre-hensive utilization of scandium in Bayan Obo deposit[J]. Chinese Rare Earths, 1986, 7(6): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ198606011.htm
[17] 赵长有. 白云鄂博钪[J]. 包钢科技, 1987(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-BGKJ198704000.htm
Zhao C Y. Scandium in Bayan Obo[J]. Science & Technology of Baotou Steel, 1987(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-BGKJ198704000.htm
[18] 中国科学院地球化学研究所. 白云鄂博矿床地球化学[M]. 北京: 科学出版社, 1988: 316-320.
Institute of Geochemistry, Chinese Academy of Sciences. Geochemistry of Bayan Obo deposit[M]. Beijing: Science Press, 1988: 316-320.
[19] Shimazaki H, Yang Z M, Miyawaki R, et al. Scandium-bearing minerals in the Bayan Obo Nb-REE-Fe deposit, Inner Mongolia, China[J]. Resource Geology, 2008, 58(1): 80-86.
[20] 张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm
Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm
[21] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[22] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202006090086
[23] 李小犁, 陶仁彪, 李清云, 等. 石榴子石Fe3+含量电子探针原位分析: Flank Method方法的实例应用[J]. 岩石学报, 2019, 35(4): 1058-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904005.htm
Li X L, Tao R B, Li Q Y, et al. Microprobe analysis of ferric iron in garnet: The Flank Method and case application[J]. Acta Petrologica Sinica, 2019, 35(4): 1058-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904005.htm
[24] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
Wan J J, Pan C R, Yan J, et al. EPMA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202005060009
[25] 章雨旭, 吕洪波, 王俊, 等. 白云鄂博矿床成矿构造环境分析[J]. 地质学报, 2012, 86(5): 767-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201205011.htm
Zhang Y X, Lyu H B, Wang J, et al. Analysis of ore-forming tectonic settings of the Bayan Obo REE deposit[J]. Acta Geologica Sinica, 2012, 86(5): 764-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201205011.htm
[26] Smith M P, Campbell L S, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476.
[27] 柯昌辉, 孙盛, 赵永岗, 等. 内蒙古白云鄂博超大型稀土-铌-铁矿床控矿构造特征及深部找矿方向[J]. 地质通报, 2021, 40(1): 95-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202101010.htm
Ke C H, Sun S, Zhao Y G, et al. Ore-controlling structure and deep prospecting of the Bayan Obo large-saized REE-Nb-Fe ore deposit, Inner Mongolia[J]. Geological Bulletin of China, 2021, 40(1): 95-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202101010.htm
[28] Zhai M G, Santosh M, Zhang L. Precambrian geology and tectonic evolution of the North China Craton[J]. Gondwana Research, 2011, 20(1): 1-5.
[29] 谢玉玲, 曲云伟, 杨占峰, 等. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识[J]. 矿床地质, 2019, 38(5): 983-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905003.htm
Xie Y L, Qu Y W, Yang Z F, et al. Giant Bayan Obo Fe-Nb-REE deposit: Progresses, controversaries and new understandings[J]. Mineral Deposits, 2019, 38(5): 983-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201905003.htm
[30] 刘敬国, 柳建勇. 论白云鄂博铁矿资源潜力与今后地质工作方向[J]. 包钢科技, 2007(4): 9-14.
Liu J G, Liu J Y. Discussion on the resources potential of Baiyunebo iron mine and the future work direction[J]. Science & Technology of Baotou Steel, 2007(4): 9-14.
[31] 王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 2018, 34(3): 785-798. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803016.htm
Wang K Y, Zhang J E, Fang A M, et al. Genesis of the Bayan Obo deposit, Inner Mongolia: The fenitized mineralization in the ore bodies and its relation to the ore-bearing dolomite[J]. Acta Petrologica Sinica, 2018, 34(3): 785-798. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803016.htm
[32] 张培善, 陶克捷. 白云鄂博矿物学[M]. 北京: 科学出版社, 1986: 3-37.
Zhang P S, Tao K J. Mineralogy of Bayan Obo[M]. Beijing: Geological Publishing House, 1986: 3-37.
[33] 张培善, 陶克捷, 杨主明, 等. 中国稀土矿物学[M]. 北京: 科学出版社, 1998: 1-19.
Zhang P S, Tao K J, Yang Z M, et al. Rare earth mineralogy in China[M]. Beijing: Science Press, 1998: 1-19.
[34] 徐金沙, 李国武, 沈敢富. 首次在白云鄂博铁矿发现的矿物种述评[J]. 地质学报, 2012, 86(5): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201205019.htm
Xu J S, Li G W, Shen G F. Commentary on mineral species first found in the Bayan Obo iron mine[J]. Acta Geologica Sinica, 2012, 186(5): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201205019.htm
[35] 段威, 唐文春, 熊观, 等. 川北硅质岩型铼多金属矿铼的赋存状态[J]. 矿物学报, 2021, 41(3): 271-276. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202103005.htm
Duan W, Tang W C, Xiong G, et al. A study on the occurrence of rhenium in the siliceous rock-type Re polymetallic deposit in the northern Sichuan, China[J]. Acta Mineralogica Sinica, 2021, 41(3): 271-276. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202103005.htm
[36] 曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160-168. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804130042
Zeng G S, Ou L M. Study on mineralogical characteristics of Peru copper-sulphur ore dressing process by X-ray diffraction and scanning electron microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201804130042
[37] 李东育. 红格钒钛磁铁矿中钪的地球化学特征——兼论选矿流程中钪的分布[D]. 成都: 成都理工大学, 2017: 1-5.
Li D Y. Geochemical characteristics of scandium in Hongge vanadium titanium magnetite-distribution of scandium in beneficiation progress[D]. Chengdu: Chengdu University of Technology, 2017: 1-5.
[38] 李军敏, 丁俊, 尹福光, 等. 渝南申基坪铝土矿矿区钪的分布规律及地球化学特征研究[J]. 沉积学报, 2012, 30(5): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205016.htm
Li J M, Ding J, Yin F G, et al. Regularities of distribution and geochemical characteristics of Sc in bauxite of Shenjiping mine, southern Chongqing[J]. Acta Sedimentologica Sinica, 2012, 30(5): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205016.htm
[39] 惠博, 陈晓青, 赵开乐, 等. 某斑岩型铜矿中Sc的赋存状态及对选矿工艺的影响[J]. 矿物学报, 2016, 36(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201603016.htm
Hui B, Chen X Q, Zhao K L, et al. A study on occurrence state of scandium in a porphyry copper ore and its influence on the mineral processing technology[J]. Acta Mineralogica Sinica, 2016, 36(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201603016.htm
[40] 范亚洲, 周伟, 王子玺, 等. 稀散元素Sc的矿床类型及找矿前景[J]. 西北地质, 2014, 47(1): 234-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201401025.htm
Fan Y Z, Zhou W, Wang Z X, et al. The types of rare and disperse scandium deposits and prospecting potential[J]. Northwestern Geology, 2014, 47(1): 234-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201401025.htm
[41] 许延辉. 包头白云鄂博资源中铌、钪提取技术取得突破[J]. 稀土信息, 2012(3): 29. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXX201203026.htm
Xu Y H. Breakthrough in extraction technology of niobium and scandium from Bayan Obo resources in Baotou[J]. Rare Earth Information, 2012(3): 29. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXX201203026.htm
[42] 赵昉, 胡振琪, 车丽萍. 乳状液膜法提取白云鄂博矿床中钪的试验研究[J]. 稀土, 2010, 31(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201002025.htm
Zhao F, Hu Z Q, Che L P. Extracting Sc3+ using liquid membrane emulsion technology[J]. Chinese Rare Earths, 2010, 31(2): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201002025.htm
[43] 马媛. 萤石标型及其对不同成矿作用的标识[D]. 北京: 中国地质大学(北京), 2018: 1-9.
Ma Y. Typomorphic characteristics of the fluorite as indicators of different mineralizations[D]. Beijing: China University of Geosciences (Beijing), 2018: 1-9.
[44] 杨育富. 湖南香花岭矽卡岩中不同颜色萤石的特征及成因[D]. 桂林: 桂林理工大学, 2019: 15-16.
Yang Y F. Characteristics and origin of the fluorite with different colors in Xiangkaling skarn, Hunan[D]. Guiling: Guilin University of Technology, 2019: 15-16.
[45] 于俊芳. 白云鄂博含萤石矿石类型及萤石纯净度分析[D]. 北京: 中国地质大学(北京), 2020: 1-4, 29-44.
Yu J F. Different ore types and analysis of fluorite purity in Bayan Obo[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-4, 29-44.
[46] 刘铁庚, 赵云龙, 李新安. 辐射损伤与萤石颜色的初步研究[J]. 矿物学报, 1983(4): 300-303, 326. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198304010.htm
Liu T G, Zhao Y L, Li X A. Preliminary study of the relationship between irradiation damage and fluorite colour[J]. Acta Mineralogica Sinica, 1983(4): 300-303, 326. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198304010.htm
[47] 李丹煜, 杨莉, 王金龙, 等. 白云鄂博萤石分布特征及放射性钍元素的影响[J]. 包钢科技, 2020, 46(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BGKJ202003003.htm
Li D Y, Yang L, Wang J L, et al. Distribution characteristics of fluorite and effects of radioactive element thorium in Bayan Obo deposit[J]. Science & Technology of Baotou Steel, 2020, 46(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BGKJ202003003.htm
[48] 杨莉, 王昭静, 杨波, 等. 白云鄂博矿床钍的赋存状态及其对周边矿物的影响[J]. 稀土, 2021, 42(4): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202104008.htm
Yang L, Wang Z J, Yang B, et al. Occurrence state of thorium and its influence on surrounding minerals in Bayan Obo deposit[J]. Chinese Rare Earths, 2021, 42(4): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202104008.htm
-