-
摘要:
津巴布韦马朗(Marange)金刚石矿以产出混合习性(八面体与近立方体)金刚石为特征,其石墨包裹体仅存在于近立方体区。石墨包裹体的形态、分布及金刚石的异常双折射与应变特征,能反映其从开始结晶到被搬运至地表过程中经历的地质作用。因此,对津巴布韦混合习性金刚石及石墨包裹体的研究不仅能提供与其他产地金刚石有对比意义的数据,且由于其本身生长习性的特殊性,故两生长区的精细分析对帮助理解不同习性金刚石在地质过程中的行为差异具有重要价值。本文采用DiamondViewTM、偏光显微镜、扫描电镜、能谱仪、红外光谱仪和拉曼光谱仪对津巴布韦混合习性金刚石及石墨包裹体进行系统观察分析。结果显示,石墨包裹体存在于近立方体区的定向椭圆裂隙中,属于由金刚石石墨化而成的同生-次生包裹体。近立方体区与H有关的红外吸收更强,而八面体区与N有关的吸收更强,这种对不同杂质元素的差异富集,导致金刚石呈现主要与裂隙及不同生长区有关的异常双折射。金刚石八面体区LO=TO带拉曼位移为1332.05~1332.20cm-1,半高宽为4.21~4.37cm-1,对应应力约0.06~0.27GPa;近立方体区LO=TO带拉曼位移为1331.93~1332.47cm-1,半高宽为3.67~4.08cm-1,对应应力约0.01~0.64GPa。总体来看近立方体区的残余应力更大,应变更强。本研究确定了津巴布韦混合习性金刚石中石墨包裹体的定向性,发现了证明其同生-次生性的新证据,并揭示了两生长区金刚石的应变特征差异,对了解津巴布韦金刚石的形成环境和不同金刚石的物理化学性质差异具有重要意义。
Abstract:BACKGROUND The Marange diamond deposit in Zimbabwe is characterized by producing mixed-habit (octahedral and cuboid) diamonds. Graphite inclusions in these diamonds only exist in cuboid sectors. The morphological and distributional characteristics of graphite inclusions and the abnormal birefringence and strain characteristics of diamonds can reflect the geological process experienced by diamonds from the beginning of crystallization to being transported to the Earth's surface. Therefore, the study of diamonds and graphite inclusions in Zimbabwe can provide comparative data for diamonds from other deposits. Besides, due to the peculiarity of growth habits, detailed analysis would be of great value to help understand the behavioral differences of diamonds with different growth habits in geological processes.
OBJECTIVES To determine if graphite inclusions in Zimbabwean diamonds are syngenetic or epigenetic, and to reveal the relationship between graphite inclusions and the infrared absorption spectrum, Raman scattering spectrum as well as birefringence and strain characteristics of diamonds.
METHODS The growth structure and growth sectors of Zimbabwean diamonds were observed by DiamondViewTM image system. The morphological and distributional characteristics of graphite inclusions and abnormal birefringence in diamonds were analyzed by scanning electron microscopy (SEM) and polarized light microscopy. Analysis of distribution and relative concentration of impurity elements in different growth sectors was conducted by infrared spectroscopy. Strain characteristics of diamonds in different growth sectors were analyzed by Raman spectroscopy and projection diagram of corresponding results.
RESULTS Graphite inclusions in cuboid sectors of Zimbabwean diamonds were syngenetic-epigenetic inclusions located in directional elliptical cracks. According to infrared spectra of different growth sectors, cuboid sectors showed stronger infrared absorption related to elemental hydrogen, while octahedral sectors showed stronger absorption related to elemental nitrogen. This enrichment of different impurity elements leading to abnormal birefringence was mainly related to cracks and different growth sectors in diamond. The Raman shift of LO=TO band in octahedral sectors was 1332.05-1332.20cm-1, the FWHM was 4.21-4.37cm-1, which corresponded to stress of 0.06-0.27GPa. The Raman shift of LO=TO band in cuboid sectors was 1331.93-1332.47cm-1, the FWHM was 3.67-4.08cm-1, which corresponded to stress of 0.01-0.64GPa. In general, the residual stress and strain were greater in cuboid sectors.
CONCLUSIONS The determination of the orientation of graphite inclusions in mixed-habit diamonds in Zimbabwe, provides new evidence to prove their syngenetic-epigenetic nature, and reveal the difference in the strain characteristics of diamonds in the two growth regions. This research is helpful for understanding the formation environment of diamonds in Zimbabwe and of different diamonds. The differences in physicochemical properties are of great significance.
-
-
[1] Zedgenizov D A, Kagi H, Shatsky V S, et al. Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): Evidence from vibrational spectroscopy[J]. Mineralogical Magazine, 2004, 68(1): 61-73. doi: 10.1180/0026461046810171
[2] Skuzovatov S Yu, Zedgenizov D A, Shatsky V S, et al. Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia)[J]. Russian Geology and Geophysics, 2011, 52(1): 85-96. doi: 10.1016/j.rgg.2010.12.007
[3] Lang A R. Causes of birefringence in diamond[J]. Nature, 1967, 213(5073): 248-251. doi: 10.1038/213248a0
[4] Barron L M, Mernagh T P, Barron B J. Using strain birefringence in diamond to estimate the remnant pressure on an inclusion[J]. Australian Journal of Earth Sciences, 2008, 55(2): 159-165. doi: 10.1080/08120090701689332
[5] Rosenfeld J L, Chase A B. Pressure and temperature of crystallization from elastic effects around solid inclusions in minerals?[J]. American Journal of Science, 1961, 259(7): 519-541. doi: 10.2475/ajs.259.7.519
[6] Howell D, Wood I G, Dobson D P, et al. Quantifying strain birefringence halos around inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 2010, 160(5): 705-717. doi: 10.1007/s00410-010-0503-5
[7] 陆太进, 陈华, 张健, 等. 津巴布韦金刚石独特的形态及其"指纹"特征的意义[J]. 地质通报, 2011, 31(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm
Lu T J, Chen H, Zhang J, et al. Unique morphology of Zimbabwe diamond and its 'fingerprint' characteristic significance[J]. Geological Bulletin of China, 2011, 30(10): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201110019.htm
[8] Rondeau B, Fritsch E, Guiraud M, et al. Three historical 'asteriated' hydrogen-rich diamonds: Growth history and sector-dependent impurity incorporation[J]. Diamond and Related Materials, 2004, 13(9): 1658-1673. doi: 10.1016/j.diamond.2004.02.002
[9] Howell D, Griffin W L, Piazolo S, et al. A spectroscopic and carbon-isotope study of mixed-habit diamonds: Impurity characteristics and growth environment[J]. American Mineralogist, 2013, 98(1): 66-77. doi: 10.2138/am.2013.4179
[10] Smit K V, Shirey S B, Stern R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: Evidence from CH4 micro-inclusions and δ 13C- δ 15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81. doi: 10.1016/j.lithos.2016.03.015
[11] Smit K V, Myagkaya E, Persaud S, et al. Black diamonds from Marange (Zimbabwe): A result of natural irradiation and graphite inclusions[J]. Gems and Gemology, 2018, 54(2): 132-148. doi: 10.5741/GEMS.54.2.132
[12] Pal'Yanov Y N, Sokol A G, Sobolev N V. Experimental modeling of mantle diamond-forming processes[J]. Russian Geology and Geophisics, 2005, 46(12): 1290-1303.
[13] Sokol A G, Pal'Yanov Y N. Diamond formation in the system MgO-SiO2-H2O-C at 7.5GPa and 1600℃[J]. Contributions to Mineralogy and Petrology, 2008, 155(1): 33-43.
[14] Zedgenizov D A, Ragozin A L, Shatsky V S, et al. Fibrous diamonds from the placers of the northeastern Siberian Platform: Carbonate and silicate crystallization media[J]. Russian Geology and Geophysics, 2011, 52(11): 1298-1309. doi: 10.1016/j.rgg.2011.10.003
[15] Izraeli E S, Harris J W, Navon O. Brine inclusions in diamonds: A new upper mantle fluid[J]. Earth and Planetary Science Letters, 2001, 187(3-4): 323-332. doi: 10.1016/S0012-821X(01)00291-6
[16] Harris J W. Black material on mineral inclusions and in internal fracture planes in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(1): 22-33. doi: 10.1007/BF00397374
[17] Nechaev D V, Khokhryakov A F. Formation of metastable graphite inclusions during diamond crystallization in model systems[J]. Geology of Ore Deposits, 2014, 56(2): 139-146. doi: 10.1134/S1075701514020044
[18] Khokhryakov A F, Nechaev D V, Sokol A G, et al. Formation of various types of graphite inclusions in diamond: Experimental data[J]. Lithos, 2009, 112: 683-689. doi: 10.1016/j.lithos.2009.05.010
[19] Nechaev D V, Khokhryakov A F. Formation of epigenetic graphite inclusions in diamond crystals: Experimental data[J]. Russian Geology and Geophysics, 2013, 54(4): 399-405. doi: 10.1016/j.rgg.2013.03.003
[20] 唐诗, 苏隽, 陆太进, 等. 化学气相沉积法再生钻石的实验室检测特征研究[J]. 岩矿测试, 2019, 38(1): 62-70. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802070017
Tang S, Su J, Lu T J, et al. Research on laboratory testing features of chemical vapor deposition in overgrowth diamonds[J]. Rock and Mineral Analysis, 2019, 38(1): 62-70. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201802070017
[21] Rakovan J, Gaillou E, Post J E, et al. Optically sector-zoned (star) diamonds from Zimbabwe[J]. Rock and Minerals, 2014, 89(2): 173-178. doi: 10.1080/00357529.2014.842844
[22] Nasdala L, Brenker F E, Glinnemann J, et al. Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds[J]. European Journal of Mineralogy, 2003, 15(6): 931-935.
[23] Howell D. Strain-induced birefringence in natural diamond: A review[J]. European Journal of Mineralogy, 2012, 24(4): 575-585. doi: 10.1127/0935-1221/2012/0024-2205
[24] Gogotsi Y G, Kailer A, Nickel K G. Transformation of diamond to graphite[J]. Nature, 1999, 401(6754): 663-664. doi: 10.1038/44323
[25] Day H W. A revised diamond-graphite transition curve[J]. American Mineralogist, 2012, 97(1): 2-62.
[26] 杨志军, 彭明生, 谢先德, 等. 金刚石的微区显微红外光谱分析及其意义[J]. 岩矿测试, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001 http://www.ykcs.ac.cn/article/id/ykcs_20020340
Yang Z J, Peng M S, Xie X D, et al. Micro area analysis of diamond by micro-infrared spectrometry and its significance[J]. Rock and Mineral Analysis, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001 http://www.ykcs.ac.cn/article/id/ykcs_20020340
[27] Zaitsev A M. Optical properties of diamond: A data handbook[M]. Springer Science and Business Media, 2013: 52-57.
[28] Goss J P, Briddon P R, Hill V, et al. Identification of the structure of the 3107cm-1 H-related defect in diamond[J]. Journal of Physics: Condensed Matter, 2014, 26(14): 145801. doi: 10.1088/0953-8984/26/14/145801
[29] Salustro S, Gentile F S, D'Arco P, et al. Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis[J]. Carbon, 2018, 129(1): 349-356.
[30] 宋中华, 陆太进, 苏隽, 等. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征[J]. 岩矿测试, 2018, 37(1): 64-69. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705040072
Song Z H, Lu T J, Su J, et al. Identification of HPHT-treated hydrogen-rich diamonds by optical absorption and photo luminescence spectroscopy techniques[J]. Rock and Mineral Analysis, 2018, 37(1): 64-69. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201705040072
[31] Davies G, Collins A T, Spear P. Sharp infra-red absorption lines in diamond[J]. Solid State Communications, 1984, 49(5): 433-436. doi: 10.1016/0038-1098(84)90657-4
[32] Benedetti L R, Nguyen J H, Caldwell W A, et al. Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors?[J]. Science, 1999, 286(5437): 100-102. doi: 10.1126/science.286.5437.100
[33] Peaker C V, Goss J P, Briddon P R, et al. Di-nitrogen-vacancy-hydrogen defects in diamond: A computational study[J]. Physica Status Solid A, 2015, 212(11): 2616-2620. doi: 10.1002/pssa.201532216
[34] Gu T, Wang W. Optical defects in milky type aB diamonds [J]. Diamond and Related Materials, 2018, 89: 322-329. doi: 10.1016/j.diamond.2018.09.010
[35] Clackson S G, Moore M, Walmsley J, et al. The relationship between platelet size and the frequency of the B'infrared absorption peak in type Ⅰa diamond[J]. Philosophical Magazine B, 1990, 62(2): 115-128. doi: 10.1080/13642819008226980
[36] Collinss A T, Kanda H, Burns R C. The segregation of nickel-related optical centres in the octahedral growth sectors of synthetic diamond[J]. Philosophical Magazine B, 1990, 61(5): 797-810. doi: 10.1080/13642819008207562
[37] Burns R C, Cvetkovic V, Dodge C N, et al. Growth-sector dependence of optical features in large synthetic diamonds[J]. Journal of Crystal Growth, 1990, 104(2): 257-279. doi: 10.1016/0022-0248(90)90126-6
[38] Boyd S R, Pillinger C T, Milledge H J, et al. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit[J]. Nature, 1988, 331(6157): 604-607. doi: 10.1038/331604a0
[39] Boyd S R, Kiflawi I, Woods G S. The relationship between infrared absorption and the A defect concentration in diamond[J]. Philosophical Magazine B, 1994, 69(6): 1149-1153. doi: 10.1080/01418639408240185
[40] Boyd S R, Kiflawi I, Woods G S. Infrared absorption by the B nitrogen aggregate in diamond[J]. Philosophical Magazine B, 1995, 72(3): 351-361. doi: 10.1080/13642819508239089
[41] Kiflawi I, Kanda H, Fisher D, et al. The aggregation of nitrogen and the formation of A centres in diamonds[J]. Diamond and Related Materials, 1997, 6(11): 1643-1649. doi: 10.1016/S0925-9635(97)00207-0
[42] Fisher D, Lawson S C. The effect of nickel and cobalt on the aggregation of nitrogen in diamond[J]. Diamond and Related Materials, 1998, 7(2): 299-304.
[43] Lang A R, Bulanova G P, Fisher D, et al. Defects in a mixed-habit Yakutian diamond: Studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy[J]. Journal of Crystal Growth, 2007, 309(2): 170-180. doi: 10.1016/j.jcrysgro.2007.09.022
[44] Grimsditch M H, Anastassakis E, Cardona M. Piezo-birefringence in diamond[J]. Physical Review B, 1979, 19(6): 3240-3243. doi: 10.1103/PhysRevB.19.3240
[45] Higashida K, Tanaka M, Matsunaga E, et al. Crack tip stress fields revealed by infrared photoelasticity in silicon crystals[J]. Materials Science and Engineering A, 2004, 387: 377-380.
[46] Welbourn C M, Rooney M, Evans D. A study of dia-monds of cube and cube-related shape from the Jwaneng mine[J]. Journal of Crystal Growth, 1989, 94(1): 229-252. doi: 10.1016/0022-0248(89)90622-2
[47] Lawn B R, Komatsu H. The nature of deformation around pressure cracks on diamond[J]. Philosophical Magazine, 1966, 14(130): 689-699. doi: 10.1080/14786436608211965
[48] Nasdala L, Hofmeister W, Harris J W, et al. Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps[J]. American Mineralogist, 2005, 90(4): 745-748. doi: 10.2138/am.2005.1690
[49] Nemanich R J, Solin S A. First-and second-order Raman scattering from finite-size crystals of graphite[J]. Physical Review B, 1979, 20(2): 392. doi: 10.1103/PhysRevB.20.392
[50] 马瑛, 王琦, 丘志力, 等. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定: 形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm
Ma Y, Wang Q, Qiu Z L, et al. In-situ Raman spectroscopy testing and genesis of graphite inclusions in alluvial diamonds from Hunan[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1753-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201806022.htm
[51] Zerda T W, Xu W, Zerda A, et al. High pressure Raman and neutron scattering study on structure of carbon black particles[J]. Carbon, 2000, 38(3): 355-361. doi: 10.1016/S0008-6223(99)00111-6
[52] Howell D, Wood I G, Nestola F, et al. Inclusions under remnant pressure in diamond: A multi-technique approach[J]. European Journal of Mineralogy, 2012, 24(4): 563-573. doi: 10.1127/0935-1221/2012/0024-2183
[53] Grimsditch M H, Anastassakis E, Cardona M. Effect of uniaxial stress on the zone-center optical phonon of diamond[J]. Physical Review B, 1978, 18(2): 901. doi: 10.1103/PhysRevB.18.901
[54] Nachal'Naya T A, Andreyev V D, Gabrusenok E V. Shift of the frequency and Stokes-anti-Stokes ratio of Raman spectra from diamond powders[J]. Diamond and Related Materials, 1994, 3(11-12): 1325-1328. doi: 10.1016/0925-9635(94)90146-5
[55] Surovtsev N V, Kupriyanov I N. Effect of nitrogen impur-ities on the Raman line width in diamond, revisited[J]. Crystals, 2017, 7(8): 239. doi: 10.3390/cryst7080239
[56] Harris J W, Vance E R. Induced graphitisation around crystalline inclusions in diamond[J]. Contributions to Mineralogy and Petrology, 1972, 35(3): 227-234. doi: 10.1007/BF00371217
-