Application of EPMA and LA-ICP-MS to Study Mineralogy of Arsenopyrite from the Haoyaoerhudong Gold Deposit, Inner Mongolia, China
-
摘要:
毒砂的主微量元素组成可以用于判断元素的赋存状态,探讨元素在不同阶段的活化迁移行为。内蒙古浩尧尔忽洞金矿床是产自白云鄂博群黑色岩系中的一个超大型金矿,发育重要载金矿物毒砂和斜方砷铁矿。前人利用传统粉末溶样法对矿石进行同位素分析,探讨了成矿物质来源,但金的迁移富集机制尚未获得解决。为探讨该矿床金迁移富集过程,本文在矿相学的基础上,对不同类型的毒砂进行电子探针(EPMA)和电感耦合等离子体质谱(ICP-MS)测试。所测得的电子探针数据经ZAF程序校正,LA-ICP-MS数据采用“无内标-基体归一法”进行定量计算,可以有效地分析微区成分。结果显示:毒砂(Apy)内部发育斜方砷铁矿(Lo),可分为递进剪切变形阶段的Apy-Ⅰ1、Apy-Ⅰ2、Lo-Ⅰ和后剪切变形阶段的Apy-Ⅱ1、Apy-Ⅱ2、Lo-Ⅱ。各世代毒砂主元素组成稳定,含有少量Co、Ni和微量Sb、Te、Bi、Pb、Au、Ag。其中,Co在Apy-Ⅱ1和Apy-Ⅱ2中偏高,微量元素Au、Bi、Pb、Te在Apy-Ⅰ1中明显富集。斜方砷铁矿富As(64.06%~67.87%),含Co(0.33%~4.98%)、Ni(1.23%~6.37%),微量元素Au、Te、Bi、Pb、Ag在Lo-Ⅱ中更富集。研究表明,Lo-Ⅱ是最主要的载金矿物,温度和硫逸度的变化导致了斜方砷铁矿和自然金的沉淀,自然金是由早期毒砂和斜方砷铁矿的“不可见金”经活化再迁移沉淀形成。
Abstract:BACKGROUND The composition of major and trace elements in arsenopyrite can be used to identify the occurrence of elements and explore the remobilization and migration behaviour of elements in different stages. The Haoyaoerhudong gold deposit in Inner Mongolia is a super large gold deposit hosted in the black shales of the Bayan Obo Group. Gold-bearing minerals such as arsenopyrite and loellingite are present. Previous researchers have used the traditional powder dissolution method to analyze the isotope of the ore and discussed the source of ore-forming materials, but the migration and enrichment mechanism of gold has not been unraveled.
OBJECTIVES To understand the gold migration and enrichment process of this deposit.
METHODS Based on mineralogy, different types of arsenopyrite were analyzed by electron probe microanalyzer (EPMA) and inductively coupled plasma-mass spectrometry (ICP-MS). The data measured by EPMA was corrected by ZAF program, and the data measured by LA-ICP-MS was quantitatively calculated by "no internal standard-matrix normalized calibration".
RESULTS The results showed that loellingite was developed in arsenopyrite. They can be divided into Apy-Ⅰ1, Apy-Ⅰ2, Lo-Ⅰ in progressive shear deformation stage and Apy-Ⅱ1, Apy-Ⅱ2 and Lo-Ⅱ in post shear deformation stage. The major element composition of arsenopyrite in different generations was stable, with a small amount of Co and Ni and a trace amount of Sb, Te, Bi, Pb, Au and Ag. Cobalt was higher in Apy-Ⅱ1 and Apy-Ⅱ2, whereas Au, Bi, Pb and Te were obviously enriched in Apy-Ⅰ1. Loellingite was rich in As (64.06%-67.87%), Co (0.33%-4.98%), Ni (1.23%-6.37%). Trace elements such as Au, Te, Bi, Pb and Ag were more enriched in Lo-Ⅱ.
CONCLUSIONS Lo-Ⅱ is the most important gold-bearing mineral. The changes of temperature and sulfur fugacity lead to the precipitation of loellingite and native gold. Native gold is precipitated by remobilization and migration of "invisible gold" in early arsenopyrite and loellingite.
-
-
图 1 浩尧尔忽洞金矿地质图(据文献[19]修改)
Figure 1.
图 7 Fe-As-S系统相图及毒砂地质温度计(据文献[3])
Figure 7.
表 1 毒砂和斜方砷铁矿的EPMA测试条件
Table 1. EPMA analytical conditions of arsenopyrite and loellingite
元素 分析晶体 特征X射线 计数时间(s) 标样矿物 检出限(μg/g) 峰位 背景 As TAP Lα 10 5 砷化镓(GaAs) 53~105 Sb PETH Lα 10 5 硫化锑(Sb2S3) 270~294 Pb PETJ Mα 10 5 方铅矿(PbS) 110~136 S PETJ Kα 10 5 黄铜矿(CuFeS2) 18~39 Ag PETH Lα 10 5 硫砷银矿(Ag3AsS3) 190~246 Fe LIF Kα 10 5 黄铁矿(FeS2) 138~186 Cu LIF Kα 10 5 黄铜矿(CuFeS2) 339~473 Au PETH Mα 10 5 金(Au) 146~192 Co LIF Kα 10 5 钴(Co) 294~374 Ni LIFH Kα 10 5 硫化镍(NiS) 111~155 Zn LIF Kα 10 5 闪锌矿(ZnS) 203~437 表 2 毒砂、斜方砷铁矿电子探针分析结果
Table 2. Electron probe microanalysis of arsenopyrite and loellingite
测点编号 矿物 元素含量(%) As Sb Pb S Ag Fe Cu Au Co Ni Zn 总计 B228(2)-1-3 毒砂
(Apy-Ⅰ1)45.78 - 0 18.51 0 34.87 - - 0.465 0.5 0 100.16 B228(2)-2-1 45.81 0.029 0.017 18.96 0 34.94 - 0 0.491 0.506 0 100.76 B228(2)-2-3 45.85 0.08 0.07 19.09 0.037 34.25 0 0 0.356 0.438 0 100.16 B241(1)-1-1 45.27 - 0.1 19.86 - 33.92 0 0.049 0.243 0.145 - 99.61 B241(1)-1-3 45.55 0.039 0.214 18.61 0 34.48 0 0 0.357 0.284 0 99.53 B241(1)-2-4 45.32 - 0 19.41 0 34.46 0 0 0.373 0.23 0 99.79 B241(2)-1-1 45.99 0.043 0.074 19.01 - 34.06 0 0 0.26 0.424 0 99.87 B241(1)-1-2 毒砂
(Apy-Ⅰ2)45.53 0.044 - 18.91 0 34.48 0 0.038 0.388 0.166 0 99.56 B241(1)-2-1 45.21 0 0 19.32 0 34.52 - 0.088 0.271 0.154 0 99.56 B228(2)-1-1 45.64 - 0 18.99 0.035 34.36 0 0 0.361 0.375 0 99.79 B228(2)-1-2 斜方砷铁矿
(Lo-Ⅰ)66.05 0.048 0.132 2.41 0 28.27 - 0 0.541 2.584 - 100.04 B228(2)-2-2 67.63 0.047 0 1.00 - 27.14 0 0 0.607 3.152 0.034 99.60 B241(1)-2-2 64.06 - 0.033 2.34 0 29.53 0 0 0.483 1.233 0 97.70 B241(2)-1-2 65.98 0 0 2.65 0 28.98 0 0 0.332 2.146 0 100.09 B241(2)-1-3 66.17 0 0.066 2.27 - 28.85 0 0 0.342 2.237 0 99.95 B183-5 毒砂
(Apy-Ⅱ1)45.37 0 0 19.00 - 33.86 0 0.133 0.431 0.506 0 99.31 B352-3-2 45.18 - 0 18.11 0 33.81 0 - 3.346 0.213 0 100.68 B219-1-2 45.29 - 0 18.40 0.033 34.37 0 0 2.03 0.562 0 100.69 B263(2)-1-3 45.58 0 0.018 18.60 0 33.84 0.031 0 1.242 0.878 0 100.19 B263(2)-2-2 45.31 0 0.035 19.30 - 33.97 0 0.088 1.282 0.675 0 100.66 B263(2)-2-3 45.61 0 0 18.96 0 33.87 0 0.022 1.255 0.727 0 100.44 B183-1 毒砂
(Apy-Ⅱ2)44.97 0 0.065 19.58 0 34.20 0 0 0.379 0.444 0.089 99.72 B352-1-1 44.46 0 0 18.70 - 34.69 - 0 2.212 0.201 0 100.29 B219-2-1 44.36 - 0.013 18.64 - 34.68 0 - 1.943 0.372 0 100.04 B263(1)-1-2 44.03 - 0 18.65 - 35.08 0 0.033 1.463 0.424 0 99.70 B263(2)-1-1 45.56 0 - 17.26 0 34.74 0 0 1.128 0.856 0 99.54 B263(2)-2-1 45.43 0 0 19.11 0.026 34.01 0 - 1.32 0.617 0 100.53 B263(1)-2-2 45.35 - 0.119 18.82 0 34.05 0 0.04 1.418 0.538 - 100.36 B263(1)-3-1 44.30 0 0 18.99 0.026 34.95 0 0 1.28 0.431 0 99.98 B183-2 斜方砷铁矿
(Lo-Ⅱ)66.26 0 0.033 1.52 0.019 26.27 0 0 0.639 3.846 0 98.59 B183-4 66.55 0 0 2.02 - 26.82 - 0.085 0.612 3.615 - 99.75 B352-1-2 67.80 0 0 0.97 0 24.44 0 0 4.951 1.807 0 99.96 B352-3-1 66.20 0 0.122 2.34 0 25.26 0 0.078 4.977 1.592 0 100.57 B219-1-1 67.87 0 0.081 1.08 0 24.79 0 0 2.763 3.471 0 100.04 B219-2-3 67.48 - 0.066 0.74 0.019 24.46 - 0 2.952 3.434 0 99.16 B263(1)-1-1 67.07 0.09 0.071 1.67 0 25.55 0 0.049 2.001 3.441 0 99.94 B263(1)-2-1 66.96 0.028 0.071 1.81 - 25.77 - 0.03 1.997 3.53 0 100.21 B263(1)-3-2 66.29 0 0.061 2.24 - 26.27 0 0.036 1.72 3.152 0 99.77 B263(2)-1-2 66.29 0 0.043 1.69 0 22.80 0 0 1.624 6.371 0 98.83 B263(2)-2-4 66.41 0 0.104 1.82 0.05 23.55 0 0 1.76 5.822 0 99.51 B263(2)-2-5 66.52 0 0 1.63 0.047 23.44 0 0 1.731 5.965 0 99.34 注:“-”表示元素含量低于检测限。 表 3 毒砂、斜方砷铁矿LA-ICP-MS分析结果
Table 3. LA-ICP-MS analysis of arsenopyrite and loellingite
测点编号 矿物 元素含量(μg/g) Au Co Ni Sb Te Bi Pb Se Ag Cu Zn Ba Al Ti Mn B190(3)-3 毒砂
(Apy-Ⅰ1)0.08 5267 1510 196.32 14.64 91.05 12.82 11.88 3.00 45.41 3.97 0.27 591.27 3.93 660.59 B171(2)-3 0.70 13596 1147 274.62 15.32 47.47 2.53 6.07 0.23 0.64 1.48 2.64 441.49 20.06 2.75 B164(2)-5 0.81 10505 5034 135.60 22.13 78.42 7.06 9.54 0.73 0 1.80 3.63 876.66 17.84 9.28 B241(1)-1 12.37 1205 860 195.60 64.66 32.62 1.17 16.66 0.17 0.23 0.69 1.65 259.60 17.47 1.66 B241(1)-2 1470.74 1443 1756 206.00 656.40 3117.29 7.23 13.06 170.77 0.87 2.71 9.67 1724.68 159.63 15.98 平均 3.49 6403 2061 201.63 154.63 673.37 6.16 11.44 1.03 11.79 2.13 3.57 778.74 43.79 138.05 B241(1)-3 毒砂
(Apy-Ⅰ2)0.34 1102 766 174.65 46.74 0.35 - 12.58 0.39 0.44 7.11 0.03 0 - 0.51 B171(2)-2 0.06 13157 1258 276.13 11.36 0.26 0.01 4.01 0 0 - 0.02 - - 0 B190(3)-1 0.11 9867 2265 191.93 14.86 3.19 0.42 9.70 0 93.52 - 0.45 47.13 6.98 1.76 B164(2)-1 0.28 9999 1261 149.34 12.46 9.89 0.30 9.23 0.31 - 2.75 3.69 251.98 21.95 7.06 平均 0.20 8531 1388 198.01 21.36 3.42 0.24 8.88 0.35 0.44 4.93 1.05 149.56 14.46 3.11 B241(1)-4 斜方砷铁矿
(Lo-Ⅰ)125.15 1334 4459 147.69 319.25 1554.98 2.79 12.68 15.53 1.02 0.52 0.03 21.99 0.98 1.89 B171(2)-4 58.60 9186 6214 163.44 78.14 1119.76 1.28 3.64 5.81 0 4.11 3.84 632.47 40.12 10.77 B256-1-1 29.24 12952 12024 140.24 42.62 37.02 - 6.97 0.56 0.02 13.93 - 10.36 0 1.01 B256-1-3 14.04 10047 11280 100.19 56.19 7.72 - 9.51 0 0 0 0.50 143.01 6.59 - B228-02-1 13.18 1787 11037 152.43 39.56 43.50 0.53 13.78 0 0 - 1.31 217.67 9.66 - B228-02-3 22.28 1387 10094 118.66 35.84 1.06 - 18.71 - 0 - 0 1.59 0 0 B241-2-1 27.01 920 8199 132.52 32.12 0.37 0 - 0 0 0 0 - - - 平均 41.36 5373 9044 136.45 86.24 394.92 1.53 10.88 7.30 0.52 6.19 1.42 171.18 14.34 4.55 B352-2 毒砂
(Apy-Ⅱ1)0.57 17114 1092 153.23 40.96 24.42 3.85 4.56 0.16 0.93 - - 3.51 0.64 - B352-7 0.32 11992 721 119.16 36.29 15.07 1.28 4.74 0.31 0.38 - 1.69 60.37 2.68 1.67 B263(2)-2 0.60 5037 5010 98.64 35.92 13.75 1.12 12.64 0.06 0.36 1.38 3.55 281.94 22.32 9.60 B263(1)-5 0.49 8908 3354 153.76 60.67 11.58 1.62 7.91 0.04 - - 0.11 20.45 1.67 9.32 平均 0.50 10763 2544 131.20 43.46 16.20 1.97 7.46 0.15 0.56 1.38 1.78 91.57 6.83 6.86 B217(1)-2 毒砂
(Apy-Ⅱ2)0.24 12235 2189 326.33 23.79 1.05 0.08 6.38 0 0.58 0 0.12 12.46 3.15 0.98 B217(1)-4 0.48 9847 2474 333.20 28.18 4.86 3.16 9.31 - 0 0.68 - 3.98 - 0 B352-6 0.49 14627 1052 134.01 38.19 0.65 0.43 5.20 0 496.77 8.59 0.03 2.75 0 0.40 B352-4 0.23 11925 774 150.47 41.84 1.61 0.12 3.09 0.10 0 0.82 0.70 144.42 21.98 7.88 TB352-4 0.09 13060 1318 129.57 18.92 1.89 0.25 5.42 0.04 0 1.02 0.12 33.97 3.76 2.05 B263(1)-4 0.31 7470 3269 151.74 51.00 0.58 0.03 5.81 0.01 0.51 - 0.03 0.75 - - B263(2)-1 0.22 4231 3724 80.48 26.58 0.77 0.03 11.00 0 0.26 0.48 0.01 0.32 - 0.37 B263(1)-1 0.27 7235 2892 152.93 50.82 1.96 0.17 6.24 0 0 0 0.02 0 0.96 0 B263(3)-1 0.06 2438 630 77.99 26.29 0.34 - 9.52 0 - 0.40 0 0 - 0.33 平均 0.26 9230 2036 170.75 33.96 1.52 0.54 6.89 0.05 0.45 2.00 0.15 28.38 7.46 2.00 B352-5 斜方砷铁矿
(Lo-Ⅱ)1496.33 9874 4873 484.41 1733.03 15908.75 41.76 5.13 124.75 2.11 1.62 5.91 927.91 19.31 3.74 B217(1)-3 1409.11 12145 15303 368.04 475.07 9073.09 27.33 5.41 40.30 1.91 709.43 0.73 44.05 18.14 2.71 B217(1)-5 108.76 4033 5251 204.96 454.37 5936.41 29.02 6.65 8.77 0 - 0.20 79.98 2.41 2.69 B183-1 1656.97 1692 11690 619.91 1721.39 39714.13 34.69 - 23.97 - 125.53 212.27 16689.82 1215.42 198.35 B183-2 75.96 1964 12500 100.47 143.48 1163.09 5.57 22.49 7.11 0 30.90 33.54 4176.58 538.89 110.59 B183-4 45.45 2414 14312 106.73 66.05 735.19 - 24.11 2.62 0 0 0.18 31.67 35.64 0 B263(3)-2 12.30 8167 5492 56.77 51.68 53.85 0.48 9.43 3.46 23.39 1.62 3.61 509.77 19.40 11.39 B263(1)-2 11.89 6697 12912 123.14 71.23 1.00 0.26 3.95 - 10.83 5.91 - - 1.64 0 平均 602.10 5873 10292 258.05 589.54 9073.19 19.87 11.02 30.14 9.56 145.84 36.63 3208.54 231.36 41.18 注:“-”表示元素含量低于检测限。 -
[1] Morey A A, Tomkins A G, Bierlein F P, et al. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Economic Geology, 2008, 103: 599-614. doi: 10.2113/gsecongeo.103.3.599
[2] Zoheir B, Goldfarb R, Holzheid A, et al. Geochemical and geochronological characteristics of the Um Rus granite intrusion and associated gold deposit, Eastern Desert, Egypt[J]. Geoscience Frontiers, 2020, 11(1): 325-345. doi: 10.1016/j.gsf.2019.04.012
[3] Tomkins A G, Mavrogenes J A. Redistribution of gold within arsenopyrite and Lollingite during pro- and retrograde metamorphism: Application to timing of mineralization[J]. Economic Geology, 2001, 96: 525-534. doi: 10.2113/gsecongeo.96.3.525
[4] Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326-327: 72-87. doi: 10.1016/j.chemgeo.2012.07.017
[5] 卢焕章, 朱笑青, 单强, 等. 金矿床中金与黄铁矿和毒砂的关系[J]. 矿床地质, 2013, 32(4): 824-843. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304016.htm
Lu H Z, Zhu X Q, Shan Q, et al. Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits[J]. Mineral Deposit, 2013, 32(4): 824-843. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304016.htm
[6] 陈懋弘, 毛景文, 陈振宇, 等. 滇黔桂"金三角"卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539-557. doi: 10.3969/j.issn.0258-7106.2009.05.002
Chen M H, Mao J W, Chen Z Y, et al. Mineralogy of arsenian pyrites and arsenopyrites of Carlin-type gold deposits in Yunnan—Guizhou—Guangxi "golden triangle" area, southwestern China[J]. Mineral Deposit, 2009, 28(5): 539-557. doi: 10.3969/j.issn.0258-7106.2009.05.002
[7] 张乐骏, 周涛发. 矿物原位LA-ICPMS微量元素分析及其在矿床成因和预测研究中的应用进展[J]. 岩石学报, 2017, 33(11): 3437-3452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711007.htm
Zhang L J, Zhou T F. Minerals in-situ LA-ICPMS trace elements study and the applications in ore deposit genesis and exploration[J]. Acta Petrologica Sinica, 2017, 33(11): 3437-3452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711007.htm
[8] 周伶俐, 曾庆栋, 孙国涛, 等. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 2019, 35(7): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907002.htm
Zhou L L, Zeng Q D, Sun G T, et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) elemental mapping and its applications in ore geology[J]. Acta Petrologica Sinica, 2019, 35(7): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201907002.htm
[9] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[10] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
[11] Zhang H D, Liu J C, Mostafa F. Multistage mineralization in the Haoyaoerhudong gold deposit, Central Asian Orogenic Belt: Constraints from the sedimentary-diagenetic and hydrothermal sulfides and gold[J]. Geoscience Frontiers, 2021, 12(2): 587-604. doi: 10.1016/j.gsf.2020.08.003
[12] 李园. 内蒙古浩尧尔忽洞金矿床黄铁矿成因矿物学研究及成矿预测[D]. 北京: 中国地质大学(北京), 2015.
Li Y. The pyrite genetic mineralogy and metallogenic prediction of the Haoyaoerhudong gold deposit, Inner Mongolia Autonomous Region, China[D]. Beijing: China University of Geosciences (Beijing), 2015.
[13] 王建平, 刘家军, 江向东, 等. 内蒙古浩尧尔忽洞金矿床黑云母氩氩年龄及其地质意义[J]. 矿物学报, 2011, 31(S1): 643-644. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1335.htm
Wang J P, Liu J J, Jiang X D, et al. The argon age and its geological significance of black mica of the Haoyaoerhudong gold deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 2011, 31(S1): 643-644. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1335.htm
[14] Wang J P, Liu J J, Peng R M, et al. Gold mineralization in Proterozoic black shales: Example from the Haoyaoerhudong gold deposit, northern margin of the North China Craton[J]. Ore Geology Reviews, 2014, 63: 150-159. doi: 10.1016/j.oregeorev.2014.05.001
[15] 王得权, 王建国, 王义忠, 等. 内蒙浩尧尔忽洞金矿流体包裹体和矿床成因研究[J]. 地质力学学报, 2015, 21(4): 517-526. doi: 10.3969/j.issn.1006-6616.2015.04.007
Wang D Q, Wang J G, Wang Y Z, et al. Study on fluid inclusions and genetic type of Haoyaoerhudong gold deposit, Inner Mongolia[J]. Journal of Geomechanics, 2015, 21(4): 517-526. doi: 10.3969/j.issn.1006-6616.2015.04.007
[16] Zhang H D, Liu J C, Xu Q, et al. Geochronology, isotopic chemistry, and gold mineralization of the black slate-hosted Haoyaoerhudong gold deposit, northern North China Craton[J]. Ore Geology Reviews, 2020, 117: 103315. doi: 10.1016/j.oregeorev.2020.103315
[17] Wang J P, Wang X, Liu J J, et al. Geology, geochemistry, and geochronology of gabbro from the Haoyaoerhudong gold deposit, Northern Margin of the North China Craton[J]. Minerals, 2019, 9(1): 63. doi: 10.3390/min9010063
[18] 肖伟, 聂凤军, 刘翼飞, 等. 内蒙古长山壕金矿区花岗岩同位素年代学研究及地质意义[J]. 岩石学报, 2012, 28(2): 535-543. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202016.htm
Xiao W, Nie F J, Liu Y F, et al. Isotope geochronology study of the granitoid intrusions in the Changshanhao gold deposit and its geological implications[J]. Acta Petrologica Sinica, 2012, 28(2): 535-543. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202016.htm
[19] Liu Y F, Nie F J, Jiang S H, et al. Geology, geochrono-logy and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis[J]. Ore Geology Reviews, 2016, 73: 253-269. doi: 10.1016/j.oregeorev.2014.12.020
[20] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[21] 宁思远, 汪方跃, 薛纬栋, 等. 长江中下游铜陵地区宝山岩体地球化学研究[J]. 地球化学, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001
Ning S Y, Wang F Y, Xue W D, et al. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt[J]. Geochimica, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001
[22] 汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm
Wang F Y, Ge C, Ning S Y, et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm
[23] Xiao X, Zhou T F, White N C, et al. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, eastern China[J]. Lithos, 2018, 302-303: 467-479. doi: 10.1016/j.lithos.2018.01.023
[24] Sharp Z D, Essene E J, Kelly W C. A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages[J]. Canadian Mineralogist, 1985, 23: 517-534.
[25] Thomas H V, Large R R, Bull S W, et al. Pyrite and pyrrhotite textures and composition in sedimentary rocks, laminated quartz veins, and gold reefs at the Bendigo mine, Australia: Insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31. doi: 10.2113/econgeo.106.1.1
[26] Large R R, Danyushevsky L V, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104: 635-668. doi: 10.2113/gsecongeo.104.5.635
[27] 李立兴, 李厚民, 丁建华, 等. 东天山维权银铜矿床中钴矿化发现及成因意义[J]. 矿床地质, 2018, 37(4): 778-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804005.htm
Li L X, Li H M, Ding J H, et al. The discovery of cobaltite mineralization in Weiquan Ag-Cu deposit, eastern Tianshan Mountains, and its significance[J]. Mineral Deposit, 2018, 37(4): 778-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201804005.htm
[28] 张金阳, 马昌前, 李建威. 东昆仑水闸东沟—黄龙沟金矿床硫化物矿物学特征对可见金形成条件的制约[J]. 矿床地质, 2012, 31(6): 1184-1194. doi: 10.3969/j.issn.0258-7106.2012.06.005
Zhang J Y, Ma C Q, Li J W. Visible gold-forming environment evidenced by sulfide mineralogical characteristics of Shuizhadonggou—Huanglonggou gold deposit in eastern Kunlun Orogen[J]. Mineral Deposit, 2012, 31(6): 1184-1194. doi: 10.3969/j.issn.0258-7106.2012.06.005
[29] Sahoo P R, Venkatesh A S. Constraints of mineralogical characterization of gold ore: Implication for genesis, controls and evolution of gold from Kundarkocha gold deposit, eastern India[J]. Journal of Asian Earth Sciences, 2015, 97(Part A): 136-149.
[30] 汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征、金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3): 491-508. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202103006.htm
Wang C, Wang R T, Liu Y H, et al. Geological characteristics, modes of occurrence of gold and genesis of San'guanmiao gold deposit, Shangnan, Shaanxi Province[J]. Mineral Deposit, 2021, 40(3): 491-508. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202103006.htm
[31] Large R R, Maslennikov V, Robert F, et al. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log deposit, Lena Gold Province, Russia[J]. Economic Geology, 2007, 102: 1233-1267. doi: 10.2113/gsecongeo.102.7.1233
[32] Cook N J, Ciobanu L R, Meria D, et al. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 2013, 188(6): 1273-1283.
-